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Geometric characteristics for convergence and
asymptotics of successive approximations of
equations with smooth operators

by

BORIS A. GODUNOV (Brest)
and PETR P. ZABREIKO (Minsk)

Abstract. We discuss the problem of characterizing the possible asymptotic be-
haviour of the iterates of a sufficiently smooth nonlinear operator acting in a Banach
space in small neighbourhoods of a fixed point. It turns out that under natural condi-
tions, for the most part of initial approximations these iterates tend to “lie down™ along a
finite-dimensional subspace generated by the leading (peripherical) eigensubspaces of the
Fréchet derivative at the fixed point and moreover the asymptotic behaviour of “projec-
tions” of the iterates on this subspace is determined by the arithmetic properties of the
leading eigenvalues,

Let A’ be a Banach space and A. a smooth (nonlinear) operator in X with
fixed point z.. A basic problem in numerical methods is to find conditions
under which this fixed point z, may be obtained as the limit

Ty = lim z,
Tt =+00

of the successive approximations

(1) Lnpl =Az, [(n=0,1,...)

for any initial value zg sufficiently close to .. A well-known sufficient con-
dition (see, e.g., [9]) is that the spectral radius g{A'(x.)) of the Fréchet
derivative of A at z, is strictly less than 1; some more pracise conditions
may be found in [6, 7, 11). _

In case p(A'(z.)) < 1, the successive approximations (1) converge to @,
at least as fast as a geometric progression with ratio p(A'(z.)); this means
that

limsup ¥/l[z, — 2ol| < o( A/ (2.))
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It is of interest to determine the convergence rate more explicitly in termg
of the initial value zg. If A" is a Hilbert space and A’(z,) has a simple pos-
itive leading eigenvalue, this problem has been investigated by M. A. Kras-
nosel’skil and Ya. B. Rutitskii [9] who showed that the “portion” of those
inttial values 2g in the ball

Blzo,r)={zecX:|z~z. <r}

for which
(2) nh—»n;o { H"En - mg” = Q(A,(‘E*))

tends to 100% as r — 0. This iz closely related to the fact that, starting
from an initial value zq satisfying (2), the sequence x,, — 1z, tends towards
the direction of some normalized eigenvector e which corresponds to the
eigenvalue p(A'(z.)), Le.

lim ”.’I‘;n - -n"ﬂ'*H_l(fL'n - Q'J*) =€
n—oo

Analogous results have been obtained under more general hypotheses
in [4, 5].

In this paper we consider the case when A is just a completely continuous
operator, or, more generally, the derivative A'(x..) is completely continuous,
or, still more generally, the peripherical spectrum of A/(z,) (i.e. the part
of the spectrum lying on the circumference |A| = o(A'(z4)), see [10]) is
Fredholm. It turns out that analogous statements also hold in this case.
Moreover, one can show that the successive approximations (1) “converge”,
as n — 00, towards an invariant subspace of eigenvectors corresponding to
eigenvalues A with |A| = o(A'(x,)). In contrast to the cases described above,
however, the nature of this “convergence” is here much more complicated.

1. Equivalent norms and separated spectra. Consider & linear op-
erator B in a Banach space X' whose spectrum splits into two parts o and
", wheré o is contained in the disc |A| < 7y, and o7 is contained in the
annulus 1 < (A €y (0K g < ro € 7y < 00). In this case [2, 8], the
space A splits in turn into a direct sum X = Xy + X0 of two B-invariant
subspaces Ay and X% such that og is the spectrum of the restriction By of
B to &y, and o0 is the spectrum of the restriction B? of B to &Y. Denote by
Py and PY the projections (which commute with B) of X onto Xy and A7,
respectively,

Recall [9] that, given a continnous linear operator C in X and &£ > 0,
there is an equivalent norm |- [l in X such that |Cfle < o(C)+e. An
important consequence is that the spectral radius of a continuous linear
operator C in &' is the infimum of |[C|| over all equivalent norms in X. The
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norm | - [l for which ||Clls < ¢(C) + & may be defined, for example, by
3)  lalle = (o + &) Mol + (o + )" Cal| + ...+ |C™ ]

where n iy large enough such that |C*|*/" < o(C) +e. (The existence of
such an n i an immediate consequence of the definition of g(C).)

