

STUDIA MATHEMATICA 116 (3) (1995)

A fixed point theorem for demicontinuous pseudocontractions in Hilbert space

by

JAMES MOLONEY and XINLONG WENG (Huntington, W.V.)

Abstract. Let C be a closed, bounded, convex subset of a Hilbert space. Let $T:C\to C$ be a demicontinuous pseudocontraction. Then T has a fixed point. This is shown by a combination of topological and combinatorial methods.

In a Hilbert space, a pseudocontraction is a map satisfying

$$||Tx - Ty||^2 \le ||x - y||^2 + ||(Tx - x) - (Ty - y)||^2$$

or equivalently,

$$\langle Tx - Ty, x - y \rangle \le ||x - y||^2.$$

Clearly, this is equivalent to

$$\langle (I-T)x - (I-T)y, x - y \rangle \ge 0.$$

That is, (I-T) is monotone. Monotone mappings appeared in the proof of Browder's fixed point theorem.

A map T is demicontinuous if $\{x_n\}$ converging to x in the norm implies that $\{Tx_n\}$ converges weakly to Tx.

Our main result is:

If C is a closed, bounded, convex subset of a Hilbert space, and $T:C\to C$ is a demicontinuous pseudocontraction, then T has a fixed point.

Martin [5] showed that if T is a norm continuous pseudocontraction, then T has a fixed point (this was actually sort of a byproduct of some other work). Browder [2] showed that it would be enough for T to be demicontinuous if C were a ball. We were able to get the result for any closed, bounded, convex subset by the use of combinatorial methods (Ramsey's Theorem) and by the use of a class of maps similar to the pseudocontractions. In fact, our actual result is for a class of maps slightly more general

¹⁹⁹¹ Mathematics Subject Classification: Primary 47H10; Secondary 47H06.

A fixed point theorem for pseudocontractions

than pseudocontractions. We called them pseudocontractive type, and they satisfy the inequality

(D)
$$||Tx - Ty||^2$$

 $\leq ||x - y||^2 + \max\{||Tx - x||^2 + ||Ty - y||^2, ||(Tx - x) - (Ty - y)||^2\}.$

This inequality arises in the following manner:

Consider the two inequalities:

(E)
$$||Tx - Ty||^2 \le ||x - y||^2 + ||Tx - x||^2 + ||Ty - y||^2$$

and

(F)
$$||Tx - Ty||^2 \le ||x - y||^2 + ||(Tx - x) - (Ty - y)||^2.$$

Observe that, for a pair x and y, if $\langle Tx-x,Ty-y\rangle \geq 0$, then (E) implies (F), and thus (D) implies (F). Again, if $\langle Tx-x,Ty-y\rangle \leq 0$, then (F) implies (E), hence (D) implies (E). We shall show by combinatorial methods (Ramsey's Theorem) that for any infinite set $R \subset \text{dom } T$, and for any $\delta > 0$, there is an infinite subset $S \subset R$ such that for x and y in S,

$$2\langle Tx - x, Ty - y \rangle \ge -\delta ||Tx - x||^2 - \delta ||Ty - y||^2.$$

(And this does not depend on T at all.) Thus, for x and y in S and satisfying (F),

$$(\mathbf{E}(\delta)) \quad ||Tx - Ty||^2 \le ||x - y||^2 + (1 + \delta)||Tx - x||^2 + (1 + \delta)||Ty - y||^2.$$

This is very useful because for a closed ball B and a closed convex set $C \subset B$, if $\varrho: B \to C$ is the "closest point" projection and $T: C \to C$ satisfies (E) or $(E(\delta))$, then $T \circ \varrho: B \to B$ will satisfy the same inequality.

We start with the map $T \circ \varrho : B \to B$ and by topological methods, namely Brouwer's fixed point theorem, we find a sequence of points $\{x_n\}$ and projections $\{\Pi_n\}$ such that $\Pi_n T \circ \varrho x_n = x_n$. These projections will be such that for n > j, the range of Π_n will contain the range of Π_j , as well as $T \circ \varrho x_j$ and x_j . Given $\delta > 0$, an infinite subsequence will satisfy $(E(\delta))$ for T, hence for $T \circ \varrho$. Then, by an argument essentially trigonometric, we show that a weak limit of the $\{x_n\}$ must be a fixed point.

