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Some algebras without submultiplicative norms
or positive functionals

by

MICHAEL J. MEYER (Atlanta, Ga.)

Abstract. We prove a conjecture of Yood regarding the nonexistence of submulti-
plicative norms on the algebra C(T'} of all continuous functions on a topological space
T which admits an unbounded continuous function. We also exhibit a quotient of C(T7)
which does not admnit a nonzero positive linear functional. Finally, it is shown that the
algebra L(X) of all linear operators on an infinite-dimensional vector space X admits no
nonzero submultiplicative seminorm.

Introduction and results. Let A be an algebra over the field of com-
plex numbers, A seminorm || || on A will be called submultiplicative if it
satisfies |[ab]| < ||a] ||b]| for all elements a, b € A.

If T is a topological space, let C(T) denote the algebra of all continuous
complex-valued functions on 7. If T is compact, and hence all functions
f € C(T) are bounded, then the algebra C(T") carries a submultiplicative
norm, namely the usual uniform norm ||f|| = sup,cp |f(£)]. '

In [3] B. Yood gives a condition on T which ensures that the algebra
C{T') does not admit a submultiplicative norm, and conjectures that this is
the case whenever C(T) contains an unbounded function. This conjecture
will be proven below.

TuroreM 1. If the algebra C(T) contains an unbounded function, then
it does not admit a submultiplicative norm.

The algebra ({T) carries an involution, namely complex conjugation
(f* = f). Let I = Cyo(T) be the ideal of all functions f € C'(T) which have
compact support in 7' Then the ideal I is invariant under the involution of
C{T) and hence the quotient A = C(T)/I carries a unique involution for
which the quotient map Q: f € C(T") — f + I € A is a *-homomorphism.

THEOREM 2. Assume that the Hausdorff space T' satisfies the following
condition: There exists a function go € C(T') such that the set K, = {t € T':
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|g0(2)| < n} is compact for each n > 1. Then the quotient A= C(T')/I does
not admit a nonzero positive linear functional.

Remarks. The space T = R™ satisfies the assumption of Theorem 2.
On the other hand, if the space T is countably compact, then every con-
tinuous function on T is bounded. Thus a noncompact, countably compact
space T' does not admit a function go as above [2, 17.1 and 17.]].

A very general construction of involutive Banach algebras A such that
all positive linear functionals on A vanish on 42 can be found in [1, page
202, Example 16).

If X is an infinite-dimensional vector space (over the complex numbers),
let L(X) denote the algebra of all linear maps from X to X.

THEOREM 3. If X is an infinite-dimensional complex vector space, then
the algebra I(X) does not admit ¢ nonzero submultiplicative seminorm.

Proofs. Let .4 be an algebra over the complex numbers. An element
a € A will be called weakly regular if the two-sided ideal generated by a in
A is the entire algebra A, or equivalently, if o is not contained in any proper
two-sided ideal in A

If A has an identity and if there exist elements u,v € A such that
uav = 1, then the element a is weakly regular in A.

LEMMA 1. If the complex algebra A contams elements a, by, n > 1, such
that

(1) b #0 and ab, = nb,

then A does not admit a submultiplicative norm. If in addition the b, can
be chasen to be weakly regular, then A does not admit a nonzero submulti-
plicative seminorm.

foralln>1,

Proof. Assume that || || is a submultiplicative norm on A. Then the re-
lations (1) imply that n||b, || = ||nbnjl = fab,|| < ||al| i[bs||, and consequently
llall > n for all n > 1, contradicting the finiteness of ||al|.

Assume now that the b, are in addition weakly regular and let a be any
submultiplicative seminorm on 4. Let J = ker(c). Then J is a two-sided
ideal in .4. We must show that J = A.

Assume on the contrary that J is a proper ideal in .4 and let @ : A —
A/J denote the quotient map. The seminorm « induces a submultiplicative
norm on the quotient A/J. However, we also have Q(a)Q(bn) = nQ(by),
n 2 1, where the elements Q(b,) € A/J are nonzero, since the weakly reg-
ular elements by, are not in the proper two-sided ideal J C A. According to
the first part of the lemma, the quotient .A/J cannot carry a norm. This is
the desired contradiction. m

icm

Algebras without submultiplicative norms 301

Proof of Theorem 1. Let A = C(T). Passing to |f] if necessary,
we may assume that A contains an unbounded nonnegative function f. In-
ductively choose points £, € T such that

fltns1) > Flt)+3 forallm > 1

Then the closed intervals Iy = [f(tn) — 1, f(tn) +1] T R, n > 1, are pairwise
disjoint and consequently there exists a continuous function h : B — R such
that A(z) = n for all @ € I, and all n > 1. Moreover, for each n > 1, we
can choose & continuous function gn : R — R such that g,(f(¢,)) = 1 and
supp(gn) C In.

Nowset a=hof €A and by, == g, o f € A and note that b, # 0, since
bo(tn) = 1. Also, if ¢t € T and ba(t) = g.(f(2)) # 0, then f{t) € supp(gn) C

I, and so a(t) = A{f(1)}) = n. This implies that ab, = nb, and Lemma 1
can now be applied. w

Proof of Theorem 3. Let X be an infinite-dimensional complex
vector space and L(X) the algebra of all linear operators on X. Note first
that each surjective element 5 € L(X) is right-invertible in L{X). Indeed,
if Z C X is any algebraic complement of the kernel of § in X, then the re-
striction S|z : Z — X is bijective and consequently its inverse U == (S| 7)1
is an element of L(X) which satisfies SU = [.