In the sequel we shall need a refinement of this result. First of all, we
state a simple fact:

LeMMa L If D is o continuous linear operator commuting with C, then
D]l < 1D

Proof, This follows from the obvious estimate
IC*Dz| < [DC*z|| < D] - ||C*
(k=0,1,...,n~1; C0=1). u

By means of Lemma 1, we can staté a more general assertion.

LemMMa 2. Let I be a compact family of mutually commuting continuous
linear operators in X. Then for any £ > 0, there is an equivalent norm || - ||«
in X such that

(4) [A]le < o(A) +&
Jor each A € I

Proo!l. Suppose that the operators {Ay,...,A,} form an (g/3)-net
in M. We first construct an equivalent norm || - ||, such that |JAl; <
o(A;}+&/3 fori=1,...,n. To this end, we consider a norm || - ||; asin (3),
putting C = Ay and n = ny, L.e. we require that [JAT!|[Y/™ < o(A)) +&/3.
Thus we have ||Ay]; < p{A4) + ¢/3, and the norms ||A|l; of the other
operators A € 91 do not increase in this way, by Lemma 1.

Next, we take | -||; as original norm in & and construct in the same way a.
norm |||z, putting in (3) C = Ay and n = ny, i.e. [|AF?|V"2 < p(As)+e/3.
Again we have [|Azlla € o(Ag) + /3, and, by Lemma 1, [[A ][z € [|A1][1 £
o(Ay) -+ ¢/3. Continuing this way, we arrive at an equivalent norm | - |, =
|- e with |A;le < o(A;) +e/f3foréi=1,...,n.

We claim that the norm ||-[|¢ has the required properties. Given A € 90T,
choose A, such that || A — Ay]| < /3, hence |o(A) — p(Ay)| € (A — Ay) <
| A — Ayl <e/3. Since [|A — A;lie < [|A ~ Ay]| £ &/3, we counclude that

[Alle < 1A = Aifle + Al /3 + o(Ai) +e/3 < o(A) +e m

If we consider a continuous linear operator B with splitting spectrum as
at the beginning, we get, in particular,

LEMMA 3. For any € > 0, there is an equivalent norm || - ||e such that
(5) HBWHE < (TO +5)”$Hs (m ] XQ)
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and
(6) (r— —e){zll: < |Balle < (e + o)z (z € &°).

Proof. Since the restrictions By and B? of B leave respectively the
subspaces &y and X0 invariant, they commute with sach other, as well
as with the continuous linear operator (B%)~!. By Lemma 2, we find an
equivalent norm || - ||; such that

[Bells = {Bozle < (o +&)lzlle  (z € Ap),

IBzfle = [B%). < (ry +&)llell: (x € X0,
and
IB®) 7 zlle < (r— =) H2lle (2 € &),
i.e.
IBzle > (r- ~e)llzll.  (z€A°). =
From Lemma 3 and the definition of equivalent norms we get in turn

LEMMA 4. For sufficiently small e > 0 there are positive constants m._
and m.. such that
(1) m-(r— —&)"[P%| - (ro + &)" | Poz| < |Bz|
< mi(rs +6)" [P + my (ro + €)™ | Poa|
forn=0,1,... andz e X.

Proof. Given £ > 0 sufficiently small, consider the equivalent norm |-||
satisfying the estimates (5) and (6). We rewrite these estimates in the form

(8) IBoPoz|= < (r + £)[[Poclle,

and

(9) (- — )IPlls < |B°POzi. < (ry +&)|PO]..

