

## STUDIA MATHEMATICA 117 (1) (1995)

# A convolution operation for a distributional Hankel transformation

by

J. J. BETANCOR and B. J. GONZÁLEZ (La Laguna)

**Abstract.** We investigate the Hankel transformation and the Hankel convolution on new spaces of generalized functions.

1. Introduction. The Hankel integral transformation is usually defined by

$$(h_{\mu}\phi)(y)=\int\limits_{0}^{\infty}\sqrt{xy}\,J_{\mu}(xy)\phi(x)\,dx, \quad y\in(0,\infty),$$

where  $J_{\mu}$  denotes the Bessel function of the first kind and order  $\mu$ . Throughout this paper we will assume that  $\mu$  is greater than -1/2.

The Hankel transformation has been investigated over several spaces of generalized functions by employing various procedures ([Z1], [Z2], [KZ] and [KL], amongst others). A. H. Zemanian [Z1] defined  $h_{\mu}$  in distribution spaces by using the adjoint method. He introduced the space  $\mathcal{H}_{\mu}$  of all complex-valued functions  $\phi$  on  $I=(0,\infty)$  such that

$$\eta_{k,m}^{\mu}(\phi) = \sup_{0 < x < \infty} \left| (1 + x^2)^k \left( \frac{1}{x} D \right)^m (x^{-\mu - 1/2} \phi(x)) \right| < \infty$$

for every  $m,k\in\mathbb{N}$ . The space  $\mathcal{H}_{\mu}$  is endowed with the topology induced by the family  $\{\eta_{k,m}^{\mu}\}_{k,m\in\mathbb{N}}$  of seminorms. Thus  $\mathcal{H}_{\mu}$  is a Fréchet space. The Hankel transformation is an automorphism of  $\mathcal{H}_{\mu}$  [Z3, Theorem 5.4-1]. The generalized Hankel transform  $h'_{\mu}f$  of  $f\in\mathcal{H}'_{\mu}$ , where  $\mathcal{H}'_{\mu}$  is the dual space of  $\mathcal{H}_{\mu}$ , is defined by

$$\langle h'_{\mu}f, \phi \rangle = \langle f, h_{\mu}\phi \rangle, \quad \phi \in \mathcal{H}_{\mu}.$$

Also, in order to study the Hankel transformation of distributions of rapid growth, A. H. Zemanian [Z2] introduced the function space  $\beta_{\mu}$ . For

<sup>1991</sup> Mathematics Subject Classification: Primary 46F12.

Key words and phrases: Hankel transformation, convolution, distributions, Bessel functions.

every a>0 the space  $\beta_{\mu,a}$  consists of those functions  $\phi$  in  $\mathcal{H}_{\mu}$  such that  $\phi(x) = 0$  for every  $x \ge a$ . It is equipped with the topology induced on it by  $\mathcal{H}_{\mu}$ . Thus it is a Fréchet space. It is clear that if 0 < a < b, then  $\beta_{\mu,a}$  is contained in  $\beta_{\mu,b}$  and the topology of  $\beta_{\mu,a}$  is the same as the one induced on it by  $\beta_{\mu,b}$ . The space  $\beta_{\mu}$  is the inductive limit of the family  $\{\beta_{\mu,a}\}_{a>0}$ . It is a dense subspace of  $\mathcal{H}_{\mu}$ . In [Z2] the behaviour of the Hankel transformation on  $\beta_{\mu}$  is investigated.

I. I. Hirschman [Hi] and D. T. Haimo [H] studied a convolution for a Hankel type transformation closely connected with  $h_{\mu}$ . From their results by straightforward manipulations one can deduce analogous results for the Hankel transformation  $h_{\mu}$ . Firstly, the Hankel convolution was studied over the space  $L_{\mu,1}$  of measurable functions  $\phi(x), x \in (0,\infty)$ , such that  $\int_0^\infty x^{\mu+1/2} |\phi(x)| dx < \infty$ . If  $\phi, \varphi \in L_{\mu,1}$ , the Hankel convolution is defined

$$(\phi \sharp \varphi)(x) = \int\limits_0^\infty \varphi(y)( au_x \phi)(y)\, dy, \quad x \in (0,\infty),$$

where  $\tau_x$ ,  $x \in (0, \infty)$ , denotes the Hankel translation operator given by

$$(\tau_x \phi)(y) = \int_0^\infty \phi(z) D_\mu(x, y, z) dz, \quad x, y \in (0, \infty),$$

and, for  $x, y, z \in (0, \infty)$ ,

$$D_{\mu}(x,y,z) = \begin{cases} \frac{(xyz)^{1/2-\mu}[z^2 - (x-y)^2]^{\mu-1/2}[(x+y)^2 - z^2]^{\mu-1/2}}{2^{3\mu-1}\sqrt{\pi}\Gamma(\mu+1/2)}, & |x-y| < z < x+y, \\ 0, & z < |x-y| \text{ or } x+y < z. \end{cases}$$

The function  $D_{\mu}$  has the following useful property:

$$(1.1) \quad \int\limits_0^\infty x^{\mu+1/2} D_{\mu}(x,y,z) \, dz = \frac{1}{2^{\mu} \Gamma(\mu+1)} (xy)^{\mu+1/2}, \quad x,y \in (0,\infty).$$

The Hankel convolution has been investigated on the spaces  $\beta'_{\mu}$  and  $\mathcal{H}'_{\mu}$ of generalized functions in a series of papers by J. J. Betancor and I. Marrero ([BM1]-[BM4]). After characterizing the space  $\mathcal{O}$  of multipliers of  $\mathcal{H}_{\mu}$  and  $\mathcal{H}'_{\mu}$  [BM1, Theorem 2.3], they introduce the space  $\mathcal{O}'_{\mu,\sharp} = h'_{\mu}(x^{\mu+1/2}\mathcal{O}) \subset$  $\mathcal{H}'_{\mu}$  of convolution operators in  $\mathcal{H}_{\mu}$  and  $\mathcal{H}'_{\mu}$ . If  $f \in \mathcal{H}''_{\mu}$  and  $g \in \mathcal{O}'_{\mu,\sharp}$ , then the Hankel convolution  $f \sharp g$  is the element of  $\mathcal{H}'_{\mu}$  defined by

$$\langle f \sharp g, \phi \rangle = \langle f(x), \langle g(y), (\tau_x \phi)(y) \rangle \rangle, \quad \phi \in \mathcal{H}_{\mu}.$$

The space  $\mathcal{O}'_{\mu,\sharp}$  is a subspace of  $\mathcal{H}'_{\mu}$  that is closed under  $\sharp$ -convolution. The main property of #-convolution is the following interchange formula [BM3, (1.3)]. If  $f \in \mathcal{H}'_{\mu}$  and  $g \in \mathcal{O}'_{\mu, \dagger}$  then

(1.2) 
$$h'_{\mu}(f \sharp g) = x^{-\mu - 1/2} h'_{\mu}(f) h'_{\mu}(g).$$

In this paper, inspired by the studies of B. J. González and E. R. Negrin ([GN1] and [GN2]) on convolution and Fourier transform, we investigate the Hankel convolution in a new subspace of  $\mathcal{H}'_{\mu}$ . For  $k \in \mathbb{Z}$ , k < 0, we consider a Fréchet space  $\mathcal{H}_{\mu,k}$  of functions such that

$$\mathcal{O}'_{\mu,\sharp} \subset \mathcal{H}'_{\mu,k} \subset \mathcal{H}'_{\mu}$$
.