THEOREM 1. Let C be a closed, bounded, convex subset of a Hilbert space. Let T be a demicontinuous mapping, $T: C \to C$. Let T satisfy

$$||Tx-Ty||^2 \le ||x-y||^2 + \max\{||(Tx-x)-(Ty-y)||^2, ||Tx-x||^2 + ||Ty-y||^2\}.$$
Then T has a fixed point.

THEOREM 1#. Let C be a closed, bounded, convex subset of a Hilbert space. Let $T:C\to C$ be a demicontinuous pseudocontraction. Then T has a fixed point.

It is clear that Theorem 1# is a special case of Theorem 1.

Before proving our theorem, we need the following definitions and lemmas.

NOTATION 1. ${\mathcal H}$ will denote a Hilbert space. B will always denote a closed ball with center at zero.

DEFINITION 1. A mapping $T: C \to \mathcal{H}$ is said to be hemicontinuous if the map $t \to T[(1-t)x+ty]$ is continuous from [0,1] into the weak topology of \mathcal{H} . T is demiclosed at zero if $\{x_n\}$ converging weakly to x and $\{Tx_n\}$ converging strongly to 0 imply Tx = 0.

DEFINITION 2. A map $T: \mathcal{H} \to \mathcal{H}$ is of pseudocontractive type if it satisfies the inequality

$$||Tx - Ty||^2 \le ||x - y||^2 + \max\{||Tx - x||^2 + ||Ty - y||^2, ||(Tx - x) - (Ty - y)||^2\}$$
 for all x and y .

LEMMA 1. Let B be a closed ball in \mathcal{H} and let $T: B \to B$ be demicontinuous. Then there exists a sequence $\{z_n\} \subset B$ such that

- (a) $\langle Tz_n z_n, Tz_m z_m \rangle = 0$ for $m \neq n$,
- (b) $\langle Tz_n z_n, z_n \rangle = 0$, and
- (c) $\{Tz_n z_n\}$ converges weakly to zero.

P roof. If the mapping T has a fixed point x in B, we complete the proof by letting $z_n = x$ for all n. Assuming no fixed point, we let M_1 be a 1-dimensional subspace of \mathcal{H} , and $\Pi_1:B\to M_1\cap B$ be the well defined orthogonal projection. Thus, the mapping $\Pi_1 \circ T : M_1 \cap B \to M_1 \cap B$ is continuous, and has a fixed point by the well known Brouwer theorem. Since $II(Tz_1-z_1)=II\circ Tz_1-IIz_1=0$, we have $(Tz_1-z_1)\in M_1^{\perp}$. Let $M_2 = M_1 \oplus (Tz_1 - z_1)$ and $\Pi_2 : B \to M_2 \cap B$ be the orthogonal projection. As above, the mapping $\Pi_2 \circ T$ has a fixed point z_2 in $M_2 \cap B$. Generally, we construct a family of finite rank subspaces $\{M_n\}$ and a sequence $\{z_n\}$ with $z_n \in M_n \cap B$ such that $(Tz_n - z_n) \in M_n^{\perp}$, $M_{n+1} = M_n \oplus (Tz_n - z_n)$ and $II_n \circ T(z_n) = z_n$. To show that the sequence $\{z_n\}$ satisfies (a)-(c), we observe that $\langle Tz_n - z_n, h \rangle = 0$ for all $h \in M_n$ and $\langle Tz_m - z_m \rangle \in M_n$ for m < n. Thus, $\langle Tz_n - z_n, z_n \rangle = 0$ and, by the symmetry of the inner product, $\langle Tz_n - z_n, Tz_m - z_m \rangle = 0$ for all $m \neq n$. Since $\{Tz_n - z_n\}$ is an orthogonal set of vectors in \mathcal{H} , by Bessel's inequality we have $\langle Tz_n - z_n, h \rangle \to 0$ for all $h \in \mathcal{H}$.