Consider now the norm ||z|y = |Poz||: + |P%z|, in &, which is obviously
equivalent to the original norm || - || on &, as well as to the norm || - || on

both Xy and X°. From (8) and (9) we get
(10)  |Bz[ls = |BPoz|. + |BP%|. < (rg + £)|Pozlls + (ry + )[[P%])1
and '
(1) IBally = [BPyz|. + [BP%]. > (r_ - &)|PV%]  (ro + &) Pos]s.
Suppose that
(12)  (r- —&)*IP%|y ~ (ro + &)*||Pox1 < | BF|;

< (re +e)* [Py + (ro + )% || Poz )y
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for fixed k& € N; we show that (12) is then also true for k4 1. In fact, since
P'B = BP’, PiB = BPy, and PyP° = POP, = 0, we see from (10) that

Bz < (ro + &) [PoB 2|y + (ry. + &) [POBFa];
= (ro + &) B*Pozlls + (ry +&)||B*P z||;
< (ro +&)* T [Pozlly + (r4 + €)*1 PO,

Similarly, one shows that

B als > (r- ~ )2 [PPa|y ~ (ro - &)*** [Poa]s.

Consequently, (12} holds for any » € N. Since the norms |- || and || - |}x are
equivalent, we have mljz||; < ||lzl| £ M|z||, for any z € X, and conclude
from (12) (with k < n) that on the one hand,

B 2| 2 m|[B 2|y > m(r_ —)"[P]y ~ m(ro + )™ Poz]s
Zm_[(r- —&)"|[P°|| - (ro + £)"||Poz]],
where m_ = mM ™!, and, on the other hand,
IB"s| < MB"als < M(ry + )" [B%] + Miro +£)" [Poss
Smy[(re + &) ||| + (ro + £)" || Poz ],
where my = m™'M. =

Choosing, in particular, £ > 0 small enough in Lemma 4 such that
T. — & > T+ € yields

THEOREM 1. Let PPz # 0. Then the sequences B"z and B"P%z are
equivalent as n — oa.

2. Asymptotics of iterates and localization of the spectral ra-
dius. In what follows, we shall assume that r_ = 7y = o(B) and dim X?°
< 00. These hypotheses may be satisfied, for instance, if B is completely
continuous.

As a matter of fact, it follows from the Banach-Steinhaus theorem [1]
that the equality (2) fails only on a meager set (a set of first category). In
this section we shall characterize more explicitly those z € X for which this
equality holds. To this end, we have to study the leading term in the asymp-
totic expansion, as n = oo, of B"z; by Theorem 1, we can study equivalently
the leading term in the asymptotic expansion of B"P%z if PO% % 0. By our
hypotheses, the subspace A'° admits a representation [2] as a direct sum
X% =V +...+V; of B-invariant subspaces Vy,...,V, in such a way that,
for an appropriate choice of bases {3], the matrix corresponding to the re-
striction By of B to V; is a Jordan block with eigenvalue A; = g(B)e‘? and
normalized eigenvector e; (§ = 1,...,3). We write P, for the projection of
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X onto V;, m; for the dimension of V;, and

(13)  ki(z) = sup{k-.sf %0} Pz = (&,8,.... &)

14)  65(e) = T @) - DNy =10
LeMMA 5. Suppose that Pz :;é 0 for some j=1,...,s. Then
(15} lim "% |B"P;z|| 'B"P;z = ¢;.
Proof Fix ® € A with Pz = ( {,...,ﬁij,ﬂ, ,0) # 0, E;';ﬂ, 7= {0, where

we drop the dependence on 2 in k; = k;(z). For n sufficiently large we have
B"P;x = A w;n,

where
fes—1 ks—1

o= (5 2000, S 70

—1 7 g
i‘gkj 2‘*‘)\‘7‘ f;ﬂcjagkj,o,...,())_
Since

3 fori<k—1
i G = {0 o <1

((]Cj —- 1)!)-1 for i = k’j -1,

the sequence n~ % w; , tends to ¢;(z)e; (see (14)) as n - co. This means
that wj, = n* s (z)e;. Morenver, since A} = (o(B))"e™%, we have
(16) B Pz ~ n™ 1 (o(B))";(2),

hence

(0(B)) v m
—oo ;i (z)nki=1(o(B))"

llm e~ ||B"P,z|| 'B"P;z = 11 =& m

Now let

(17) b(z) = maxhy(a),  J(2) = (j: bila) = k(z)}.