In Section 2 we define the Hankel transform on  $\mathcal{H}'_{\mu,k}$  by using the kernel method. The Hankel convolution is defined and analyzed on  $\mathcal{H}'_{\mu,k}$  in Section 3. We establish that the Hankel convolution is a closed operation in  $\mathcal{H}'_{u.k}$ . Moreover, the generalized Hankel transformation satisfies the interchange formula (1.2) when f and g are in  $\mathcal{H}'_{\mu,k}$ . The main results are summarized in the following

Theorem. Let f, g be in  $\mathcal{H}'_{\mu,k}$  and let  $k \in \mathbb{Z}$ , k < 0. The Hankel convolution  $f \sharp g$  defined by

$$\langle f \sharp g, \phi \rangle = \langle f(x), \langle g(y), (\tau_x \phi)(y) \rangle \rangle, \quad \phi \in \mathcal{H}_{\mu},$$

is an element of  $\mathcal{H}'_{u,k}$ . Moreover, if  $f,g,h\in\mathcal{H}'_{u,k}$  then:

- (a)  $h'_{\mu}(f \sharp g)(y) = h'_{\mu}(f)(y)h'_{\mu}(g)(y)y^{-\mu-1/2}, y \in I.$ (b)  $f \sharp g = g \sharp f.$
- (c)  $f \sharp (g \sharp h) = (f \sharp g) \sharp h$ .
- (d) The functional  $\delta_{\mu}$  defined by

$$\langle \delta_{\mu}, \phi \rangle = 2^{\mu} \Gamma(\mu + 1) \lim_{x \to 0^+} x^{-\mu - 1/2} \phi(x), \quad \phi \in \mathcal{H}_{\mu,k},$$

is in 
$$\mathcal{H}'_{\mu,k}$$
 and  $\delta_{\mu} \sharp f = f \sharp \delta_{\mu} = f$ .  
(e)  $S_{\mu}(f \sharp g) = (S_{\mu}f) \sharp g = f \sharp (S_{\mu}g)$ .

Throughout this paper, I denotes the real interval  $(0, \infty)$ . We represent by C always a suitable positive constant (not necessarily the same at each occurrence). We denote by  $S_{\mu}$  the Bessel operator  $x^{-\mu-1/2}Dx^{2\mu+1}Dx^{-\mu-1/2}$ .

2. The generalized Hankel transformation. In this section we investigate the Hankel transformation on a certain space of generalized functions by using the kernel method. The techniques and arguments employed here are usual in other studies on distributional integral transforms ([DP], [KZ], [KL] and [Z1], amongst others). Therefore the proofs of some of our results will be just outlined.

Let  $k \in \mathbb{Z}$ , k < 0. We introduce the space  $A_{\mu,k}$  of complex-valued smooth functions  $\phi(x)$ ,  $x \in (0, \infty)$ , such that

$$\gamma_{\mu,k}^{m}(\phi) = \sup_{0 < x < \infty} |(1 + x^{2})^{k} x^{-\mu - 1/2} S_{\mu}^{m} \phi(x)| < \infty$$

for every  $m \in \mathbb{N}$ . The space  $A_{\mu,k}$  is endowed with the topology generated by the family  $\left\{\gamma_{\mu,k}^m\right\}_{m\in\mathbb{N}}$  of seminorms. It is not hard to prove that  $A_{\mu,k}$  is a complete space. Hence  $A_{\mu,k}$  is a Fréchet space.

From [KZ, (9)] it is immediately deduced that  $\beta_{\mu}$  is contained in  $A_{\mu,k}$ . We denote by  $\mathcal{H}_{\mu,k}$  the closure of  $\beta_{\mu}$  in  $A_{\mu,k}$ . Thus  $\mathcal{H}_{\mu,k}$  is also a Fréchet space. The space  $\mathcal{H}_{\mu,k}$  does not coincide with  $A_{\mu,k}$ . In fact, let  $\phi_k(x) = x^{\mu+1/2}(1+x^2)^{-k}$ ,  $x \in I$ . By [KZ, (9)] one has for every  $m \in \mathbb{N}$ ,

$$S_{\mu}^{m}\phi(x)=x^{\mu+1/2}\sum_{j=0}^{m}b_{j,m}x^{2j}igg(rac{1}{x}Digg)^{m+j}[x^{-\mu-1/2}\phi(x)],$$

where  $b_{j,m}$ ,  $j=0,\ldots,m$ , are suitable real numbers. Thus,

$$x^{-\mu-1/2}S_{\mu}^{m}\phi_{k}(x)$$

$$=\sum_{j=0}^{m}b_{j,m}2^{m+j}(-k)(-k-1)\dots(-k-m-j+1)(1+x^2)^{-k-m-j}, \quad x\in I.$$

Hence  $\gamma_{\mu,k}^m(\phi_k) < \infty$ ,  $m \in \mathbb{N}$ , and  $\phi_k \in A_{\mu,k}$ . On the other hand, if  $\phi_k$  is in  $\mathcal{H}_{\mu,k}$ , then there exists a sequence  $(\phi_{k,n})_{n\in\mathbb{N}} \subset \beta_{\mu}$  with  $\phi_{k,n} \to \phi_k$  in  $A_{\mu,k}$  as  $n \to \infty$ . In particular,

$$\sup_{0 < x < \infty} |(1 + x^2)^k x^{-\mu - 1/2} (\phi_k(x) - \phi_{k,n}(x))| \to 0 \quad \text{as } n \to \infty.$$

Hence, there exists  $n_0 \in \mathbb{N}$  such that

$$\sup_{0 \le x \le \infty} |(1+x^2)^k x^{-\mu-1/2} (\phi_k(x) - \phi_{k,n_0}(x))| < 1/2.$$

Then

$$1 = |(1+x^2)^k x^{-\mu-1/2} \phi_k(x)|$$

$$\leq |(1+x^2)^k x^{-\mu-1/2} (\phi_k(x) - \phi_{k,n_0}(x))|$$

$$+ |(1+x^2)^k x^{-\mu-1/2} \phi_{k,n_0}(x)| < 1/2$$

for  $x \geq C$ , with some C > 0, because  $\phi_{k,n_0} \in \beta_{\mu}$ , which is a contradiction. Therefore  $\phi_k \notin \mathcal{H}_{\mu,k}$ .

In the following lemma we give a sufficient condition in order that an element in  $A_{\mu,k}$  belongs to  $\mathcal{H}_{\mu,k}$ , which will be useful in the sequel.

