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Weak Cauchy sequences in Lo, (g, X)
by

GEORG SCHLUCHTERMANN (Mimnchen)

Abstract. For a finite and positive measure space (2, Z, ) characterizations of weak
Cauchy sequences in Loo(u, X), the space of p-essentially bounded vector-valued functions
f 12— X, are presented. The fine distinction between Asplund and conditionally weakly
compact subsets of Lo (g, X) is discussed.

1. Introduction and preliminaries. In his celebrated paper [Ta,
Th. 1] M. Talagrand gave a parametric Rosenthal £1-dichotomy. With the
help of this result conditionally weakly compact subsets of Ly, X),1 <
p < 00, the space of Bochner integrable functions, can be characterized. A
characterization for p = co has not been found vet. The relatively weakly
compact subsets of Lo (1, X) were considered in special cases by K. T. An-
drews and J. J. Uhl [AU] and in general by the author [$3). A basic tool in
both papers is the celebrated factorization lemma of Davis, Figiel, Johnson
and Pelczyriski.

Here, in a modified version, this method will be applied to give a com-
plete (i.e. for all Banach spaces X)) characterization of conditionally weakly
compact subsets and weak Cauchy sequences of Lo (1, X). Tt is mainly based
on a result on parametrizing operators T 1 X — Ly (s, Y)* (sce the definition
below). In Section 3 a fine distinction between Asplund sets and condition-
ally weakly compact sets is sketched for Loo(i, X). In the survey article
of L. H. Riddle and J. J. Uhl [AU], this was given for arbitrary Banach
spaces by means of topology, vector measures and geometry. Here, this will
be illustrated in the particular situation of L (g, X).

First we fix some notations and definitions which are used in the paper.
X and Y denote Banach spaces; B(X) resp. §(X) is the unit ball resp. the
unit sphere of the Banach space X If not indicated otherwise, we consider
& positive and finite measure space, which will be denoted by (2, ¥, u).
Then L,(u, X) = L,(02,5, 4, X) for 1 < p < oo is the usual Bochner
space. Lieo(p, X*, X) is the set of equivalence classes of w*-measurable and
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272 G. Schliichtermann

essentially bounded functions f : 2 — X*, where a function f: 2 — Y
is called w*-measurable if {y, £(-)) is measurable for ally € Y. H U : 2 —
L(X,Y) is such that for all z € X, U(:){z) € Loo(,Y) (resp. U{:)(z) €
Loo (4, Y*,Y)), then U is called strongly measurable (resp. w*-measurable).
Define U : X — Loo(it,Y) (vesp. U : X — Loo(u, Y*,Y)) by U(z) =
U()(z),z € X. Then U is a parametric version for a bounded linear operator
T:X — Leo(p,Y) (resp. foraT: X — Loo(p, YY) U =T,

A bounded set in 2 Banach space is called conditionally weakly compact if
every sequence admits a weak Cauchy subsequence. Rosenthal’s dichotomy
theorem says that this is equivalent to no sequence in the set being equivalent
to the £;-basis.

A bounded linear operator T' : X — Y is called conditionally weakly
compact if T(B(X)) is conditionally weakly compact.

A convex and closed subset D of a Banach space X has the complete
continuity property (CCP) if every bounded linear operator V : L1([0,1]) —
X such that V{{xa/A(A) : M(A) > 0}) C D is a Dunford-Pettis operator,
i.e. V maps weak Cauchy sequences into norm Cauchy sequences.

Here are some facts about conditionally weakly compact operators which
are used in the sequel:

(11) Let T: X — Y be linear end bounded. Then the following condi-
tions are eguivalent:

(a) T' is conditionally weakly compact.

(b) T*(B(Y™*)) has the CCP.

(c) For all bounded linear V 1 ¥ — Loo([0,1]) the composition V ¢ T
maps bounded sequences into almost everywhere convergent subsequences.

(d) T factors through a space not containing a copy of £;.

(a)(b) is done in [Bo, p. 309, Th. 7.4.12], (a)¢>(c) is quoted from [RSU,
p. 528, Th. 1] and (a)<(d) is in [Di, p. 237, 2(iii)].

A bounded set K € X is an Asplund set if for each countable subset
A C K the dual (spamA)* is norm separable. A bounded linear operator
T:X — Y is called an Asplund operator if T(B(X)) is an Asplund set.