THEOREM 2. Let J(z) ;é . Then

(18)  Brz=ntEpB)" Y eindig
JEJ(x)

+o(n* 1 (o(B))").
In particular,
(19) o(B) = limsup |B™z{*/".

n—o3

Proof. For z € X with J(z) # @ we have, by (15) and {16),
B"P;z = "% (g(B))*nf &)1, (2)e; + o(n®@)=1(p(B))™)].
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Furthermore,

&
B Pz = > B"P;x

j=1

P
= Z eimﬁj (Q(
—_— ) Zﬁm%n

Since, by (17), kj(x) < k( ), we have nfi)~8e) 0 (n — oo) for § ¢ J(z),
and n¥i @5 o 1 for § € J(z). Consequently,

BnPU.’IJ = TI.M'T)—_ (Q(B))ﬂ Z e:»‘.nq‘)j ¢($)Ej + D(ﬂk(m)_l(Q(B))ﬂ).
Jed(x)

ki ()~ l[qﬁ;(m)ej-k (n® @)=L p(B))™)]

[‘ibj( zle; +o(n kj(x)-k(m))]-

By Theorem 1, we conctude that (18) holds. The relation (19) is a straight-
forward consequence of (18). =

As was communicated to the authors by A. B. Antonevich, statements as
those given in Theorem 2 are of interest in the theory of invariant measures
on discrete linear systems.

3. The nonlinear case. We pass to nonlinear operators. Suppose that
A is a nonlinear operator which is Fréchet differentiable at a fixed point =z,
and admits a representation

(20 Az = Az, + Bz —2.)+ 2z — z,),
where B = A'(z.) is linear and completely continuous, and -
(21) [2h]] < (Al (FRI < 7)s

with v(r) increasing, nonnegative, and continuous {y(0) = 0).

Let ¢ = o(B) < 1. As was shown above, the sequence B"zy converges,
for zp & Xy, to zero at least as fast as a geometric progression with ratio g.
1t is natural to expect that this remains “nearly” valid also in the nonlinear
cage, with the modification that the space Xy is “deformed” into some set
which is “tangent” to Xy, For r,a > 0, consider the set

(22)  H{r,e) = {z € Bz« 1) : [P (z ~ z.)| = o|[Po(z - .||}
THEOREM 3. Suppose that the peripherical spectrum of the continuous

operator A'(xy) s Fredholm, and that o{A'(x.)) < 1. Then for each >0
there exists an r > 0 such thal

(23) Jim o = 2" = o(A'(2))
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and
(24) lim [[Po(en —2.)[|- [P (2 - 2) 7 = 0,

provided that zq € I (r, o).

Proof. Without loss of generality, we suppose throughout that z, = 0
and Az, == 0 {this can be ensured by passing, if necessary, from A to the
shifted operator Az = Alz, + z) — Az,).

Since the relations (23) and (24) are invariant under taking equivalent
norms, we may suppose that the norm in A’ has the properties considered
in the previous two sections.

Let € > 0 be sufficiently smail such that g—e < ro+¢. According to [9],
we have
(25) 20 — 2]l < Clo + )" |zo — 24|
with some constant C = C(g). Choose r > 0 such that
ro + €+ y(r)(14+ M)
g—e—(r)l+at)
(27) e+e+y(r) <],
2-c=()1 +om)

<q0<17

(28) ro+e+y(r){l+ ) > L
and
(29) yr)l+a <1

(v(r) as in (21)). We claim that the set IT(r, ) is invariant under the oper-
ator A. In fact, for z € II(r, o) we have

(30) 1P Az > |P°Bz| — | POs2z|

> (0~ &) [P°|| — v(|ll)(|P 2| + ||Poz]|)
and
(31) [PoAz] < |PoBa| + || Pof2|

< (ro + &) |[Pox|| + v {lix] )Pz + | Pox|)),
hence, by (28),
(32) PYAz| > «||PoAx].
Moreover,