LEMMA 2.1. Let  $\phi \in A_{\mu,k}$ . If for each  $m \in \mathbb{N}$ ,

$$\sup_{0 < x < \infty} \left| x^m \left( \frac{1}{x} D \right)^m (x^{-\mu - 1/2} \phi(x)) \right| < \infty$$

then  $\phi \in \mathcal{H}_{\mu,k}$ .

Proof. Let  $\lambda$  be a smooth function on I such that

$$\lambda(x) = \begin{cases} 1, & x \in (-\infty, 1), \\ 0, & x \in (2, \infty). \end{cases}$$

Define, for every  $n \in \mathbb{N} - \{0\}$ ,  $\lambda_n(x) = \lambda(x - n + 1)$ ,  $x \in I$ , and  $\phi_n(x) = \lambda_n(x)\phi(x)$ ,  $x \in I$ . By hypothesis  $\phi_n \in \beta_\mu$ ,  $n \in \mathbb{N}$ . Moreover, by invoking again [KZ, (9)] we have for every  $m \in \mathbb{N}$ ,  $n \in \mathbb{N} - \{0\}$  and  $x \in I$ ,

$$\begin{split} x^{-\mu-1/2} S^m_{\mu} [\phi_n(x) - \phi(x)] \\ &= \sum_{j=0}^m b_{j,m} x^{2j} \bigg(\frac{1}{x}D\bigg)^{m+j} [x^{-\mu-1/2} (\phi_n(x) - \phi(x))] \\ &= \sum_{j=0}^m b_{j,m} \sum_{i=0}^{m+j} \binom{m+j}{i} x^i \\ &\qquad \times \bigg(\frac{1}{x}D\bigg)^i [x^{-\mu-1/2} \phi(x)] x^{2j-i} \bigg(\frac{1}{x}D\bigg)^{m+j-i} (\lambda_n(x) - 1), \end{split}$$

where  $b_{j,m}$ , j = 0, ..., m, are suitable real numbers.

Also, for each  $l \in \mathbb{N}$  and  $n \in \mathbb{N} - \{0\}$ ,

$$\left(\frac{1}{x}D\right)^l(\lambda_n(x)-1) = \sum_{s=0}^l c_s x^{-2l+s} D^s(\lambda_n(x)-1), \quad x \in I,$$

where  $c_s$ , s = 0, ..., l, are certain real numbers.

Hence there exists C > 0 such that for each  $n \in \mathbb{N} - \{0\}$  and  $x \in I$ ,

$$|(1+x^2)^k x^{-\mu-1/2} S_{\mu}^m [\phi_n(x) - \phi(x)]|$$

$$\leq C \sum_{j=0}^{m} \sum_{i=0}^{m+j} \sum_{s=0}^{m+j-i} (1+x^2)^k x^{2m+i+s} |D^s(\lambda_n(x)-1)|.$$

Let  $\varepsilon > 0$ . There exists M > 0 such that

$$|(1+x^2)^k x^{-\mu-1/2} S_{\mu}^m [\phi_n(x) - \phi(x)]| < \varepsilon, \quad x \ge M, \ n \in \mathbb{N} - \{0\}.$$

Also, as  $\lambda_n(x) = 1$  for  $x \in (0, n)$  and  $n \in \mathbb{N} - \{0\}$ , there exists  $n_0 \in \mathbb{N} - \{0\}$  such that

$$|(1+x^2)^k x^{-\mu-1/2} S_{\mu}^m [\phi_n(x) - \phi(x)]| < \varepsilon, \quad x \in (0, M), \ n \in \mathbb{N}, \ n \ge n_0.$$

Therefore, for every  $n \in \mathbb{N}$ ,  $n \geq n_0$ ,

$$\sup_{0 < x < \infty} |(1 + x^2)^k x^{-\mu - 1/2} S_{\mu}^m [\phi_n(x) - \phi(x)]| < \varepsilon.$$

Thus we conclude that  $\phi_n \to \phi$  in  $A_{\mu,k}$  as  $n \to \infty$ . Hence,  $\phi \in \mathcal{H}_{\mu,k}$ .

An immediate consequence of Lemma 2.1 is that the space  $\mathcal{H}_{\mu}$  is contained in  $\mathcal{H}_{\mu,k}$ .

A first application of Lemma 2.1 is the following.

PROPOSITION 2.1. Let  $y \in I$  and  $k \in \mathbb{Z}$ , k < 0. The function  $\phi_y(x) = \sqrt{xy} J_{\mu}(xy)$ ,  $x \in I$ , is in  $\mathcal{H}_{\mu,k}$ .

Proof. Let  $m \in \mathbb{N}$ . By [Z3, Lemma 5.4-1(5)] we have

$$S_{\mu,x}^m(\sqrt{xy}\,J_\mu(xy)) = (-y^2)^m\sqrt{xy}\,J_\mu(xy), \quad x \in I.$$

Hence, since  $z^{-\mu}J_{\mu}(z)$  is a bounded function on I, there exists C>0 such that

$$\sup_{0 < x < \infty} |(1 + x^2)^k x^{-\mu - 1/2} S_{\mu, x}^m \phi_y(x)| \le C y^{2m + \mu + 1/2}.$$

Then  $\phi_y \in A_{\mu,k}$ .

Moreover, according to [Z3, Ch. 5, (6)], for every  $m \in \mathbb{N}$ ,

$$x^{m} \left(\frac{1}{x}D\right)^{m} (x^{-\mu-1/2}\phi_{y}(x)) = (-1)^{m} y^{\mu+1/2+m} (xy)^{-\mu} J_{\mu+m}(xy), \quad x \in I.$$

Hence, for every  $m \in \mathbb{N}$ ,

$$\sup_{0 < x < \infty} \left| x^m \left( \frac{1}{x} D \right)^m (x^{-\mu - 1/2} \phi_y(x)) \right| < \infty,$$

because  $z^{-\mu}J_{\mu+m}(z)$  is a bounded function on  $(0,\infty)$ , and from Lemma 2.1 we deduce that  $\phi_y \in \mathcal{H}_{\mu,k}$ .

The Bessel operator  $S_{\mu}$  defines a continuous linear mapping from  $\mathcal{H}_{\mu,k}$  into itself.

PROPOSITION 2.2. Let  $k \in \mathbb{Z}$ , k < 0, and let P be a polynomial. Then the mapping  $\phi \mapsto P(S_{\mu})\phi$  is linear and continuous from  $\mathcal{H}_{\mu,k}$  into itself.

Proof. It is sufficient to show that  $S_{\mu}$  defines a continuous mapping from  $\mathcal{H}_{\mu,k}$  into itself. Let  $\phi \in \mathcal{H}_{\mu,k}$ . There exists a sequence  $(\phi_n)_{n \in \mathbb{N}}$  in  $\beta_{\mu}$  such that  $\phi_n \to \phi$  in  $\mathcal{H}_{\mu,k}$  as  $n \to \infty$ . Then it is clear that  $(S_{\mu}\phi_n)_{n \in \mathbb{N}} \subset \beta_{\mu}$ . Moreover, since for every  $m \in \mathbb{N}$  and  $\phi \in A_{\mu,k}$ ,

$$\gamma_{\mu,k}^m(S_\mu\phi) = \gamma_{\mu,k}^{m+1}(\phi),$$

it follows that  $S_{\mu}\phi_n \to S_{\mu}\phi$  in  $\mathcal{H}_{\mu,k}$  as  $n \to \infty$ , and the mapping  $\phi \mapsto S_{\mu}\phi$  is continuous.

