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A. convolution operation
for a distributional Hankel transformation

by

J.J. BETANCOR and B, J. GONZALEZ (LaLaguna)

Abstract. We investigate the Hankel transformation and the Hankel convolution on
new spaces of generalized functions,

L. Introduction. The Hankel integral transformation is usually defined
by

(hud)(w) = [ V&G Ju(ey)(z) da,  y € (0,00),
0

where J,, denotes the Bessel function of the first kind and order u. Through-
out this paper we will assume that p is greater than —1/2.

The Hankel transformation has been investigated over several spaces
of generalized functions by employing varions procedures ([Z1], [22], [KZ]
and [KL}, amongst others). A. H. Zemanian [Z1] defined h,, in distribution
spaces by using the adjoint method. He introduced the space #,, of all
complex-valued functions ¢ on I = (0,00) such that

'r]g,m({p) = sup

(1422 (1D)m<w~“~l/2¢(m))
<wr<oo z

for every m, k € N. The space H, is endowed with the topology induced
by the family {17‘{:’,,.”'};‘,,,,-,,@ of seminorms. Thus M, is a Fréchet space. The
Hankel transformation is an automorphism of M, [Z3, Theorem 5.4-1]. The
generalized Hankel transform. h;,‘ foffe 'Hi“ where M), is the dual space of
Hy, is defined by

< o

(W, F,8) = (fhud)s 6 € M
Also, in order to study the Hankel transformation of distributions of
rapid growth, A. H. Zemanian [Z2) introduced the function space 3. For
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every a > 0 the space 8, consists of those functions ¢ in H,, such that
¢(z) = 0 for every z > a. It is equipped with the topology induced on it
by H,. Thus it is a Fréchet space. It is clear that if 0 < a < b, then 8, , is
contained in §, 5 and the topology of 3, . is the same as the one induced on
it by Bu,. The space 3, is the inductive limit of the family {8, s}as0. It 1s
a dense subspace of H,,. In [Z2] the behaviour of the Hankel transformation
on 3, is investigated.

I. 1. Hirschman [Hi] and D. T. Haimo [H] studied a convolution for
a Hankel type transformation closgely connected with h,. From their re-
sults by straightforward manipulations one can deduce analogous results for
the Hankel transformation h,. Firstly, the Hankel convolution was studied
over the space L, of measurable functions #(z), = € (0,0c), such that
fo7 e# 12| p(z)| dz < co. If ¢, € Ly, the Hankel convolution is defined
by

o)

(Bhe)z) = [ o) (m0)(y) dy,

0
where 7, z € (0,00), denotes the Hankel translation operator given by

z € (0, 00),

(eb)0) = | $()Dul@ys2) s 2y € (0,00),
0

and, for z,y, z € (0,00},

D”(ﬂ';, Y, Z)
V2—pp,2 g A2 E—1/2 3, 2u—1/2
— (zyz) L= gs(f—l%p(#_i_{(/ﬂ;qy) 2] s 1:17 - y| <z<T+Y,
0, z<lz—ylorz+y<a

The function D), has the following useful preperty:
o =)
(1.1) f 2D (n,y, 2) dz =

)(my)”+1/2, z,y € (0, 00).
0

1
260 (p+1

The Hankel convolution has been investigated on the spaces ,6,’,& and HL
of generalized functions in a series of papers by J. J. Betancor and 1. Marrero
([BM1]-BM4]). After characterizing the space O of multipliers of H, and
H,, [BM1, Theorem 2.3], they introduce the space O, 4 = b (z#+120) ©
H, of convolution operators in H, and H,,. If f € H), and g € O), 4, then
the Hankel convelution f ff ¢ is the element of H, defined by

(Fig, ) = (F(=), (gW), (=) (WD)}, ¢ € Hp.

The space O], , is a subspace of H), that is closed under f-convolution.
The main property of §-convolution is the following interchange formula
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[BM3, (1.3)]. If f € H,, and g € O/, , then

(1.2) hu(f Bg) =2 2R (F)RL ().

In this paper, inspired by the studies of B. J. Gonzdlez and E. R. Negrin
([GN1] and [GN2]) on convolution and Fourier transform, we investigate the
Hanl‘cel convolution in a new subspace of H,. For k& Z, k <0, we consider
a Fréchet space H,, x of functions such that

OLy CHyp CH,.