Next we formulate some facts about Asplund operators which are needed:

(1.2) Let T : X — Y be linear and bounded. Then the following condi-
tions are eguivelent:

(a) T is an Asplund operator.

(b) T*(B(Y™*)) is a set with the RNP.

(c) For each bounded linear V 1 Y — Loo([0,1]) and each & > 0 there is a
set E C [0,1] with A([0, 1)\ E) < & such that (V oT)(B(X))x 5 is relatively
compact i Ly ([0,1]). :
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)(d) T factors through an Asplund space Z (i.e. where B(Z) is an Asplund
set).

A reference for (a)e(b)<>(d) is [Bo, p. 135, Th. 5.3.5, Th. 5.3.7], and
[RU, p. 150, Th. A] for (a) &(c).

2. Weak Cauchy sequences in Ly, (u, X ). We start with a dual version
for the representation of operators S : Li(u,Y) — X*, which is stated
e.g. in [Din, p. 279, Th. 8] and which also occurs for special cases of X
in [AU, p. 908, Lemma 3]. All measure spaces in this section are assumed
to be separable. This is not an essential restriction, since the result can
be generalized by the usual technique of a long sequence of expectation

operators (see e.g. [S2]). The proof of the following lemma is omitted. A proof
can be found in [S3].

LEMMA 21 Let T: X — Li(p,Y)* be a bounded linear operator. Then
there exists a w*-measurable parametric version U : 2 — L(X,Y*) of T.
In particular, if T : X — Lo (i, Y), then there exists a strongly measurable
parametric version U : 2 — L(X,Y) of T.

T.h_e following proposition is a parametric version of the factorization of
conditionally weakly compact operators (see (1.1)(b), (d); [S3, Prop. 2.2]).

PROPOSITION 2.2, Let T': X — Li(u,Y)* be bounded and linear. Then
T is conditionally weakly compact if and only if there ezist a w*-measurable
parametric version U 1 2 — LIX,Y") of T and on absolutely conves,
w*-cgsed K C X* with the CCP such that U(w)*(B(Y**)) C K for a.a.
w e .

Proof. =: By (1.1)(d), T factors through a space R which does not
contain a copy of £, i.e. there exist bounded linear operators Ty : X — R
and Tp : B — Li(u,Y)* such that T = 1% o T3. By Lemma 2.1 there
exists an operator-valued map U: 0 — L(R,Y*) such that I = Ty. Define
Ulw) = U(w)oT) forw € 2. Then U : 2 — L(X,Y™) has the property that
U{")(z) is w*-meagurable for all z € X, since U enjoys this property and T}
is a bounded aperator. Evidently U = T and U(w)* = T o U (w)* for w € £2.
Assume now without loss of generality that || T3] < 1. Then ||[T(w)*|| < 1
for a.a. w € 2, Define K = T (B(R*)). Then for a.a. w € £2,

Uw)*(B(Y™) c K

and K is absolutely convex, w*closed and has the CCP according to {1.1)(b).
<= Define

T:Li(w,Y) =X fr [ Uw)(fw)) dp(w).
)
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Let K be as assumed. For each y € B(Y) the map 2 2 w — Ulw)*(y)
is w*-measurable, since U is w*-measurable. Hence, w + U(w)’f‘n( flw)) is
w*-measurable for all f € Ly(11,Y). Let f € B(L1(u, Y)), f = Y0, vixa,-
Then

Ty =3 [ Uw)*(w) duw).

i=1 A -
Eflws | K

Ellwill (A K

€, i a(A)KCK
It is easy to see that 1|y, (u vy = T. Hence, by the Goldstine argument (sec
[Di, p. 13]} and the w*-w*-continuity of T’ gz, (.. vy, T*(B(L1(e, ¥)*™)) C
K is absolutely convex, w*-compact and has the CCP. By (1.1)(b), T is
conditionally weakly compact. =

The Lo {u, Y )-version is an easy consequence of the preceding proposi-
tion.

COROLLARY 23. Let T X — Loo{11,Y) be bounded and linear. Then
T is conditionally weakly compact if and only if there exist o strongly meo-
surable version U : 2~ L(X,Y) of T and an absolutely conver, w*-closed
subset K C X with the OCP such that U{w)*(B(Y*)) C K for a.a. w € 0.