As usual, we denote by  $\mathcal{H}'_{\mu,k}$  the dual space of  $\mathcal{H}_{\mu,k}$ . The space  $\mathcal{O}'_{\mu,\sharp}$  considered in [BM3] is contained in  $\mathcal{H}'_{\mu,k}$  because  $\mathcal{H}_{\mu,k} \subset \mathcal{O}_{\mu,\sharp} = \bigcup_{k \in \mathbb{Z}, k < 0} \mathcal{H}_{\mu,k}$ . Moreover, from [KZ, (9)] it immediately follows that if  $\phi_n \to 0$  in  $\mathcal{H}_{\mu}$  as  $n \to \infty$ , then  $\phi_n \to 0$  in  $\mathcal{H}_{\mu,k}$  as  $n \to \infty$ . Hence,  $\mathcal{H}'_{\mu,k}$  is contained in  $\mathcal{H}'_{\mu}$ .

We now introduce a new function space that will be denoted by  $\mathcal{X}_{\mu,k}$ ; it consists of all those locally integrable functions on  $(0,\infty)$  such that

$$\int_{0}^{\infty} (1+x^{2})^{-k} x^{\mu+1/2} |f(x)| \, dx < \infty.$$

It is easy to see that  $\mathcal{X}_{\mu,k} \subset \mathcal{H}'_{\mu,k}$ . In the next section we will refer again to  $\mathcal{X}_{\mu,k}$ .

An immediate consequence of Proposition 2.2 is the following.

PROPOSITION 2.3. Let  $k \in \mathbb{Z}$ , k < 0, and let P be a polynomial. Then the mapping  $f \mapsto P(S_{\mu})f$  is linear and continuous from  $\mathcal{H}'_{\mu,k}$  into itself when in  $\mathcal{H}'_{\mu,k}$  we consider either the weak\* or the strong topology.

For every  $f \in \mathcal{H}'_{\mu,k}$  we define the generalized Hankel transform  $h'_{\mu}f$  by

$$(h'_{\mu}f)(y) = \langle f(x), \sqrt{xy} J_{\mu}(xy) \rangle, \quad x \in I.$$

Note that by Proposition 2.1 the definition is allowable.

We now establish some properties of the generalized Hankel transformation.

PROPOSITION 2.4. Let  $k \in \mathbb{Z}$ , k < 0, and let P be a polynomial. Then for every  $f \in \mathcal{H}'_{u,k}$  we have

$$h'_{\mu}(P(S_{\mu})f)(y) = P(-y^2)h'_{\mu}(f)(y), \quad y \in I.$$

Proof. It is sufficient to take into account that  $S_{\mu}\sqrt{z}J_{\mu}(z)=-\sqrt{z}J_{\mu}(z)$  (cf. [Z3, Ch. 5, (6), (7)].

PROPOSITION 2.5. Let  $k \in \mathbb{Z}$ , k < 0, and  $f \in \mathcal{H}'_{\mu,k}$ . There exist C > 0 and  $r \in \mathbb{N}$  such that

$$|(h'_{\mu}f)(y)| \le C \begin{cases} y^{\mu+1/2}, & y \in (0,1), \\ y^{\mu+1/2+2r}, & y \in (1,\infty). \end{cases}$$

Proof. This result follows immediately from [Z3, Theorem 1.8-1] by taking into account [Z3, Ch. 5, (6), (7)]. ■

PROPOSITION 2.6. Let  $k \in \mathbb{Z}$ , k < 0, and  $f \in \mathcal{H}'_{\mu,k}$ . Then  $h'_{\mu}f$  is -2k-1 times differentiable.

Proof. Firstly we prove that  $h'_{\mu}f$  is continuous in I. For every  $y\in I$  and 0<|h|< y we have

$$(h'_{\mu}f)(y+h) - (h'_{\mu}f)(y)$$

$$= \langle f(x), \sqrt{x(y+h)} J_{\mu}(x(y+h)) \rangle - \langle f(x), \sqrt{xy} J_{\mu}(xy) \rangle.$$

Hence, the continuity of f in  $y \in I$  will be established when we show that

(2.1) 
$$\sqrt{x(y+h)} J_{\mu}(x(y+h)) \rightarrow \sqrt{xy} J_{\mu}(xy)$$
 in  $\mathcal{H}_{\mu,k}$  as  $h \rightarrow 0$ .

To prove (2.1), let  $y \in I$  and  $m \in \mathbb{N}$ . We can write

$$\begin{split} &x^{-\mu-1/2}S^m_{\mu,x}[\sqrt{x(y+h)}\,J_\mu(x(y+h))-\sqrt{xy}\,J_\mu(xy)]\\ &=(-1)^k[(y+h)^{2m+\mu+1/2}(x(y+h))^{-\mu}J_\mu(x(y+h))-y^{2m+\mu+1/2}(xy)^{-\mu}J_\mu(xy)]\\ &\text{for }x\in I\text{ and }0<|h|< y. \end{split}$$

Assume that  $\varepsilon > 0$ . Since  $z^{-\mu}J_{\mu}(z)$  is bounded on I there exists M > 0 such that for  $x \ge M$  and 0 < |h| < y,

$$(2.2) \qquad (1+x^2)^k |x^{-\mu-1/2} S_{\mu,x}^m[\sqrt{x(y+h)} J_\mu(x(y+h)) - \sqrt{xy} J_\mu(xy)]| < \varepsilon.$$

Moreover, by taking into account the mean value we can find  $h_0 > 0$  such that for every 0 < x < M and  $0 < |h| < h_0$ ,

$$(2.3) \ \ (1+x^2)^k |x^{-\mu-1/2} S_{\mu,x}^m [\sqrt{x(y+h)} \, J_\mu(x(y+h)) - \sqrt{xy} \, J_\mu(xy)]| < \varepsilon.$$

By combining (2.2) and (2.3) we conclude that

$$\sup_{0 < x < \infty} |(1+x^2)^k x^{-\mu-1/2} S_{\mu,x}^m [\sqrt{x(y+h)} J_{\mu}(x(y+h)) - \sqrt{xy} J_{\mu}(xy)]| < \varepsilon$$

provided that  $0 < |h| < h_0$ . Thus (2.1) is established.

We now prove that  $h'_{\mu}f$  is differentiable provided that  $k \in \mathbb{Z}$ ,  $k \leq -1$ . Let  $0 < y < \infty$ . For each 0 < |h| < y, one has

$$\frac{(h'_{\mu}f)(y+h) - (h'_{\mu}f)(y)}{h} = \left\langle f(x), \frac{\sqrt{x(y+h)} J_{\mu}(x(y+h)) - \sqrt{x\overline{y}} J_{\mu}(xy)}{h} \right\rangle.$$

It will be established that

$$I_h(x) = \frac{\sqrt{x(y+h)}J_{\mu}(x(y+h)) - \sqrt{xy}J_{\mu}(xy)}{h} - \frac{\partial}{\partial y}[\sqrt{xy}J_{\mu}(xy)] \to 0$$

in  $A_{\mu,k}$  as  $h \to 0^+$ .