[Az| < [|Ba|| + |2Az] < (o4& + 7(r)) |j«].
Consequently, the ball B(x,,r) is invariant under A, and thus also the set
I (r,a), by (32).
We have shown that, if we take the initial approximation zg from I (r, o),

then all successive approximations {1) belong to JI(r, o) as well. By (30) we
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may find, in particular, an index np such that |P%,|| > (0— 2)"||P’zno1 i
for any n > ng and g € I(r, @), 2o # 0. Consequently,

[ PO | [P0,
1Bl (e~ 22)7|[P?|

and (23) follows from (25), since £ > 0 is arbitrary.
To prove (24), we consider the subset

I(ra,M)={ze{ra): Pz~ )| < M|Po(z —z,)i}
of II(r, ex) and fix xy € IT(r, o, M). For 23 = Axg we then get

1P%21]| 2 (e ~ &)[Pzoll ~ (|20} |P wa|| + Powo])
2 fro +&+v(r)(L+ M)]|[Pos],

len 2

> (g —2e)" (n=1,2,...),

and
IPozil < (ro + &} [Pooll +v(l|zol) ([P oll + [Pozolf)
< fro+e+7(r)(1 + M)][|Pozol,
hence, by (26),
[Poz| [Pozq|
B0z, | = B0z
This shows that the sequence {[Pyay|| - |PPz,|| ! decreases at least as fast

as a geometric progression with ratic go < 1, as long as =, € I (r,a, M).
Consequently, [Pz, || = M|[Ppzy, | for some index np. But then

[Po2ngs1ll . (ro+€)[Pozng | + 7([Zno DUP sl + [Pozn,l)
[POzngr1 = (o = E)[PO%ns | — Y[ 2ng NUIPOZns | + [[Poznoll)
M~ (ro+e) +9(r)(1+ M) ||Pozn,|

g—e—(r)(l+a1) [P0z, |
hence |[P2ng.1] = M||Pozngt1]/. This shows in turn that the set {z :
|PPz|| = M||Pyz|i} is invariant under A, and thus, together with z,,, all
successive approximations 2, (n > ng) remain in this set. Consequently,
the sequence ||Pomy | - [[PPz,)~! eventually becomes (and remains) smaller
than the (arbitrarily small) positive number M ~'. We conclude that (24)
holds, and the proof is complete, m

< <M,

The relation (24) admits a simple geometric interpretation: the sequence
&, — T, is “tangent” to the eigenspace X% of B = A’(z,) which corresponds
to the eigenvalues on the circumference |A| = ¢(B). Observe that Theorem 3
vields no statements on the asymptotics of the sequence of iterates. Under
some additional hypotheses, however, such statements are possible. This will
be carried out in the remaining part of this paper.
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4. Asymptotics of iterates of nonlinear operators. We say that a
(nonlinear) operator A satisfies the $-condition at z. if A admits a Fréchet
derivative B = A’(z.) at z,, and the operator 2h = Az, +h)— Az. - Bh
satisfies an estimate

|2h] < K|[n)**e

for some K,§ > 0.

We adopt the notation of the preceding section. For j = 1,...,4, let
T; = M1 — B, where B = A'(z,.). We assume that the eigenvectors e; and
generalized eigenvectors g; of B corresponding to the eigenvalue A; of B
satisfy e; = I’jm"—lgj. Similarly, we assume that the {normalized) eigen-
functionals f; and generalized eigenfunctionals [; of B*, also corresponding
to the eigenvalue A;, satisfy fi(e;) = 1 and Li(g;) = 1 and, of course,
Filer) =0, Li(gr) =0 (G k=1,...,8,js# k). Forj=1,...,5aud r,a > 0
we define

Ii(r,a) = {z € Blzx,r) : [li{z — 2.)| 2 alle — .},
The following auxiliary statement will be fundamental in what follows.