Proof. = Transform the proof of the preceding proposition literally,
exchange Y resp. Y** by ¥ resp. Y™*, and observe that the operator-valued
map U : £2 — L{X,Y) used in the proof is strongly measurable according
to Lemma 2.1,

< Embed Loo(,Y) in Ly(p, Y*)* and ¥ in Y™ isometrically. Then
this direction follows directly from the above proposition. m

The next theorem will give a characterization of weak Cauchy sequences
in Li(u,Y)* and in Lo (u,Y). It should be seen as an analogue to the
characterization of weak zero sequences given in [$3]. For this, set

c:={{z,) CR: lim z, exists}.
=00

THEOREM 2.4. (a) Let (fo)new © Ly(p, ¥)* be a bounded sequence. Then
(fn) is weak Cauchy if and only if there is o closed and absolutely
conves set K C c with the COP and a set N € £ with u(N) = 0 such
that (|(fu(w),y**}lnen € K Jor all w € 2\ N and y** € B(Y*)
(see [83, Cor. 2.3]).

(b) Let (falnen C Loo(p, Y) be a bounded sequence. Then (fn) is weak
Cauchy if and only if there is a closed and absolutely convez set K < ¢ with
the CCP and a set N € T with u(N') = 0 such that (|{fn(w), ") )nen € K
Jorall w € 2\ N and y* € B(Y™).
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Proof. (a) Define T': ¢; — Li(u, Y)* by T{e,) = fn. Then by (1.1)(b),
(fr) is weak Cauchy if and only if T : Li(p, Y)Y = cand T (B(Ly1 (1, Y)*))
has the CCP. By Proposition 2.2 this is equivalent to the existence of
an operator-valued map U : 2 — L(f,Y*) such that I = T, and of
an absolutely convex, w*-closed set K ¢ foe with the CCP such that
Uw)(B(Y™)) ¢ K for a.a. w € 2. This last condition is successively

equivalent to:

s (|{ey, D) (™ 1V nen € K for aoa we O and y** € B{Y "),

o (KU en), v Nnen € K for am. w € 2 and y** & B(Y*),

o (|{(fu(w) v M)nen € K for a.a. we 2 and Y e B(Y ).

Since ((fu(w), ¥™}) & ¢ for all y** € B(Y"™) and a.a. w & 12 the set K
can be chosen in ¢

(b) As in part (a) but use Corollary 2.3 instead of Proposition 2.2. m

For a further characterization of weak Cauchy sequences the following
characterization of weal zero sequences in Lo, X) is useful. It is an im-
mediate consequence of [S3, Th. 2.7).

PROPOSITION 2.5, Let (f,) C Lo (1, X} be bounded. Then the following
conditions are equivalent:

(a) (fn) s @ weak 2evo sequence.

(b} There is o set N C 2 with w{N) = 0 such that:

(1) For allw € 2\ N, {fn(w)) is weak zero. _

(i) For all sequences (2}) C B(X*) and {w;) € 2\ N there are
subsequences (z3,) and (w;,) with lim, o, limg_ oo (£, (Wi )rz5,)
=),

The following corollary follows from the previous proposition.

COROLLARY 2.6, Let (f,) C Loo(p, X) be bounded. Then the Jollowing
conditions are equivalent:

(a) ([fa) i weak Cauchy.

(b) For each subsequence (f,,,) there is o set N € 5 with #(NY == 0
such that oll sequences (@) < B(X™) and (w;) C 2\ N admit subsequences
{@},) and (wy,) such that lmyy, .o Utngesoe ((Frmpr = Frm M@ ), 27 ) = 0.

The followin theorem glves the final characterization of weak Ca uchy
g
sequences.

THEOREM 2.7. Let (fu) C Low(i, X) be bounded. Then the following
conditions are equivalent:

(a) (fn) 48 weak Cauchy.
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(b) There is a set N € X' with p(N) = 0 such that for all sequences
(z7) € B(X*) and (w;) C 2\ N there exist subsequences (z},) and (wj,)
such that iy, 5o imp oo ((f — fa)(ws.), 23,) = 0.