For every 0 < |h| < y and  $0 < x < \infty$  we can write

$$I_h(x) = rac{1}{h} \int\limits_{y}^{y+h} \int\limits_{y}^{u} rac{\partial^2}{\partial arrho^2} \left[ \sqrt{x arrho} \, J_\mu(x arrho) 
ight] darrho \, du.$$

Let  $m \in \mathbb{N}$ . For every  $x \in I$  and 0 < |h| < y from [Z3, Ch. 5, (6), (7)] we infer that

$$x^{-\mu-1/2} S^m_{\mu,x} I_h(x) = (-1)^m \frac{1}{h} \int_y^{y+h} \int_y^u \frac{\partial^2}{\partial \varrho^2} [\varrho^{2m+\mu+1/2} (x\varrho)^{-\mu} J_\mu(x\varrho)] d\varrho du.$$

Since  $z^{1/2}J_{\mu}(z)$  is bounded on I there exists C>0 such that

$$\left| \frac{\partial^2}{\partial \varrho^2} [\varrho^{2m+\mu+1/2} (x\varrho)^{-\mu} J_{\mu}(x\varrho)] \right| \le C(\varrho^{2m-2} + x\varrho^{2m-1} + x^2 \varrho^{2m}), \quad x, \varrho \in I.$$

Hence, for  $x \in I$  and 0 < |h| < y,

$$|(1+x^2)^k x^{-\mu-1/2} S_{\mu,x}^m I_h(x)| \leq C (1+x^2)^{k+1} \frac{1}{h} \int\limits_{y}^{y+h} \int\limits_{y}^{u} \varrho^{2m-2} (1+\varrho+\varrho^2) \, d\varrho \, du.$$

Then

$$\sup_{0 < x < \infty} |(1 + x^2)^k x^{-\mu - 1/2} S_{\mu, x}^m I_h(x)| \to 0 \quad \text{ as } h \to 0,$$

provided that  $k \leq -1$ .

Therefore,  $h'_{\mu}f$  is differentiable when  $k \in \mathbb{Z}$ ,  $k \leq -1$ .

The proof of the general case follows by using similar arguments. •

PROPOSITION 2.7. Let  $k \in \mathbb{Z}$ , k < 0, and  $f \in \mathcal{H}'_{u,k}$ . Then

$$\langle h'_{\mu}f, \phi \rangle = \langle f, h_{\mu}\phi \rangle, \quad \phi \in \mathcal{H}_{\mu}.$$

Proof. Proceed as in the proof of [KZ, Theorem 3], replacing the function  $e^{-ax}$  (a>0) by  $(1+x^2)^k$ .

Proposition 2.7 yields a uniqueness result for the generalized Hankel transform on  $\mathcal{H}'_{\mu,k}$ .

PROPOSITION 2.8. Let  $k \in \mathbb{Z}, \ k < 0, \ and \ f,g \in \mathcal{H}'_{\mu,k}.$  If  $h'_{\mu}f = h'_{\mu}g$  then f = g.

Proof. Let  $\phi \in \mathcal{H}_{\mu,k}$ . There exists a sequence  $(\phi_n)_{n \in \mathbb{N}} \subset \beta_{\mu}$  such that  $\phi_n \to \phi$  in  $A_{\mu,k}$  as  $n \to \infty$ . Then, since  $f, g \in \mathcal{H}'_{\mu,k}$ , one has  $\langle f, \phi_n \rangle \to \langle f, \phi \rangle$  and  $\langle g, \phi_n \rangle \to \langle g, \phi \rangle$  as  $n \to \infty$ . Moreover, by [Z3, Theorem 5.4-1] and Proposition 2.7,

$$\langle f, \phi_n \rangle = \langle h'_{\mu} f, h_{\mu} \phi_n \rangle = \langle h'_{\mu} g, h_{\mu} \phi_n \rangle = \langle g, \phi_n \rangle, \quad n \in \mathbb{N},$$

and the proof is complete.

Note that from Propositions 2.7 and 2.8 it follows that each generalized function f in  $\mathcal{H}'_{\mu,k}$  is uniquely determined by its Hankel transform  $h'_{\mu}f$ .

3. The Hankel convolution on  $\mathcal{H}'_{\mu,k}$ . We now define the Hankel convolution on the spaces  $\mathcal{H}'_{\mu,k}$ . First we analyze the Hankel translation  $\tau_x$ ,  $x \in I$ , on  $\mathcal{H}'_{\mu,k}$ .

Our first result, which will be very useful in the sequel, establishes that the operators  $S_{\mu}$  and  $\tau_x$ ,  $x \in I$ , commute.

LEMMA 3.1. Let  $m \in \mathbb{N}$  and  $k \in \mathbb{Z}$ , k < 0. Then for every  $\phi \in \mathcal{H}_{u,k}$ ,

$$S_{\mu,x}^m(\tau_x\phi)(y) = \tau_x(S_{\mu}^m\phi)(y), \quad x,y \in I.$$

Proof. Let  $\phi \in \mathcal{H}_{\mu,k}$ . We have

(3.1) 
$$(\tau_x \phi)(y) = \int_{|x-y|}^{x+y} \phi(z) D_{\mu}(x, y, z) dz, \quad x, y \in I.$$

Let r > 0. Consider a smooth function  $\lambda$  on  $(0, \infty)$  such that  $\lambda(x) = 1$  for  $x \in (0, 2r)$  and  $\lambda(x) = 0$  for  $x \in (2r+1, \infty)$ . Now we prove that  $\lambda \phi \in \beta_{\mu}$ . In fact, consider the vector space

$$M_{\mu} = \Big\{ \phi \in \mathcal{C}^{\infty}(0,\infty) :$$

$$\gamma_m(\phi) = \sup_{0 < x < \infty} \left| \left( \frac{1}{x} D \right)^m [x^{-\mu - 1/2} \phi(x)] \right| < \infty, \ m \in \mathbb{N} \right\}.$$

66

67

icr

Following usual techniques it is proved that  $M_{\mu}$  endowed with the topology generated by the family  $\{\gamma_m\}_{m\in\mathbb{N}}$  of seminorms is a Fréchet space. Moreover, if  $(\phi_n)_{n\in\mathbb{N}}\subset\beta_{\mu}\subset M_{\mu}$  is such that  $\phi_n$  converges to  $\phi$  in  $A_{\mu,k}$  as  $n\to\infty$ , according to [S, Ch. IV, Proposition 2] and by using the Leibniz formula we can find C>0 such that

$$\gamma_m(\lambda(\phi_p - \phi_q)) = \sup_{0 < x < \infty} \left| \left( \frac{1}{x} D \right)^m [x^{-\mu - 1/2} \lambda(x) (\phi_p(x) - \phi_q(x))] \right|$$

$$\leq C \max_{0 \le n \le m} \sup_{0 < x < \infty} |x^{-\mu - 1/2} S_{\mu, x}^n(\phi_p - \phi_q)(x)|, \quad p, q \in \mathbb{N}.$$

Hence  $(\lambda \phi_n)_{n \in \mathbb{N}}$  is a Cauchy sequence in  $M_{\mu}$ . Then there exists  $\psi \in M_{\mu}$  such that  $\lambda \phi_n \to \psi$  in  $M_{\mu}$  as  $n \to \infty$ . Thus, since  $\lambda(x)\phi_n(x) \to \psi(x)$  and  $(1+x^2)^k x^{-\mu-1/2}\phi_n(x) \to (1+x^2)^k x^{-\mu-1/2}\phi(x)$  for  $x \in I$  as  $n \to \infty$ , it follows that  $\lambda \phi = \psi$  and we conclude that  $\lambda \phi \in \beta_{\mu}$ .