LEMMA 2. Let C be a convex subset of \mathcal{H} , and let $T: C \to C$ be a hemicontinuous pseudocontractive type mapping. Suppose $\{x_n\}$ to be a sequence in C such that $(Tx_n - x_n) \to 0$ (weakly), $\langle Tx_n - x_n, x_n \rangle \to 0$, and $x_n \to x$ (weakly). Then x is a fixed point of T:

220

Proof. First, by the law of cosines, the definition of pseudocontractive type is equivalent to the mapping T satisfying

$$\langle Tw - Ty, w - y \rangle \le ||w - y||^2 + \max\{0, \langle Tw - w, Ty - y \rangle\}, \quad \forall w, y \in C.$$

Let z = (1-b)x + bTx for some b, 0 < b < 1. Since T is hemicontinuous, we can find a number b such that

$$\langle Tz - z, Tx - x \rangle \ge (1/2) \langle Tx - x, Tx - x \rangle.$$

For any $\varepsilon > 0$, there exists n large enough such that $|\langle Tx_n - x_n, z - x_n \rangle| < \varepsilon$, $|\langle Tx_n - x_n, Tz - z \rangle| < \varepsilon$, and $|\langle Tz - z, x - x_n \rangle| < \varepsilon$. Thus,

$$\langle Tz - Tx_n, z - x_n \rangle$$

$$= \langle Tz - z, z - x_n \rangle + \langle z - x_n, z - x_n \rangle + \langle x_n - Tx_n, z - x_n \rangle$$

$$= ||z - x_n||^2 + \langle x_n - Tx_n, z - x_n \rangle$$

$$+ \langle Tz - z, b(Tx - x) \rangle + \langle Tz - z, x - x_n \rangle$$

$$> ||z - x_n||^2 + (b/2)||Tx - x||^2 - 2\varepsilon.$$

On the other hand, T is of pseudocontractive type, so

$$\langle Tz - Tx_n, z - x_n \rangle \le ||z - x_n||^2 + \max\{0, \langle Tz - z, Tx_n - x_n \rangle\}$$

$$\le ||z - x_n||^2 + \varepsilon.$$

Finally, we have $3\varepsilon \ge (b/2)\|Tx - x\|^2$, from which we have Tx = x.

Combining Lemma 2 with the definition of demiclosed, we immediately have the following:

LEMMA 3. Let C be a closed, bounded, convex subset of $\mathcal H$ and let $T:C\to C$ be a hemicontinuous pseudocontractive type mapping. Then the operator I-T is demiclosed at zero.

The next two lemmas will help us use Lemma 1's results in the case where C is not a ball.

LEMMA 4 (Ramsey's Theorem). Let $\mathcal{V} \subset \mathbb{N} \times \mathbb{N}$ be the set of all ordered pairs (m,n) such that m > n. Let $\phi : \mathcal{V} \to \{0,1\}$ be any function. Then there exists $A \subseteq \mathbb{N}$ such that ϕ restricted to $\mathcal{V} \cap (A \times A)$ is a constant.

For the proof, see [7].

Ramsey's Theorem is often expressed in terms of graph theory. In that case (m, n) is the edge from m to n, and $\{0, 1\}$ is $\{\text{red, green}\}$ or $\{\text{adjacent, not adjacent}\}$.

LEMMA 5. Given any infinite set of vectors W in a Hilbert space, and any $\delta > 0$, there exists V, an infinite subset of W, such that for all $y_n, y_m \in V$,

$$||y_n - y_m||^2 \le (1+\delta)||y_n||^2 + (1+\delta)||y_m||^2.$$

Proof. We shall use Lemma 4. We define ϕ in this manner:

$$\phi(m,n) = \begin{cases} 1 & \text{if } y_m \text{ and } y_n \text{ satisfy the inequality,} \\ 0 & \text{if they do not.} \end{cases}$$

Thus, either there exists the infinite subset V we desire, or there exists an infinite subset S such that for all $y_n, y_m \in S$,

$$||y_n - y_m||^2 \ge (1+\delta)||y_n||^2 + (1+\delta)||y_m||^2$$

which, by the law of cosines, is equivalent to

$$-2\langle y_n, y_m \rangle \ge \delta ||y_n||^2 + \delta ||y_m||^2.$$

This easily implies that the ratio of the norms is bounded by $2/\delta$; and, without loss of generality, we can say that $1 \ge ||y_m|| \ge \delta/2$ for any $y_m \in S$.