Proof. (a)=(b). Define T : £; — Loo(pt,X) by Tl(en) = fn. Let
U: 2 — L(£1,X) be an operator-valued version of T with sup,,cg; ||U(w)|| =
sup,ew || full- For n € N define f, : 2 ~» X by fu(w) := U(w)(en). Then for
all choices of representatives (f,,) of (fn) we have

ANEX, pN)=0Yw e 2\ N: fo(w)=Ffalw) (neN).

Let (wy)CR\N and (z}) C B(X*) be given. As (f,) are uniformly bounded,
there exist subsequences (wj,) and (z},) such that limp.oo(f(w;,), 2], )
exists for all n € N. Define a functional F' : span(f,) — R by Féf)
1= limp o0 (f{wj, ), ], ). Since the sequence (2}, ) is bounded and the limit
exists by the above, I can be seen as an element of (IF&H(f,))*. But
thig implies (b).

(b)=-(a) follows by Corollary 2.6. m

Remark 2.8. Let K € Lyo(, X) be bounded and separable. Select a
dense sequence (f,) € K and choose a corresponding sequence of repre-
sentatives (fy), fn : 2 - X. Define now Cx = {(@,z") = (wk,2}) €
N % BN limg_oo{ Fu(ws), z}) exists for all n € N}. Then according
to the proof above, for all (@, z¥), Fig z=(f) = limp oo {Flwr), 2t} defines
an element of (5pan K)*. By Proposition 2.5 and Theorem 2.7 a sequence
(fn) € K is convergent to f € Loo(u, X) resp. is weak Cauchy if and only
if limp oo F(B,E;) (f = fr) =0 resp. limy ;oo F(E,F)(.fn — fm) = 0.

One might suspect that weak Cauchy in L (u, X) may imply a strong
condition on the collective image set of the sequence such as the following
one:

Let (fa)nen € Loo(p, X) be weak Cauchy. Then for each £ > 0 there
are sets {2, C 2 with u(2\ £2.) < £ and L; C X conditionally weakly
compact such that J,co (fa(w)lnen € Le.

But this assumption fails, as Example 2.6 in [$3] demonstrates. Note
that the Banach space X in this particular example is weakly sequentially
complete. Thus the notions of weak Cauchy and weak convergence resp.
conditionally weally compact and weakly compact coincide.

In the following, some special conditionally weakly compact sets will be
given. But first a simple (and well-known) example will demonstrate that a
result similar to that for weak convergent sequences, namely that (zn) C X
weak zero and (fn) C Loo{p) bounded imply (f,,) weak zero in Lo (g, X),
does not hold for weak Cauchy sequences. :
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ExampLe 2.9. Let X := R, f, := r, the Rademacher functions and
n = 1. Then (fy) is bounded and (z,,) is Cauchy but (fpz,) = (r,) is not
conditionally weakly compact by Corollary 2.6 ((ry,) also spans a copy of #;
in Leo([0, 1)) [Di, p. 223]).

Nevertheless a certain subclass of conditionally weakly compact sets can
be characterized,

COROLLARY 2.10. (a) Let (fr) C Loo{p) and (z,) C X be weak Cauchy.
Then (fnn) C Loo(p, X} is weak Couchy.

(b) Let C C Loo(p) and L C X be conditionally weakly compact. Then
K=0C®L:={fz:feC, o &L} C Loo(it,X) is conditionally weakly
compact.

Proof. We use Theorem 2.7. Since (f,.) C Loo(g) is weak Cauchy, it is
bounded (assume without loss of generality (f,) C B(Loo(u))), and there
exists N € I with p(N) = 0 such that each sequence (w;) C 2\ N has a
subsequence (w;, ) satisfying
(1) lim  lim lfn(wjk) - fm(wjre)| =0.

7, M~ 00 ji—+00

Let ¢ > 0, (w;) C 2\ N and (zF) C B(X*) be given. Then there are

subsequences (wy,) and (z},) such that (1) is satisfied and there is an
a* € B(X™) with
(2) VneN: klim (mn,m}k —z*)=0.