On the other hand, as  $\phi(y) = (\phi \lambda)(y)$  for 0 < y < 2r, from (3.1) we deduce that  $(\tau_x \phi)(y) = (\tau_x \phi \lambda)(y)$  for  $x, y \in (0, r)$ . Hence, by invoking [MB3, (1.3)] we conclude that for every  $m \in \mathbb{N}$ ,

$$\begin{split} S^m_{\mu,x}(\tau_x \phi)(y) &= S^m_{\mu,x}(\tau_x \phi \lambda)(y) \\ &= \tau_x (S^m_\mu(\phi \lambda))(y) = \tau_x (S^m_\mu \phi)(y), \quad 0 < x, y < r. \end{split}$$

Thus, since r > 0 is arbitrary, the result is established.

LEMMA 3.2. Let  $k \in \mathbb{Z}$ , k < 0. For every  $x \in I$  the mapping  $\phi \mapsto \tau_x \phi$  is linear and continuous from  $\mathcal{H}_{u,k}$  into itself.

Proof. Let  $x \in I$ . By [BM2, Corollary 3.3],  $\tau_x \phi \in \beta_\mu$  for every  $\phi \in \beta_\mu$ . Let  $\phi$  be in  $\mathcal{H}_{\mu,k}$ . There exists a sequence  $(\phi_n)_{n \in \mathbb{N}} \subset \beta_\mu$  such that  $\phi_n \to \phi$  in  $A_{\mu,k}$  as  $n \to \infty$ . According to Lemma 3.1 and [GN1, Lemma 2.1], for every  $m, n \in \mathbb{N}$ , we can write for  $x, y \in I$ ,

$$\begin{split} &|(1+y^2)^k y^{-\mu-1/2} S_{\mu,y}^m [(\tau_x \phi_n)(y) - (\tau_x \phi)(y)]| \\ &= |(1+y^2)^k y^{-\mu-1/2} \tau_x [S_{\mu,y}^m (\phi_n - \phi)](y)| \\ &\leq (1+y^2)^k y^{-\mu-1/2} \int\limits_0^{x+y} |S_{\mu,z}^m (\phi_n - \phi)(z)| D_\mu(x,y,z) \, dz \\ &\leq (1+y^2)^k (1+(x+y)^2)^{-k} y^{-\mu-1/2} \\ &\qquad \times \int\limits_0^{x+y} (1+z^2)^k z^{-\mu-1/2} |S_{\mu,z}^m (\phi_n - \phi)(z)| z^{\mu+1/2} D_\mu(x,y,z) \, dz \\ &\leq 4^{-k} (1+x^2)^k y^{-\mu-1/2} \\ &\qquad \times \sup\limits_{0 < z < \infty} (1+z^2)^k z^{-\mu-1/2} |S_{\mu,z}^m (\phi_n - \phi)(z)| \int\limits_0^{x+y} z^{\mu+1/2} D_\mu(x,y,z) \, dz. \end{split}$$

Then from (1.1) it follows that

(3.2) 
$$\sup_{0 < y < \infty} |(1 + y^{2})^{k} y^{-\mu - 1/2} S_{\mu, y}^{m} [(\tau_{x} \phi_{n})(y) - (\tau_{x} \phi)(y)]|$$

$$\leq \frac{1}{2^{\mu} \Gamma(\mu + 1)} 4^{-k} (1 + x^{2})^{k} x^{\mu + 1/2}$$

$$\times \sup_{0 < z < \infty} (1 + z^{2})^{k} z^{-\mu - 1/2} |S_{\mu, z}^{m} (\phi_{n} - \phi)(z)|, \quad m, n \in \mathbb{N}.$$

Hence  $\tau_x \phi_n \to \tau_x \phi$  in  $A_{\mu,k}$  as  $n \to \infty$  and  $\tau_x \phi \in \mathcal{H}_{\mu,k}$ .

Also an inequality analogous to (3.2) proves that the Hankel translation  $\tau_x$  defines a continuous mapping from  $\mathcal{H}_{\mu,k}$ .

The last lemma allows us to define the Hankel convolution of a distribution in  $\mathcal{H}'_{\mu,k}$  and a function in  $\mathcal{H}_{\mu,k}$ . If  $f \in \mathcal{H}'_{\mu,k}$  and  $\phi \in \mathcal{H}_{\mu,k}$  then the Hankel convolution  $f \sharp \phi$  is defined by

$$(3.3) (f \sharp \phi)(x) = \langle f, \tau_x \phi \rangle, \quad x \in I.$$

Note that if  $f \in \mathcal{X}_{\mu,k}$  then for every  $\phi \in \mathcal{H}_{\mu,k}$ ,

$$(f \sharp \phi)(x) = \int\limits_0^\infty f(y)( au_x \phi)(y)\,dy, \quad \ 0 < x < \infty.$$

In this sense the classical  $\sharp$ -convolution can be seen as a special case of the distributional  $\sharp$ -convolution (3.3).

Before defining the  $\sharp$ -convolution of two elements of  $\mathcal{H}'_{\mu,k}$  we will prove that the distributions in  $\mathcal{H}'_{\mu,k}$  define convolution operators in  $\mathcal{H}_{\mu,k}$ .

LEMMA 3.3. Let  $k \in \mathbb{Z}$ , k < 0, and  $f \in \mathcal{H}'_{\mu,k}$ . Then the mapping  $\phi \mapsto f \sharp \phi$  is linear and continuous from  $\mathcal{H}_{\mu,k}$  into itself.

Proof. We divide the proof in several steps.