We now complete the proof by a Gram-Schmidt process. We renumber the elements of S as $\{z_n\}$. We then construct an orthonormal basis $\{u_n\}$ so that

$$z_1 = a_1 u_1, \quad z_2 = b_{12} u_1 + a_2 u_2, \dots, \quad z_n = b_{1n} u_1 + b_{2n} u_2 + \dots + a_n u_n,$$

where all the a_j 's are positive. It is clear that $b_{ij} \leq -(\delta/2)||z_j||$ for all i and j. Thus, when $j > [(2/\delta)^2 + 1]$, we get $||z_j|| > 1$. This contradiction proves the lemma.

Proof of Theorem 1. To prove that the operator T has at least one fixed point in C, it suffices, by Lemma 2 and the weak compactness of C, to show that there exists a sequence $\{x_n\}$ in C such that

- (i) $\{Tx_n x_n\}$ converges weakly to zero, and
- (ii) $\langle Tx_n x_n, x_n \rangle \to 0$.

Let B be a ball containing C and let $\varrho : \mathcal{H} \to C$ be the retraction sending $x \in \mathcal{H}$ to the closest point to x in C. It is well known that ϱ will satisfy

$$\|\varrho x - \varrho y\| \le \|x - y\| \quad \text{for all } x, y \in \mathcal{H}, \text{ and}$$
$$\|x - \varrho y\|^2 \le \|x - y\|^2 - \|\varrho y - y\|^2 \quad \text{for all } x \in C, \ y \in \mathcal{H}.$$

For the demicontinuous mapping $T \circ \varrho : B \to B$, there exists, by Lemma 1, a sequence $\{z_n\}$ having the properties (a)–(c) listed in Lemma 1. Set $x_n = \varrho z_n$. Note that $\{x_n\} \subset C$, $Tx_n - x_n = T \circ \varrho z_n - z_n + z_n - \varrho z_n$, and

$$\langle Tx_n - x_n, x_n \rangle = \langle T \circ \varrho z_n - z_n, z_n \rangle + \langle T \circ \varrho z_n - z_n, \varrho z_n - z_n \rangle + \langle z_n - \varrho z_n, \varrho z_n - z_n \rangle + \langle z_n - \varrho z_n, z_n \rangle.$$

Now $\{T \circ \varrho z_n - z_n\}$ weakly converges to 0, and $\langle T \circ \varrho z_n - z_n, z_n \rangle = 0$. Thus, if $\liminf \|\varrho z_n - z_n\| = 0$, a subsequence of $\{x_n\}$ will satisfy (i) and (ii), completing the proof.

We assume toward a contradiction that there exists b > 0 such that $\|\varrho z_n - z_n\| \ge b$ for all n. By Lemma 5, there exists V, an infinite subset of

A fixed point theorem for pseudocontractions

223

(3340)

 $\{T \circ \varrho z_n - \varrho z_n\}$ such that for two elements of V,

$$\|(T\circ\varrho z_n-\varrho z_n)-(T\circ\varrho z_j-\varrho z_j)\|^2\leq \|T\circ\varrho z_n-\varrho z_n\|^2+\|T\circ\varrho z_j-\varrho z_j\|^2+b^2.$$