In Section 2 we define the Hankel transform on /' ; by using the ker-
nel method. The Hankel convolution is defined and ghalyzed on H! , in
Section 3. We establish that the Hankel convolution is a closed ope#a:tion
in H,, ;. Moreover, the generalized Hankel transformation satisfies the in-

terchange formula (1.2) when f and g are in H}, - The main results are
summarized in the following

THEOREM. Let f, g be in Hy,, and let k € Z, k < 0. The Hankel
convolution f§ g defined by

(f ﬁ g,qb) = (f(w)a <g(y)>(Tw¢)(y)>>= ¢ € H,u:

is an element of H,, . Moreover, if f, g, h € H, 1, then:

(2) by (f 8 9)() = R (WAL () wy 172, y el
(b) flg=g1f.

() Fi(gih)=(fg)fh

(d) The functional §,, defined by

(s 8) = 2T+ 1) lim 2™ 26(z), ¢ € My,

is in H, qndéﬂﬁfzfﬂéyzf.
() Su(fig)=(Suf)tg=74(Su0)
Throughout this paper, I denotes the real interval (0, 00). We represent

by C always a suitable positive constant (not necessarily the same at each oc-
currence). We denote by 5, the Bessel operator @ ~#~ /2 Dg2tiDge—1/2,

2. The generalized Hankel transformation. In this section we inves-
tigate the Hankel transformation on & certain space of generalized functions
by using the kernel method. The techniques and arguments employed here
are usual in other studies on distributional integral transforms ([DP], [KZ],
[KL] and [Z1], amongst others). Therefore the proofs of some of our results
will be just outlined.

Let k € Z, k < 0. We introduce the space A, 5 of complex-valued smooth
functions ¢(z), = € (0, 00), such that

Yiw(@) = sup |(1+z*)*e #1250 6(z)| < 00
O<a<oo
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for every m € N. The space A, ; is endowed with the topology generated
by the family {fmk}me&! of seminorms. It is not hard to prove that A4, is
a complete space. Hence A, i is a Fréchet space.

From [KZ, (9)] it is immediately deduced that /3, is contained in A, ;.
We denote by H, r the closure of 8, in A, x. Thus H, ; is alse a Fréchet
space. The space H, ; does not coincide with A, ;. In fact, let ¢x(z) =
z#t1/2(1 4 22)%, g € I. By [KZ, (9)] one has for every m & N,

m m4f
Spé(e) =212 Y by (10) ()

where b;., j =0,...,m, are suitable real numbers. Thus,

g8 gy ()
m . .

= bim2™H (k) (k- 1), (~k—m~j+D)(1+2?)FmI geT
j=0

Hence 7. (¢x) < o0, m € N, and ¢y € A, k. On the other hand, if ¢ is in
Hy,k, then there exists a sequence (¢h njnen C By With dern — ¢ in A,
as n — oo, In particular,
sup [(1+a%)fa ™" (g (z) ~ prm())] — 0
O<e<oo
Hence, there exists ng € N such that

sup |(1+ 23 Fz=#"12 (g (2) — Bino (1)) < 1/2.
I<e<oo

as n — 0.

Then
1= (1 +2%) e 2 (a)|
<{(1+2%) 2" V2 (0 (2) — bk o (@)
+ (1 + 2?20, L (2)] < 1/2
for z > C, with some C' > 0, because ¢, € B, which is a contradiction.
"Therefore ¢y, & H, 1.

In the foliowing lemma we give a sufficient condition in order that an
element in A, ; belongs to M, x, which will be useful in the sequel.

LEMMA 2.1. Let ¢ € Ay k. If for each m € N,

m
sup xm(ED) (= #=H2p(z))| < oo
f<m<on €z
then ¢ € H, .
Proof. Let A be a smooth function on I such that
_J1, ze(—o0,1),
Az) = {o, € (2,00).
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Define, for every n € N — {0}, Ap(z) = A(z ~ n + 1), z € I, and ¢, (z) =
Anlz)p(z), & € I. By hypothesis ¢,, € Bu, m € N. Moreover, by invoking
again [KZ, (9)] we have for every m e N, n e N — {0} and z € I,

zTH2ET B (2) - p(a)]

m ‘ mej
=2 by (zcl“D ) (2 (g(a) - ()]
J:

" g .
mA gy
e b g
2, i 3 (7 )m

i=n()

x (%D)i[m—#“1/2¢(m)Jx2j“i(£D) mﬂmi()\n(m) —1),

where bjm, 7 =0,...,m, are suitable real numbers.
Also, for each I € N and n € N — {0},

i i
(-i:,D) (An(z) — 1) = Zocsm"m"'st(/\n(m) -1), =zel,

where ¢z, ¢ = 0,...,1, are certain real numbers.
Hence there exists €' > 0 such that for each n € N— {0} and z € I,

(L + 2P~ r= 128 g, (2) — d(z)))

A thep i

<CY 3 Y (@4t Do () — 1)

J=0 i=0 &=0
Let & > 0. There exists M > 0 such that
(14 2®) bz #1286 (z) — p(z)]| <5, = > M, neN-{0}.
Also, as A, (z) = 1 for z € (0,n) and n € N— {0}, there exists ng € N— {0}
such that
1+ mz)kﬁmﬁrulmsﬂb [pn(z) — S(z)]| <&,
Therefore, for every n € N, n > ny,

sup |(L+ &%) e~k 250 g, (2) - d(e)]| < e
N<mgon

Thus we conclude that ¢, — ¢ in A, as n — oco. Hence, ¢ € Huk. m

ze (M), neN, n>no.

An immediate consequence of Lemma 2.1 is that the space H,, is con-
tained in H, .
A first application of Lemma 2.1 is the following.

ProposiTiON 2.1. Let y € T and k € Z, k < 0. The function ¢y{x) =
\/QTZ'J#(W?/), zel, tsin Hﬂ,’k.
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Proof. Let m € N, By [Z3, Lemma 5.4-1(5)] we have
Sio(VEy Ju(zy)) = (=) vay Ju(ey), zel

Hence, since z7#J,(z) is a bounded function on I, there exists C' > 0 such
that

sup |(1+ 2%)Fz™# /28T o, (z)] < PR,
0<e<oo

Then ¢, € A, &
Moreover, according to [Z3, Ch. 5, (6)], for every m € N,

m
2(3D) (@0 5) = (U o) (o), €L
Hence, for every m € N,
sup

mm(£D> (w"“#l/gqﬁy(w)) < 00,
0<z<oo z

because z27#J, . (2) is a bounded function on (0,00}, and from Lemma, 2.1
we deduce that ¢, € Hx. m

The Bessel operator 5, defines a continuous linear mapping from #,, »
into itself.

PROPOSITION 2.2, Let k € Z, k < 0, and let P be o polynomial. Then
the mapping ¢ — P(S,,)¢ is linear and continuous from H, j into itself.

Proof It is sufficient to show that S, defines a continuous mapping
from H, 5 into itself. Let ¢ € M, . There exists a sequence (¢, )nen in B,
such that ¢, ~— ¢ in H,, x as » — co. Then it is clear that (Su¢n)nen C Bu-
Moreover, since for every m € N and ¢ € A,

Vi (Sud) = 77 (),

it follows that Sud, — Sy in M, x as n — oo, and the mapping ¢ — S, ¢
is continuous.

As usual, we denote by H’  the dual space of H, x. The space O] 1 p COn-
sidered in [BM3] is contained in M, because My, C Opy = Upeg, k<0 M
Moreover, from [KZ, (9)] it 1mmed1ately follows that 1f ¢y — Oin H, as
n — 0o, then ¢, — 0 in M, & as n — oo. Hence, HL i is contained in HL

We now introduce a new function space that will be dencted by X, p; it
consists of all those locally integrable functions on (0, oc) such that

o
[ 1+ 277"
0
It is easy to see that A, C H, k- In the next section we will refer again
to X,u.,k
An immediate consequence of Proposition 2.2 is the following.

o172 ()] dz < oc.
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PROPOSITION 2.3. Let k € Z, k < 0, and let P be a polynomial. Then the

mapping f — P(Su)f is linear and continuous from H,, . into itself when
in M, , we conszd’er either the weak* or the strong topology

For every f € 'H’ .k We define the generalized Hankel transform R, f by

(huf)(w) = (f(2), V37 Juley)), mel
Note that by Proposition 2.1 the definition is allowable.

We now establish some properties of the generalized Hankel transforma-
tiom.