By splitting a Hamel basis B of X into countably many disjoint sets of
the same cardinality as B, we obtain a decomposition

X =P x,

n2l

{algebraic direct sum),

where each subspace X, is isomorphic to X Let P, : X — X, denote the
projection onto X, according to this decomposition, and define the linear
operator A : X — X by the condition A = nP, on the subspace X, for all
n> 1. Then A, P, € L(X), P, # 0 and AP, =nP, foralln > 1.

By Lemma 1 it will mow suffice to show that the projections Pp, are
weakly regular in L(X). Since X, 2 X, we can choose a linear surjection
@n Xy — X. Then QnP, € L(X) is a surjection and hence is right-
invertible in L{X). Thus there exists U, € L(X) such that @, P,Uy is the
identity of L(X), and so the element P, € L(X) is weakly regular. w

Proof of Theorewm 2. For a function f € O(T) and a compact
subset K C 7' we shall write || fllxc = supiex | F(2)], as usual.

Recall that a linear functional i on an algebra A with involution is called
positive if it satisfies u(a*a) = 0 for all o € A

Let C(T), denote the family of functions f € C'(T') which satisfy f(¢)
> 0 for all + € 7. Such f satisfles f = h*h, where h = /J € A, and
consequently u(f) > 0 for each positive linear functional x on C(T).
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Note that C(T) is the linear span of C(T') . Consequently, each nonzero
linear functional p on C(T) satisfies p(f) # 0 for some f € C{T);. in
addition p is positive, then we have u(f) > 0 for some f € C(T)+.

Let now A = C(T)/I, where I = Cpo{T") is the ideal of functions f €
C(T) with compact support. Assume that w is a nonzero positive linear func-
tional on A. Since the quotient map @ : C(T) — A is a ¥-homomorphism,
the composition u = wo @ is a nonzero positive linear functional on C/(T).
Consequently, there exists an element f € C(T), such that p(f) > 0.

Let go € C(T) and K, € T be as in the assumption of Theorem 2 and
set ¢ = max{f,|go|} € C(T). Then 0 < f() < g(t) for all t € T, and
consequently 0 < u(f) < u(g). Moreover, all the sets

Co={teT:g(t) <n} T,
are compact (C, is a closed subset of K,,). Let now n > 1 be arbitrary.
Clearly z > n = z? > nz for each real number 2. Thus the function
g € O(T) satisfies g* > ng, except possibly on the compact set ' C K.

Now set 2, = nl|g||g, max{0,n+1~|go|} 2nd note that h, € C(T)4, hn
has compact support (contained in the set K1) and hn(t) > nl|gl| x, forall
t € K,,. Consequently, @(h,) =0 and g%+ hy, > ng at each point of 7. Thus

w(Qe?) = ulg® + hn) = u{ng) = nulg).
Recall that u(g) > 0 and let n ] co to obtain the contradiction w(Q(g?)) =
+00.

n=12,...,
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Sur la caractérisation topologique des compacts
i Vaide des demi-treillis des pseudométriques continues

par

TARAS BANAKI (Lviv)

Abstract. For u Tikhonov space X we denote by Pe(X) the semilattice of all con-
tinnous psendometrics on X. Tt 18 proved that compact HausgdoerT spaces X and ¥ are
homeornorphic if and only if there is a positive-homogeneous {or an additive) semi-lattice
isomorphism T : Pe(X) — Pe(Y).

A topology on Pe(X) is called admissible if it s intermediate between the compact-
open and pointwise topologies on Pe(X'). Another result states that Tikhonov spaces
X and ¥ are homeomorphic if and only if there exists a positive-homogeneons (or an
additive) semi-lattice homeomorphism 7 : (Pe(X), x) — (Pe(Y), 7v), where tx, 7y are
admissible topologies ou Pe(X) and Pe(¥).

Des résultats caractérisant un espace compact X a laide de l'espace
C(X) des fonctions continues sont bien connus et classiques. Rappelons ici
le théortme de 1. M. Gelfand et A. N. Kolmogorov [GK], affirmant qu'un
espace compact X est déterminé complétement par anneau C'(X) des fonc-
tions continues, ou le théoréme de Banach-Stone [Ba, XI, §4] caractérisant
un espace compact X au moyen de 'espace de Banach C(X). Il s'avére
(voir [Se, 7.8.2]) que la caractérisation de Gelfand-Kolmogorov résulte du
théoréme de I. Kaplansky, qui a démontré dans [Ka] que le treillis C{X) des
fonctions continues détermine complétement un espace compact X. Dans
[Sh] T. Shirota a généralisé ce théoréme de I. Kaplansky en montrant qu'il
reste vrai pour les espaces Hewitt-complets; entre autres, il a démontré dans
[Sh] que le treillis C(X) muni d’une topologie intermédiaire entre la topolo-
gie de la convergence simple et la topologle compacte-ouverte determinait
compléternent un cgpace de Tikhonov X,

Le but de cet article est ’obtenir des résultats analogues caractérisant
un espace compact (ou de Tikhonov) X & aide de Vespace Pe(X) formé
de toutes les pscudométriques continues sur X. L'espace Pc(X) avec I'ordre
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