We will let W denote the corresponding subset of $\{z_n\}$. Since T is of pseudocontractive type, we have for $z_n, z_j \in W$,

$$\begin{split} \|T \circ \varrho z_{n} - T \circ \varrho z_{j}\|^{2} \\ & \leq \|\varrho z_{n} - \varrho z_{j}\|^{2} + \|T \circ \varrho z_{n} - \varrho z_{n}\|^{2} + \|T \circ \varrho z_{j} - \varrho z_{j}\|^{2} + b^{2} \\ & \leq \|z_{n} - z_{j}\|^{2} + \|T \circ \varrho z_{n} - z_{n}\|^{2} - \|\varrho z_{n} - z_{n}\|^{2} \\ & + \|T \circ \varrho z_{j} - z_{j}\|^{2} - \|\varrho z_{j} - z_{j}\|^{2} + b^{2} \\ & \leq \|z_{n} - z_{j}\|^{2} + \|T \circ \varrho z_{n} - z_{n}\|^{2} + \|T \circ \varrho z_{j} - z_{j}\|^{2} + b^{2} - 2b^{2} \\ & \leq \|z_{n} - z_{j}\|^{2} + q\|T \circ \varrho z_{n} - z_{n}\|^{2} + q\|T \circ \varrho z_{j} - z_{j}\|^{2} \end{split}$$

for some q < 1. On the other hand, by the law of cosines, we have

$$\begin{split} \|T \circ \varrho z_n - T \circ \varrho z_j\|^2 \\ & \geq \|z_n - z_j\|^2 + \|T \circ \varrho z_n - \varrho z_n\|^2 + \|T \circ \varrho z_j - \varrho z_j\|^2 \\ & - 2|\langle T \circ \varrho z_n - z_n, T \circ \varrho z_j - z_j\rangle| - 2|\langle T \circ \varrho z_n - z_n, z_n - z_j\rangle| \\ & - 2|\langle T \circ \varrho z_j - z_j, z_n - z_j\rangle|. \end{split}$$

Combining the two inequalities above, and noting that $\langle T \circ \varrho z_n - z_n, T \circ \varrho z_j - z_j \rangle = 0$ for $j \neq n$, and $\langle T \circ \varrho z_j - z_j, z_n - z_j \rangle = 0$ for j > n, we have

$$\begin{aligned} 2|\langle T \circ \varrho z_n - z_n, z_n - z_j \rangle| \\ & \geq (1-q)\|T \circ \varrho z_n - z_n\|^2 + (1-q)\|T \circ \varrho z_j - z_j\|^2 \\ & \geq (1-q)\|\varrho z_n - z_n\|^2 + (1-q)\|\varrho z_j - z_j\|^2 \geq 2(1-q)b^2. \end{aligned}$$

Let $S = \{z_n\}$ be a subsequence of W; and let z be the weak limit of S. Observe that

$$\begin{split} \langle T \circ \varrho z_n - z_n, z_n - z_j \rangle &= \langle T \circ \varrho z_n - z_n, z_n - \Pi_n z \rangle \\ &+ \langle T \circ \varrho z_n - z_n, \Pi_n z - z \rangle \\ &+ \langle T \circ \varrho z_n - z_n, z - z_j \rangle. \end{split}$$

Recall that $\langle T \circ \varrho z_n - z_n, z_n - \Pi_n z \rangle = 0$, that for sufficiently large n, $\|\Pi_n z - z\|$ is as small as necessary, and that for any fixed n, there exists j > n such that $|\langle T \circ \varrho z_n - z_n, z - z_j \rangle|$ is also as small as desired. This gives the desired contradiction.

References

- [1] F. E. Browder, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1100-1103.
- [2] —, Nonlinear mappings of nonexpansive accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875–882.
- [3] K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374.
- [4] W. A. Kirk, Remarks on pseudo-contractive mappings, Proc. Amer. Math. Soc. 25 (1970), 821-823.
- R. H. Martin Jr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399-414.
- [6] J. J. Moloney, Some fixed point theorems, Glasnik Mat. 24 (1989), 59-76.
- [7] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1930), 264-286.
- [8] X. Weng, Fixed point iteration for local strictly pseudocontractive mappings, Proc. Amer. Math. Soc. 113 (1991), 727-731.

MATHEMATICS DEPARTMENT MARSHALL UNIVERSITY HUNTINGTON, WEST VIRGINIA 28755-2560 U.S.A.

Received September 27, 1994
Revised version January 12, 1995