PROPOSITION 2.4. Let k € Z, k < 0, and let P be o polynomial. Then
for every f € H, |, we have
Ry (PSINW) = P(—y")hu(Hy), wel
Proof. It is sufficient to take into account that Sy/zJ, () =
(cf. [23, Ch. 5, (6), (7)]. =

PROPOSITION 2.5. Let k € Z, k < 0, and f € M|, ;. There exist C >0
ond r € N such thot

M+1/2
3 U € (01 1):
mhwio{ ¥, YO
Proof. This result follows immediately from [Z3, Theorem 1.8-1] by
taking into account [23, Ch. 5, (6), (7)]. =

PROPOSITION 2.6. Let k € Z, k < 0, and f € M} . Then b}, f is —2k—1
trmes differentiable.

—v/2 Ju(2)

Proof. Firstly we prove that h’ wf is continucus in I. For every y € I
and 0 < |h| < y we have

)y +h) = (W, F)(y)
2), /aly + ) Julaly + h) ~ (F(a), a7 I (aw)).
Hence, the continuity of f in y &€ I will be established when we show that
21 Ve R Ju(e(y+h) = VETJu(zy)  inHyp as h— 0.
To prove (2.1), let y € I and m € N. We can write
zmH" 1/23”"m[me (y + h)) — /2y Ju(zy)]
= (FL)F Uy +h)P T 2 (1)) TR (e R)) — P () TR ()]

forz € land 0<|h|<y.
Assume that £ > 0. Since z7#J,(2) is bounded on I there exists M > 0
such that for z > M and 0 < |h| < ¥,

(22) A+ 2T Valy + h) Ju(e(y + )~ v3E Ju(zy)]| <&
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Moreover, by taking into account the mean value we can find he > 0
such that for every 0 < z < M and 0 < |A| < hq,

(2.3) (1+2?)*le~# Y287 [Vealy + h) Ju(z(y + »)
By combining (2.2) and (2. 3) we conclude that
sup |(1+a®)Pz #7228 (\/e(y + B) Ju(a(y + b))

D<m<on

provided that 0 < [h} < ho. Thus (2.1} is established.
We now prove that A, f is differentiable provided that & € Z, k < ~1.
Let 0 < y < oo. For each N < \h| <y, one has

(hpf)(y +h) ~ (ALF)(Y)

3
- <f( ), Vol +R) ulaly + 1) = V37 Ju(wy)>
s ), 3 .

— Vay Ju(ay)]| <e.

—Vay Ju(ey)ll <e

Tt will be established that

_ Vel ) sy +h) -
Ih(m) = h

in A,k as h— 0%,
For every 0 < |h| < y and 0 < 2 < o0 we can write

\/sc_y.f#(asy)

- %[@Jp(wyn -0

y+h wu

In(z) = f f§2 WZo . (zo)] d,gau

Let m € N. For every « € I and 0 < |h| < y from [Z3, Ch. 5, (6}, (7)] we
infer that "
y+h %

oS = (- hf fagz[92’”"*"“"‘“1/2(m9)““«m(w9)]dadu-

Since z*/2.J,(#) is bounded on I there exists C > 0 such that

2 ¥
5%5[92m+p¢+1/2(mg)—,u‘]#(mgnl < O(g2m—2 + mg2m—1 _l_mZQ?m), z,0 € T.
Hence, for z € Fand 0 < |h| <y,
1 y+h o
1(1_{_3: )k ot 1/28717 fh(ibﬂ <G(1+$ kl—lh f f sz 2(1+Q+Q )dgdu
¥y

Then

sup (1 2®) ke #" Y28 Tu(z)| = 0 ash —0,
0<z <00

provided that k < —1.
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Therefore, hi,f is differentiable when k € Z, k < —1.
The proof of the general case follows by using similar arguments.

PROPOSITION 2.7. Let k € Z, k < 0, and f € H), .. Then

(hufo @) = (f hutd), @ €H,
Proof. Proceed as in the proof of [KZ, Theorem 3|, replacing the fanc-
tion ¢™%® {a > 0) by (1 +2z?)*. m

Proposition 2.7 yields a uniqueness result for the generalized Hankel
transform on H, ..