LeMMA 6. Suppose that the operator A sotisfies the ®-condition at o
fized point z.. Then the functionals

(33) 6" () = (= + N (AM2 = B"))  (n=1,2,..)
are defined on B(z,,r) for sufficiently small » > 0. Moreover, the limil
By 03(2) = lim 67(2)

exists for any z € I;(r,a) and is different from zero.

Proof. Choose ¢ > 0 sufficiently small such that

(35) (o-+o)*0 <y,
where ¢ = o(B) = o(A'(z.)). It is easy to see that
e
(A% —B) = (3 ATERARL),
k=0
hence
n—1 ]
002 = (20 > A0AR),
: k=0
This implies that
| (mtph, i
0" ) - 0 () <0 YT o7MIRAR
k==t

\ 3, 1, - ] ; y
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and further, by (25), for z, =0,

n—1
( [ < KOH 59”2 |1+6ZQ Q+ 0,)(1+6)Fc
k=0

In view of (35), this means that ¢ ”)( ) is a Cauchy sequence, and hence the
limit (34) exists, Similarly, one can obtain the lower estimate

|0:(i’ri.~\-ﬂ) (Z)

1
1057 (2)] 2 |15(2)] = KC1 2]+ §7 o= (g 4 ) (1408,
Rem=()
Defining
X
k=)

for z € I1;(r, x) we then get
197 (2)] > [ — K o(C|=]))*+4 S]] .

The term in square brackets is bonunded from below by some 8 > 0, provided

that v > 0 is buﬂluently small. Consequently, |9(” (z}] > Biz]|, and hence
the limit (34) is different from zero for any z € H i(r o). w

Observe that iterating the representation Az = Bz + 22 we get

n—1

(36) A"z =B"z+ Y B FTIQAR,
k=0

hence
n—1

(37) Li(AY2) = (B 2) + Y (B * ARz
k=0

-1

_,_I\ILI Z,\ra k-wll (QA_" )

fm—ry
oV [zj (2) 4 A7t Zl A;"‘ij(ﬂA«’“z)} :
On the other hand, from (36) we get -
L{A"z ~B"z) = N}AT WZIA M (RAkz),
k=0

hence
1

At Z )‘;klj(QAkz) = A;7";(A"z — B"z).
k()
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Equality (37) further implies that
Li(A™2) = X[l (2) + AT (A2 — BM2)] = A8 (2),
by the definition (33) of 6’§”)(z). By Lemma 6 we conclude that, for the

successive approximations (1), the cocrdinate I;(z,) = )\?6’;”)(:1;0), corre-
sponding to the generalized eigenvector g; of highest order in the Jorclap
block B;, changes with rate ¢", provided that we take the initial approxi-
mation zg from H;(r, ) for » > 0 sufficiently small.

Before proceeding further, let us prove yet another auxiliary result,

LEMMA 7. Let 0 < g <1 and m € N be fized. Then

n—-L
1
s -1 l-m _m __ .
nliffio kzm() Cocka g = (1 —g)(m—1)!

Proof. Defining

n—m

k

Sn—m = E a°;
k=0

-1

Tp—m = Z O:;n:’elmlnl—mqk(m - 1)!7
k=0

we get

Spwmm — Up—m =

n_ll (n—k-1)..n—-k-m-1)] ,
- nm—1 q

k=0

n—1 2
R L RO Y ¢ S
=n Z nm—‘2 q
k=0
n-1

Y o (k) +n T an(k) + L 4+ n T ey, g (R)]6F,
k=0

I

where o;(k) ( = 1,...,m — 1) are polynomials of degree § in k. Conse-
quently, the series
n~-1
> e (k) ran (k) + o+ n o ()]G
k==0
converges absolutely, and thus 8, ~ oy —m tends to zero as n — oc. From
this we get
m op_m = (1L --¢)7",
12— 00
and the assertion follows easily. m

Consider now the coordinate f;(zn) corresponding to the eigenvector €5
(=1,...,3). By Lemmas 6 and 7,
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(38) fi(an) = C:znjmlf\?_mj—llj (zo)

n—1
my—1 —k~m; T e
+ Z Gnn—fcnl)‘; 1 (A zo) + o(g"n™s b
ke=()