Assume further without loss of generality that (z,) C B{X), since it is a
weak Cauchy sequence. According to (1) and since (z,) is weak Cauchy,
there exists ng € N such that for all n,m > ng,

i [fufws,) = F(os)| < 2/4 and [(@n —2m,a%)] < /2.
Then for n,m > ng, | .
dim () = )2 23,
s Jm W )Te — Falws,)m, 25 )| +&/2

= Um [{#n = @m, 25, )| - [fulwp )| + /2

k—ro0

< Jim |{zn = @m, ©f, — 0" +a%)| +5/2
OO ’

<@ tm {{on —am, 2" +e/2 <e

by the above,
Part (b) follows directly from. (a). w
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3. Asplund sets and conditionally weakly compact sets. In [RU|,
L. H. Riddle and J. J. Uhl discussed the difference between Asplund sety
and conditionally weakly compact sets. Here a parametric version is given.
Namely, it will be shown how the characterization of conditionally weakly
compact subsets derived in Section 2 and a corresponding one for Asplund
sets are separated. But first the operator results of Section 2 will be trans-
ferred to the Asplund property. The proofs will be omitted, since they run
parallel to those of Proposition 2.2 and Corollary 2.3, upen replacing “con-
ditionally weakly compact” by “Asplund”, “CCP” by “RNP” and applying
(1.2) instead of (1.1).

ProrosiTiON 3.1, Let T : X -+ Ly(u, Y)* be bounded and linear. Then
T is an Asplund operator if and only if there exist a w*-measurable version
U: 8 = L{X,Y") of T and an absolutely convezx and w*-closed subset
K C X* with the RNP such that U{w)*(B(Y**)) ¢ K for a.a. w € £2.

COROLLARY 3.2, Let T : X — Lo (1, Y) be bounded and linear. Then
T is an Asplund operator if and only if there exist o strongly rmeasurable
parametric version U @ 2 — L(X\Y) of T and an absolutely conves,
w*-closed set K C X* with the RNP such that U(w)*(B{(Y™)) ¢ K for
a.¢. w € 2.

The characterization in Corollary 2.3 of conditionally weakly compact
sets is not very useful in practice. So, an equivalent version of 2.3 is pre-
sented, which gives the analogue to the characterization of the relatively
weakly compact sets in [S3] and in [DRS]. The result follows directly from
Theocrem 2.7.

PROPOSITION 3.3. For o bounded subset K C Lo.(u,X) the following
conditions are equivalent:

(a) K is conditionally weakly compact.

(b) For each sequence (f.)ney C K there are o subsequence (Fon Jmen
and a set N C £2 with p(N) = 0 such that:

(i) For all we 2\ N, (fu, (w)) is week Cauchy.
(ii) For all sequences (2}) C B(X*) and {(w;) € 2\ N there are

subsequences (z}, ) and (w;,) with

lim  Bm ((fn, — fﬂ-i)(wjk)’w;k) =0.

Limn—soo k—oo

Remark 2.8 exhibits certain functionals which are characteristic for the
determination of weak sequential convergence. Let Cx be defined as in 2.8.
The next two theorems will demonstrate the “parametric” fine line between
Asplund sets and conditionally weakly compact sets. But first an auxiliary
result is needed.
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LEMMA 3.4. Let K C Loo(u, X) be separable and Ly == span K.

(a) Fx = {Fgzw : (@,7%) € Cx} is w*-compact in B(L%).

(b) There exists a finite Borel measure v on (Fy, w*} such that L. ([0, 1])
and Leo(v) are isometrically w*-homeomorphic.

Proof. (a) Let (f,) C K be dense. For simplicity let (f,) denote the
sequence of representatives. Further, let (F*) ¢ Fx be w*-converging to
F € B(Ly). Select (@*,7°") = (w},23*) € Cx such that F,_, oy = F*
By definition, ,

VhkeNVneNJin eNVJ 2 jin:
One may assume that
YeeNVneN: Ik S Fhngs
Define (@, z*) := (wy, z}), where w, := w}” and 2} 1= 'T';zl;

Cramm. For oll n € N, i so(falwr), 2} = F(f,).

To prove this, let ¢ > 0 and n € N be given. Choose kg € N such that
1/kg < &/2 and

R () = {falwf) ep®)] < 1/

(1) Vk2ko: |F(fn)- Fk(fn)l < g/2.
For k > ko there are ji,, € N such that for all 5 > Jins

(2) [E*(fu) = (falwh), 23%)] < 1/k.
Let k > n. Then for I = fir = jkn, by (2),

\FE(f) = (falwn) 23| < 1/k < /2.