CLAIM (a). For every  $\phi \in \beta_{\mu}$  and  $m \in \mathbb{N}$ ,

$$(3.4) S_{\mu,x}^m \langle f(y), (\tau_x \phi)(y) \rangle = \langle f(y), \tau_x (S_{\mu,x}^m \phi)(y) \rangle, x \in I.$$

Let  $\phi \in \beta_{\mu}$ . According to [BM3, (1.3)] one has

$$(\tau_x \phi)(y) = h_\mu [t^{-\mu - 1/2} (xt)^{1/2} J_\mu(xt) h_\mu(\phi)(t)](y), \quad x, y \in I.$$

We are going to establish that

$$(3.5) S_{\mu,x}\langle f(y), (\tau_x \phi)(y) \rangle = \langle f(y), S_{\mu,x}(\tau_x \phi)(y) \rangle, x \in I.$$

Firstly it must be seen that for every  $x \in I$ ,

$$(3.6) \quad \left\langle f(y), \frac{h_{\mu}[((x+h)t)^{-\mu}J_{\mu}((x+h)t)h_{\mu}(\phi)(t)](y)}{h} - \frac{h_{\mu}[(xt)^{-\mu}J_{\mu}(xt)h_{\mu}(\phi)(t)](y)}{h} \right\rangle$$

$$\rightarrow \left\langle f(y), D_{x}h_{\mu}[(xt)^{-\mu}J_{\mu}(xt)h_{\mu}(\phi)(t)](y) \right\rangle \quad \text{as } h \to 0.$$

Let  $x \in I$  and 0 < |h| < x. We have

$$I_h(y)$$

$$=\frac{h_{\mu}[((x+h)t)^{-\mu}J_{\mu}((x+h)t)h_{\mu}(\phi)(t)](y)-h_{\mu}[(xt)^{-\mu}J_{\mu}(xt)h_{\mu}(\phi)(t)](y)}{h}$$
$$-D_{x}h_{\mu}[(xt)^{-\mu}J_{\mu}(xt)h_{\mu}(\phi)(t)](y)$$

$$=rac{1}{h}\int\limits_x^{x+h}\int\limits_x^urac{\partial^2}{\partial\eta^2}h_\mu[(\eta t)^{-\mu}J_\mu(\eta t)h_\mu(\phi)(t)](y)\,d\eta\,du, \quad y\in I.$$

Then for  $m \in \mathbb{N}$  and  $y \in I$  one has

$$S_{\mu,y}^{m} I_{h}(y) = \frac{1}{h} \int_{x}^{x+h} \int_{x}^{u} \frac{\partial^{2}}{\partial \eta^{2}} h_{\mu} [(\eta t)^{-\mu} J_{\mu}(\eta t) h_{\mu} (S_{\mu}^{m} \phi)(t)](y) d\eta.$$

By taking into account that  $z^{-\mu}J_{\mu}(z)$  is a bounded function on I and that  $\frac{d}{dz}(z^{-\mu}J_{\mu}(z))=z^{-\mu}J_{\mu+1}(z), z\in I$ , we can conclude that

(3.7) 
$$(1+y^2)^k y^{-\mu-1/2} S_{\mu,y}^m I_h(y) \to 0$$

as  $h \to 0$  uniformly in  $y \in (0, \infty)$ .

Since  $f \in \mathcal{H}'_{\mu,k}$ , (3.6) follows from (3.7).

By proceeding in a similar way we can prove that

$$\begin{split} \frac{d}{dx} \left\langle f(y), x^{2\mu+1} \frac{d}{dx} x^{-\mu-1/2} (\tau_x \phi)(y) \right\rangle \\ &= \left\langle f(y), \frac{d}{dx} x^{2\mu+1} \frac{d}{dx} x^{-\mu-1/2} (\tau_x \phi)(y) \right\rangle, \quad x \in I. \end{split}$$

Thus (3.5) is established.

From Lemma 3.1 and (3.5), (3.4) is immediately deduced.

CLAIM (b). The mapping  $\phi \mapsto f \sharp \phi$  is continuous from  $\beta_{\mu}$  into  $A_{\mu,k}$  when we consider on  $\beta_{\mu}$  the topology induced by  $A_{\mu,k}$ .

Since  $f \in \mathcal{H}'_{\mu,k}$ , according to [Z3, Theorem 1.8-1] there exist C > 0 and  $r \in \mathbb{N}$  such that

$$(3.8) \quad |\langle f, \phi \rangle| \le C \max_{0 \le m \le r} \sup_{0 \le u \le \infty} |(1 + y^2)^k y^{-\mu - 1/2} S_{\mu, y}^m \phi(y)|, \quad \phi \in \mathcal{H}_{\mu, k}.$$

Let  $\phi \in \beta_{\mu}$  and  $m \in \mathbb{N}$ . By combining (3.4) and (3.8) it follows that

 $|S_{\mu,x}^{m}\langle f, \tau_x \phi \rangle| \le C \max_{0 \le m \le r} \sup_{0 < y < \infty} |(1 + y^2)^k y^{-\mu - 1/2} \tau_x (S_{\mu}^{m+n} \phi)(y)|,$   $0 < x < \infty.$ 

Hence, by proceeding as in the proof of (3.2) we obtain

$$\begin{split} \sup_{0 < x < \infty} |(1 + x^2)^k x^{-\mu - 1/2} S^m_{\mu, x} \langle f, \tau_x \phi \rangle| \\ & \leq 4^{-k} C \max_{0 \le n \le r} \sup_{0 \le n \le \infty} |(1 + y^2)^k y^{-\mu - 1/2} S^{m+n}_{\mu, y} \phi(y)| \end{split}$$

and our claim is proved.

CLAIM (c). For every  $\phi \in \beta_{\mu}$  one has  $f \sharp \phi \in \mathcal{H}_{\mu,k}$ 

Let  $\phi \in \beta_{\mu}$ . By (b),  $f \sharp \phi$  is in  $A_{\mu,k}$ . To see that  $f \sharp \phi \in \mathcal{H}_{\mu,k}$  we will use Lemma 2.1. Let  $m \in \mathbb{N}$ . By invoking again [BM3, (1.2)] we see that

$$\left(\frac{1}{x}D\right)^{m}\left[x^{-\mu-1/2}(f \sharp \phi)(x)\right]$$

$$= \left\langle f(y), \left(\frac{1}{x}D\right)^{m} h_{\mu}\left[(xt)^{-\mu}J_{\mu}(xt)h_{\mu}(\phi)(t)\right](y)\right\rangle$$

$$= \left\langle f(y), h_{\mu}\left[(-t^{2})^{m}(xt)^{-\mu-m}J_{\mu+m}(xt)h_{\mu}(\phi)(t)\right](y)\right\rangle, \quad x \in I.$$

Then by [Z3, Lemma 5.4-1] for some C > 0 and  $r \in \mathbb{N}$  one has, for  $x \in I$ ,

$$\begin{split} \left| x^m \left( \frac{1}{x} D \right)^m [x^{-\mu - 1/2} (f \,\sharp \, \phi)(x)] \right| \\ & \leq C \max_{0 \leq n \leq r} \sup_{0 < y < \infty} |(1 + y^2)^k y^{-\mu - 1/2} \\ & \times S^n_{\mu, y} h_{\mu} [(xt)^{-\mu - m} J_{\mu + m}(xt) h_{\mu} (S^m_{\mu} \phi)(t)](y)| \\ & = C \max_{0 \leq n \leq r} \sup_{0 < y < \infty} |(1 + y^2)^k y^{-\mu - 1/2} \\ & \times h_{\mu} [(xt)^{-\mu - m} J_{\mu + m}(xt) h_{\mu} (S^{n + m}_{\mu} \phi)(t)](y)| \\ & \leq C \max_{0 \leq n \leq r} \sup_{0 < y < \infty} (1 + y^2)^k \int_0^{\infty} |(ty)^{-\mu} J_{\mu}(ty)| \\ & \times |(xt)^{-\mu - m} J_{\mu + m}(xt)| t^{\mu + 1/2} |h_{\mu} (S^{n + m}_{\mu} \phi)(t)| dt \leq C, \end{split}$$

because  $z^{-\mu}J_{\mu}(z)$  is bounded on I.