PROPOSITION 2.8, Let k € 7, k < 0, and f,g € H,,
f=yg

Proof. Let ¢ € H, k. There exists a sequence (dn)nen C B, such that

¢ — P in A, g 88 n — 00, Then, since f,g € H), ., one has (f, ¢n) — (f, 9}

and {g,¢n) — {(9,¢) a8 n — oo. Moreover, by [Z3, Theorem 5.4-1] and
Proposition 2.7,

(f: gb'n) = <h;_¢f: hugb?I) = <h:1.g: h.u¢n> = (g:¢n>= n € N,
and the proof is complete. m

Note that from Propositions 2.7 and 2.8 it follows that each generalized
function f in H! 4k 18 uniquely determined by its Hankel transform hj, f.

g If B f = hi,g then

. We now define the Hankel con-
. First we analyze the Hankel translation 7,

3. The Hankel convolution on M/, .
volution on the spaces H
rel,onH,

Our first result which will be very useful in the sequel, establishes that
the operators S, and 7, = € I, commute.

LEMMA 3.1. Let m e N and k € Z, k < 0. Then for every ¢ € Hy,
S (Tad) () = (S )y), =myel
Proof. Let ¢ € M, x. We have
oy

(3.1) (re®)v) = [ #(z)Dulm,y,2)dz, myel

Bl

Let » > 0. Consider a smooth function A on (0, 00) such that A(z) = 1
for z € (0,2r) and A(z) = 0 for ¢ € (2r+1,00). Now we prove that A¢ € 8,,.
In fact, consider the vector space

M, = {gb € €%(0, 00) :

(20) 2 rae)

T

Y ($) = sup <00, mE N}.

0<e<en
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Following usual techniques it is proved that M, endowed with the topology
generated by the family {~, }men of seminorms is a Fréchet space. Moreover,
if (pn)nen C By C M, is such that ¢, converges to ¢ in A, as n — oo,
according to [S, Ch. IV, Proposition 2] and by using the Leibniz formula we
can find C > 0 such that

1m0 =) = s |(30) BN - 4u(@))

<C max sup |z” “"1/2Sﬂ,m(¢;r:“¢q)(m)|’

0<nim ger<oo

Hence (Adn)nen is a Cauchy sequence in M),. Then there exists ¢ € M,
such that A¢, — 1 in M, as n — oo. Thus, since A(z)dn(z) — 2(z) and
(1+ z2)Pe—r=12g (2) — (14 22)fx#"12¢(z) for z € T as n — o0, it
follows that Ap = ¢ and we conclude that A¢ € 3,,.

On the other hand, as ¢(y) = (pA)(y) for 0 < y < 2r, from (3.1) we
deduce that (.¢)}{y) = (729X)(y) for z,y € (0,7). Hence, by invoking [MB3,
{1.3)] we conclude that for every m € N,

S (T=@)(y) = ST (1202 (y)

= To(SP M) (Y) = =(Spe)(y), O0<zy<r
Thus, since r > ( is arbitrary, the result is established. w

p,g€eN,

LEMMA 3.2, Let k€ &, k < 0. For every x € I the mapping ¢ — Tx¢ is
linear and continuous from H, r into itself.

Proof Let z € I. By [BM2, Corollary 3.3], 7.¢ € 3, for every ¢ € 3,.

Let ¢ be in H,, . There exists a sequence (¢n)nen C B, such that ¢, — ¢
in A, x as n — co. According to Lemma 3.1 and [GN1, Lemma 2.1], for every
m,n € N, we can write for z,y € I,

(14 )Py 28T [(rapn) () — (ra6) ()]
= (1 + ")y P2 (ST, (6n — 9)1(v)]
o+
<@+ [ 197 (¢n — 6)(2)|Dul@,y, 2) d2
0

S (L)AL + (z +y)?) Ry e
2ty
x [ (14 22)kame 28T (b
0
< 4—k(1+x2)ky—,u—-1/2

~ o)) 2 Dy (2, y, 2) dz

oy
x sup (14 z2)kz"#" 1/‘°‘|Sm( - ¢)(2)] f 2#T12D, (z,y,2) dz.
0

O<z<oo
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Then from (1.1) it follows that -
(32)  sup [(1+y) V25T (g )w) ~ (md)@)|

I<y<on
1
<&
T2 (p+ 1)

X 8 1 4 22)k,—u=1/2) gm _
0<}~.1£oo( +2)"% 1Se(®n — B)(2)],
Hence oy = Tath in Ay a8 1 — 0o and 7,0 € M, k.

Also an inequality analogous to (3.2) proves that the Hankel translation
7y defines a continuous mapping from M, . m

47H(1 4 2?2

m,n € N.