TL—m
=TIl (a0 + 2y Y AT A )
k=0
+ O(anmj--l)
= 'n""’i“']‘/\?qu(mg)é?;m (zg) + o(e™n™i 1),
Let
b=wmaxmy, JU={jim; =k}, O'(r,a)= ) H(r,a).
! jerr
From (38) we finally obtain our main result:
THEOREM 4. Suppose that the hypotheses of Theorem 3 hold, and that
the operator A. satisfies the $-condition ot a fized point z,. Then
e910{" (z0)e;

Atpg =n*" (A (2.)] Z (k— 1)IAET

jedr

(nk—lgn)

Jor any o > 0 and sufficiently small » > 0.

The statements of Theorems 3 and 4 imply, in particular, that the “por-
tion” of initial values zg € B(x.,7) for which equality (2) holds tends to
100% as » — 0. In fact, by (23) we may take the elements of IT (r,a) as
these initial values, where o may be chosen arbitrarily small for r sufficiently
small. From (22} we conclude, in turn, that, as o — 0, the set H(r,c) ul-
timately “exhausts” the whole ball B(x,,r). (More precisely, this means
the following. Tf A’ is finite-dimensional, the ratio of the Lebesgue measure
of II(r,r) and the Lobesgue measure of B(z,,7) tends to 1 as o — 0. If
X iy infinite-dimensional, an analogous statement holds with the Lebesgue
measure replaced by the measure “concentrated” near the subspace X°. In
general, one can show that the set of all directions h, || 2] = 1, such that (2)
fails for all initial approximations o¢ = z, + th with ¢ sufficlently small, is
an “almost meager” subset of the unit sphere.)

Similarly, the statement of Theovem 4 implies that, for initial values
taken from II*(r, o), the vectors x, — z, converge “directionally” towards
the subspace X™ = span{e; : § € J*}. To conclude, we remark that, follow-
ing the usual reasoning (see, e.g., [6, 9]), one can obtain formulas for conver-
gence acceleration, or formulas for probabilistic convergence estirnates for
successive approximations.
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On Dirichlet-Schrodinger operators with strong potentials
by

GABRIELE GRILLO (Udine)

Abstract. We consider Schridinger operators H = A2 4V (V 2 0 and locally
bounded) with Dirichlei boundary conditions, on any open and connected subdomain
D ¢ R" which either is bounded or satisfies the condition d(z, D) — 0 as fz] — oo.
We prove expouential decay at the boundary of all the eigenfunctions of H whenever V'
diverges sufficiently fast at the houndary 8D, in the sense that d(z, D)2V {z) — oo as
d(z, D) — 0. We also prove bounds from above and below for Tr(exp[~tH]), and in
particular we give criterions for the finiteness of such trace. Applications to pointwise
bounds for the integral kernel of exp[~tH] and to the computation of expected values of
the Feynman-Kac functional with respect to Doob h-conditioned measures are given as
well.

1. Introduction. Let D be an open and connected proper subset of R™.
On D, one can consicder the Dirichlet Laplacian, Ap, or the positive operator
Hy = --Ap/2, which is the self-adjoint operator (in L2(D)) associated with
the closure of the quadratic form

(1) Qi) =35 [ IVi@)*dz,  fecqD),
D

IfV 2D - [0,00) i a locally bounded measurable function (the potential
fanction), then one can also consider the Schridinger operator H = —A/2+
V = Hy + V, with Dirichlet boundary couditions, which is the self-adjoint
operator associated, by the above procedure, with the quadratic form

(1.2) QU = Qo) + [ V@)lf(w)Pde, e C5(D).

D
The reason for the factor 1/2 in (1.1}, (1.2} is simply that this is the usual
normalization for the generator of the semigroup associated with Brownian
motion, and we prove some of the main results of this paper by probabilistic
methods. It should also be noted here, once for all, that a negative part of
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