Application of (1) gives the claim.

(b) According to (a), Fx is w*-compact in. B(L%). Hence, (Fi,w*) is
a compact metrizable space, since Ly is separable. Thus, by a result of
Kuratowski’s [Ku, p. 227] there is a regular Borel measure v defined on
(Fre,w*) such that ([0,1],£,)) is measure isomorphic to (Fr, Bw*),v).
Hence by a result of Carathéodory there is an isometry between L1([0, 1])
and Ly (v) (see e.g. [La, p. 128, Cor.]). But this gives (b). =

In the following » will denote the above regular Borel measure on T .

THEOREM 3.5, For a bounded separable subset K C Loo(u, X) the fol-
lowing conditions are equivalent: :

(a) K is an Asplund set.

(b) There is an increasing sequence (Fi) of w*-compact subsets of Fi
such that limy. .o ¥(F7) = 1 and for each sequence (f,)nex C K there erists
a subsequence (fr, )men such that :

im  sup |[F(fn, — fr)| =0 forallleN.
kym—oo pex .
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Proof. According to (1.2)(c}, K is an Asplund set if and only if for
all T : Lg — Le([0,1]) and for all € > 0 there is a set E C [0,1] with
A([0,1] \ B) < ¢ so that xgo T is compact.

(a)=>(b). Let K be a separable Asplund set. Consider

T Lie = Lo (v) (2 Lao([0,1])), = (F = F(f)).
By (1.2)(c) and since v is a regular Borel measue on (Fg, w") we have
VIeNIF CFx, v(F)21-1/1:
Since (F7) may be chosen to be increasing, (b) follows immediately.

(b)=>(a). Let T : Lx — Loo{[0,1]) be given. Then, according to
Lemma 3.4(b), let I : Lo([0,1]) — Loo(r) be an isometry which is a
w*-w"-homeomorphism. By (b} we conclude that

3 (#) increasing, Jim v(F)=1V1eN:

xF o1 is compact on K.

xr oJ o1 i3 compact on K.

The property of I in combination with (1.2)(c) shows immediately that K
is an Asplund set. »

THEOREM 3.6. For a bounded separable subset K C Log(, X) the fol-
lowing conditions are equivalent:

(a) K 1s conditionally weakly compact.

(b) For each sequence (fr)new C K there exist a subsequence (Frr Ymen
and on increasing sequence (F)) of w*-compact subsets of Fy such that
Limj.o0 (F;) = 1 and

lim  sup IF(fnm - fmc)l =

Joralll e N
kym—o0 Fer

Proof. (a)=(b). Let K be conditionally weakly compact. Let T be
defined as in the proof of Theorem 3.5(a)=>(b). Then, by (1.1){c), for each
sequence (fy) C K there is a subsequence (f,, ) so that T(fn,,) converges
pointwise. By Egorov’s theorem and the regularity of v, there is an [ € N and
a w*-compact set F; with »(F;} > 1 — 1/l so that (xr, o T fn,.) converges
uniformly. Since {7;) may be chosen to be increasing, (b} follows.

(b)=+(a). Use (1.1)(c). For this purpose suppose 7" : L — Lo ([0, 1]).
Let (fn) C K be a sequence and I be the isometry hetween Leo([0,1]) and
Lo (v) (see the proof of Theorem 3.5 (b)=(a)). Then according to (b) there
is a subsequence (fy,,) such that (I o T')(f,. ) converges a.c. The property
of I and the regularity of v imply the a.e. convergence of T(fn,.) and (a) is
proved. m

Remark 8.7. (a) It should be mentioned that Corollary 2.6, Theo-
rem 2.7 and the results of Section 3 can be formulated. for L 1{p, X)*, where
the functions f € Ly(u, X*, X) depend heavily on the parametrization for-
mulated e.g. in Lemma, 2.1. :
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(b) In addition, all the results can be extended to some measure spaces
which are not necessarily finite. The key Lemma 2.1, which stated the
parametrization, is true as long as (£2, ¥, u) is localizable (see e.g. [Din]
for the definition of localizable and [S1] for the technigue to extend the
regult).

(81]

[S2]
[S3]
[Ta]
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