The lagt lemma allows us to define the Hankel convolution of a distri-
bution in H, , and a function in k. If f € H), , and ¢ € H,, s then the
Hankel convolutlon Ft ¢ is defined by

(3.3) (fio)z) = (fr¢), =zl
Note that if f € X, x then for every ¢ € Hyn,
(fi o) jf (7a0)(¥) dy, 0 <z < o0,

In this sense the classical j-convolution can be seen as a special case of
the distributional §-convolution (8.3).

Before defining the f-convolution of two elements of 1), ; we will prove
that the distributions in H;, ; define convolution operators in Hy e

LEMMA 3.3. Let ke Z, k<0,and f £ H;,k. Then the mapping ¢ — fiio
18 linear and continuous from H, x into itself.

Proof. We divide the proof in several steps.

Craim (a). For every ¢ € 8, and m € N,

(3.4) Sia (fw), (rad)(w)) = (F (), (S )W), = el
Let ¢ € 8. According to [BM3, (1.3)] one has
(Tad) () = hu[t™* 2 (@t 2 T, (@) (@)WY, my el
We are going to establish that
35 Sus(f®) (rad)®)) = (FW) Sua(d)¥)), wel.

Firstly it must be seen that for every z.€ I,
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69 (s, =0+ OB
hu[(wt) ™ T (2t R (8) (1)) (y) >
h

= (), Dahyul(zt)*Ju(zt)hu(@)(E)Hy))  as h — 0.
Let z € I and 0 < }h| < z. We have
In(y)
_ bz + h)t) 7T ((2 + Rt R, (6) ()] (y) —
h
- thu[(-’ft)_“ Jp(et)hu(9)(8)](y)

hyl(@t)" " Ju(2t)hu (@) (1](y)

:c+h u

=3 f f B Bl T D)) ddu,  yeT.

Then for m € N and y € I one has
Cc+h U

SiIn(y) = 3 f f p Al T (ST (O] ) .

By taking into account that 27#J,(2) is a bounded function on I and that
2 (##Ju(2)) = 27#J 41 (2), # € I, we can conclude that

(3.7) (1+y?)*y=#125™ L(y) — 0

as h — 0 uniformly in ¥ € (0, o).
Since f € H, ,, (3.6) follows from (3.7).
By proceeding in a similar way we can prove that

&t Lo aw)

d w1 4 _puo1ym
= = — I
(100 Lo Lo P mg)e)), e
Thus (3.5) is established.
From Lemma 3.1 and (3.5), (3.4) is immediately deduced.

CuaM (b). The mapping ¢ — f 1 ¢ is continuous from B, into Ak
when we consider on 3, the topology induced by A, 1.

Since f € H, 1, according to [Z3, Theorem 1.8-1] there exist ¢' > 0 and
r & N such that

Mk, ~p—1/2 gm
(59 (HA<Cpax swp (1437 250,000,

Let ¢ € 3, and m € N. By combining (3.4} and (3.8) it follows that

o E Hu,kz-
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™ 2k, p—
Sialfiedll S O max sup [(14 %)y~ 2ry (514 g) ),
0<z<oo.
Hence, by proceeding as in the proof of (3.2) we obtain

sup |(1+a?)ra=1/2gm (70|
I<e<on

—F k: - 1/2 +
<HHC . owp (14 ST o()

and our claim is proved.
CLAM (c). For every ¢ € 8, one has fli ¢ € Mk

Let ¢ € B,. By (b), ftdisin 4, 4. Tosee that fi ¢ e H, . we will use
Lemma 2.1. Let m & N. By invoking again [BM3, (1.2)] we see that

(30) k(s 1))

- () (%D)mh“[(mt)"“Ju(mt)hy(¢)(t)](y)>

= (f(y), hrt[("‘tQ)m(wt)-“_mJM+m(mt)h#(¢) Bl(y), =zel
Then by [Z3, Lerama 5.4-1] for some C > 0 and r € N one has, for z € 7,

o (10) (s 1)

< C max sup (14 y?)ky#-1/2
0Snsr pey<oo

x S7yhul(et) ™ T (@) R (S 0) ()} ()]

= C max sup |(1+y?)fy#b/2
0<nEr ogy<os

X h# [(wfi) THEmm Jg-}-m (.’Et) hu(sﬁ+m ‘ﬁ) (t)] (y) l

5 T ()t

0

< C max 1
<Oz e Uy

X (@) ™ (@) |42 R (SET ) ()t < O,

because 27#.J,(z) is bounded on I.
We now finigh the proof by taking into account the above claims.
The space 3, is dense in H,, 5. Hence, the mapping

ﬂu“”Hu,ki ¢'an¢;
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can be continuously extended to H, k. Denote by T' the extended mapping.
It is well known that if ¢ € H,,x, then

T = g Fion,

where the limit is understood in M, i and (¢n)nen is a sequence in 8, such
that ¢, — ¢ in M, as n - co. It is easy to see that convergence in H, x
implies pointwise convergence on (0, o). Moreover, by {3.2),

(£ E0)(z) — (£ én)lo)]
SO SR
< C47H(1L + aP)batt/2

vk, —pel/2gl (g
X O@%O‘f;lgmi(l+y )y Sy(@— )W), mel,
with C > 0 and r € N.

Therefore (f§¢,)(z) — (fi@)(z) as n — oo for every = € (0,00). Then
we conclude that (T@)(z) = (f { ¢)(z), z € I, and f ¢ € H, k. Thus the
proof is complete. =

#—1/2‘9;’&'[(7-&:4.5)(1’) = (e dn ) ()]l

We can now define {-convolution in H, , as follows. If f,g € H! up then
we define the Hankel convolution f § g by

(ft9,8) = (f(=), (9ly), (r=d) (W)},

By Lemma 3.3, fjig € H
operation in H

The main algebralc propert1es of f§-convolution are established in the
following

o€ H,u.,k-

Hence the Hankel convolution is a closed

THEOREM 3.1. Let k€ Z, k < 0. If f,9,h € H, ; then:

(a) h,(FE )W) = R (D)W 2 y e I
(b) fhg=gllf

(©) FH{gdR)=(Fig)th

(d) The functional 5, defined by

(60, 6) = 2D +1) lim 2™ 6(z), ¢ € Hyn,
isin M, and 6,4 f = F46, = f.
(e) Su(fi9)=(Sufltg=F1(Sug)

Proof. (a}) For every y € I according to [W, p. 367 and p. 411] we have
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Rl 89)(w) = (f £ g, 0y(@)) = {£(2), (o(2), meldy) ()))
=y RUH(0), (o (@), VY T (b)Y Ju(2))
=y L) W)k (9) (),
where ¢, (z) = /Z¥ J,(2y), 2,y € I.
(b) By uamg (a) it follows that

R (fE9) () = h (N (9) @)y = R (gt N(y), wel
Hence according to Proposition 2.8, fig=g1 f.
(c) This property is also an immediate consequence of Proposition 2.8
and the above property (a).
(d) Let ¢ € M, . There exists a sequence (¢n)ney in B, such that
¢n — ¢ in Hyp a8 n — oo. Setting I, = limy_q+ 27+~ 1/2¢,(z) for each
n € N, we have

|ln - la! = lim (l + wZ)kw-—u—lmwn(m) - ¢s($)[

< sup (L+2*)fa™r 7 2g,(x) — go(a)l, m,sEN.
<o

Hence there exigts | € € such that I, — I as n — co. Moreover, it is not
hard to see that the limit lim,_,g+ 2#~*/2¢(x) exists and is equal to [.
Also we can write

{6 @) = 2°I'(p+1) lim 2= 2(z)]

S2(u+1) sup (1+42%) e+ 2|g(z)),

45 € H“:k.
O<u<on

Hence 6, € H;, .
On the other hand,

u( Sul(y) ={ #(m): v BY J“(m-y))
= 2D(p+1) Jim 2™# 70 Gy Ju(oy) =g,y el
. &X—

Therefore by invoking (a) we obtain h),(f#6,) = hj,(f). Then Proposition 2.8
shows that f 6, = f.

(e) This property follows from Propositions 2.8 and 2.4 by using
again (a). m

The following continuity property of f-convolution is an immediate con-
sequence of Lemma 3.3.

ProrosITION 3.1. Let k € Z, k < 0. Assume that (fn)nen 95 a se-
quence in ‘H), . that converges to f € M), , in the weak* topology (respec-
tively, in the strong topology) of M, . Then for every g € Hi ke

frng— ftg asn-—o00
in the weak™* topology (respectively, in the strong topology) of H, x
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Remark. Studies analogous to the one developed here can be made by
replacing the function (1 -+ 22)* in the definition of the space H, x, k € Z,
k < 0, by other functions. For example, if we put the function e ~** instead
of (1 + 22)* our procedure permits defining the Hankel convolution in the
spaces of E. L. Koh and A. H. Zemanian [KZ)].

References

[BM1] J.J.Betancorandl Marrero, Multipliera of Hankel transformable generalized
Junctions, Comment. Math, Univ. Carolin. 33 (1992), 386-401,

[BM2] —,—, The Hankel convolution and the Zemanian spaces By and ﬁ;“ Math. Nachr,
160 (1993), 277~208,

[BM3] —, —, Structure and convergence in certain spaces of distributions and the gen-
eralized Hankel convolution, Math. Japon. 160 (1993}, 1141-1155.

{BM4] —, -—, Some properties of Hankel convolution operators, Canad. Math. Bull. 36

(1993), 398-406.
{DP] L.S.Dubeand J. N. Pandey, On the Hankel transform of distributions, Téhoku
Math. J. 27 (1975), 337-354.
[GN1] B. J. Gorzdlez and BE. R. Negrin, Convolution over the spaces Sy, J. Math,
Anal. Appl. 190 {1995), 820-843.
[GN2Z] —, —, Fourier transform over the spaces S}, ibid. 194 (1995), 780-T98,
(H] D. T. Haimo, Integrel equations associated with Hankel convolutions, Trans.
Amer. Math. Soc. 116 (1965), 330-375.
(Hi I I Hirschman, Jr.,, Verigtion diminishing Hankel transforms, J. Anal, Math.
8 (1960/61), 307-336.
[KL] E. I. Koh and C. K. Li, The complex Hankel transformation on M), Congr.
Numer, 87 (1992), 145-151,
[KZ] E.L.Kohand A. H. Zemanian, The complex Hankel and I-transformations of
generalized functions, SIAM J. Appl. Math. 16 (1968), 945-957.
[8] A. M. Sanches, La transformacidn integral generolizads de Hankel-Schwartz,
Ph.D. Thesis, Dep. Andlisis Matematico, Universidad de La Laguna, 1987,
[W] G, N. Watson, A Treatise on the Theary of Bessel Functions, Cambridge Uni-
versity Press, London, 1958.
[21] A. 0. Zemanian, The distributional Hankel transformation, SIAM J. Appl.
Math. 14 (1966), 561-576.
[Z2] -, The Hankel transformation of certain distributions of rapid growth, ibid.,
678-690.
(23] —, Generalizved Integral Transformations, [nterscience, New York, 1968.

DEPARTAMENTO DE ANALISIS MATEMATICO
UNIVERSIDAD DE LA LAGUNA

38271 LA LAGUNA, ISLAS CANARIAS

SPAIN

E-mail: JBETANCORQULL.ES

Received January 27, 1995
Revised version May 9, 1995

(3412)

icm

STUDIA MATHEMATICA 117 (1) (1995)

On rank one elements
by

ROBIN HARTE (Dublin)

Abstract. Without the “scarcity lemma”, two kinds of “rank one elements® ave iden-
tifled in semisimple Banach algebras.

Suppose A is a complex Banach algebra, with identity 1 (usually not
zero), and invertible group A~!: then the radical of A can be defined ([5]
Theorem 7.2.3) as the set

?

(0.1) Rad(A)={a€ A:1+ AaC A1},
It is familiar that this is a closed two-sided ideal; also,
(0.2) 144 CA = 144" CA s A g At

=1+ (A7 + A e gAY,

since of course A7' + A7! = A this gives an alternative description of
Rad(A), and also provides an elementary instance of the “scarcity lemma”
([1], Theorem 7.1.7). We recall the spectrum and the non-zero spectrum,

(03) cale)=c(@)={AeC:a-2gA™ '} and o'(a)=oc(a) \ {0}
thus
{0.4) o € Rad(A) & o'(za) =0 for every z € A,

or equivalently, for every # € A=, We call the algebra A semisimple iff
Rad(A) = {0}, or equivalently, if

(0.5) ko' (za) = 0 for every z € A = a =0,
and semiprime iff
(0.6) eAa = {0} = a=0;

since the left hand side of (0.6) implies that a € Rad(4) it is clear that a
semisimple algebra is always semiprime. We observe
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