We now finish the proof by taking into account the above claims.

The space  $\beta_{\mu}$  is dense in  $\mathcal{H}_{\mu,k}$ . Hence, the mapping

$$\beta_{\mu} \to \mathcal{H}_{\mu,k}, \quad \phi \mapsto f \sharp \phi,$$

can be continuously extended to  $\mathcal{H}_{\mu,k}$ . Denote by T the extended mapping. It is well known that if  $\phi \in \mathcal{H}_{\mu,k}$ , then

$$T\phi = \lim_{n \to \infty} f \,\sharp \, \phi_n,$$

where the limit is understood in  $\mathcal{H}_{\mu,k}$  and  $(\phi_n)_{n\in\mathbb{N}}$  is a sequence in  $\beta_{\mu}$  such that  $\phi_n \to \phi$  in  $\mathcal{H}_{\mu,k}$  as  $n \to \infty$ . It is easy to see that convergence in  $\mathcal{H}_{\mu,k}$  implies pointwise convergence on  $(0,\infty)$ . Moreover, by (3.2),

$$\begin{split} |(f \,\sharp \, \phi)(x) - (f \,\sharp \, \phi_n)(x)| \\ & \leq C \max_{0 \leq l \leq r} \sup_{0 < y < \infty} |(1 + y^2)^k y^{-\mu - 1/2} S^l_{\mu, y} [(\tau_x \phi)(y) - (\tau_x \phi_n)(y)]| \\ & \leq C 4^{-k} ((1 + x^2)^k x^{\mu + 1/2} \\ & \times \max_{0 \leq l \leq r} \sup_{0 < y < \infty} |(1 + y^2)^k y^{-\mu - 1/2} S^l_{\mu, y} (\phi - \phi_n)(y)|, \quad x \in I, \end{split}$$

with C > 0 and  $r \in \mathbb{N}$ .

Therefore  $(f \sharp \phi_n)(x) \to (f \sharp \phi)(x)$  as  $n \to \infty$  for every  $x \in (0, \infty)$ . Then we conclude that  $(T\phi)(x) = (f \sharp \phi)(x)$ ,  $x \in I$ , and  $f \sharp \phi \in \mathcal{H}_{\mu,k}$ . Thus the proof is complete.

We can now define  $\sharp$ -convolution in  $\mathcal{H}'_{\mu,k}$  as follows. If  $f,g\in\mathcal{H}'_{\mu,k}$  then we define the Hankel convolution  $f\sharp g$  by

$$\langle f \sharp g, \phi \rangle = \langle f(x), \langle g(y), (\tau_x \phi)(y) \rangle \rangle, \quad \phi \in \mathcal{H}_{\mu, k}.$$

By Lemma 3.3,  $f \sharp g \in \mathcal{H}'_{\mu,k}$ . Hence the Hankel convolution is a closed operation in  $\mathcal{H}'_{\mu,k}$ .

The main algebraic properties of  $\sharp$ -convolution are established in the following

THEOREM 3.1. Let  $k \in \mathbb{Z}$ , k < 0. If  $f, g, h \in \mathcal{H}'_{u,k}$  then:

- (a)  $h'_{\mu}(f \sharp g)(y) = h'_{\mu}(f)(y)h'_{\mu}(g)(y)y^{-\mu-1/2}, y \in I.$
- (b)  $f \sharp g = g \sharp f$ .
- (c)  $f \sharp (g \sharp h) = (f \sharp g) \sharp h$ .
- (d) The functional  $\delta_{\mu}$  defined by

$$\langle \delta_{\mu}, \phi \rangle = 2^{\mu} \Gamma(\mu + 1) \lim_{x \to 0^+} x^{-\mu - 1/2} \phi(x), \quad \phi \in \mathcal{H}_{\mu, k},$$

is in  $\mathcal{H}'_{\mu,k}$  and  $\delta_{\mu} \sharp f = f \sharp \delta_{\mu} = f$ .

(e) 
$$S_{\mu}(f \sharp g) = (S_{\mu}f) \sharp g = f \sharp (S_{\mu}g).$$

Proof. (a) For every  $y \in I$  according to [W, p. 367 and p. 411] we have

 $h'_{\mu}(f \sharp g)(y) = \langle f \sharp g, \phi_{y}(x) \rangle = \langle f(t), \langle g(x), \tau_{t}(\phi_{y})(x) \rangle \rangle$  $= y^{-\mu - 1/2} \langle f(t), \langle g(x), \sqrt{ty} J_{\mu}(ty) \sqrt{xy} J_{\mu}(xy) \rangle \rangle$  $= y^{-\mu - 1/2} h'_{\mu}(f)(y) h'_{\mu}(g)(y).$ 

where  $\phi_y(x) = \sqrt{xy} J_{\mu}(xy), x, y \in I$ .

(b) By using (a) it follows that

$$h'_{\mu}(f \sharp g)(y) = h'_{\mu}(f)(y)h'_{\mu}(g)(y)y^{-\mu-1/2} = h'_{\mu}(g \sharp f)(y), \quad y \in I.$$

Hence according to Proposition 2.8,  $f \sharp g = g \sharp f$ .

- (c) This property is also an immediate consequence of Proposition 2.8 and the above property (a).
- (d) Let  $\phi \in \mathcal{H}_{\mu,k}$ . There exists a sequence  $(\phi_n)_{n \in \mathbb{N}}$  in  $\beta_{\mu}$  such that  $\phi_n \to \phi$  in  $\mathcal{H}_{\mu,k}$  as  $n \to \infty$ . Setting  $l_n = \lim_{x \to 0^+} x^{-\mu-1/2} \phi_n(x)$  for each  $n \in \mathbb{N}$ , we have

$$|l_n - l_s| = \lim_{x \to 0^+} (1 + x^2)^k x^{-\mu - 1/2} |\phi_n(x) - \phi_s(x)|$$

$$\leq \sup_{0 < x < \infty} (1 + x^2)^k x^{-\mu - 1/2} |\phi_n(x) - \phi_s(x)|, \quad n, s \in \mathbb{N}.$$

Hence there exists  $l \in \mathbb{C}$  such that  $l_n \to l$  as  $n \to \infty$ . Moreover, it is not hard to see that the limit  $\lim_{x\to 0^+} x^{-\mu-1/2}\phi(x)$  exists and is equal to l.

Also we can write

$$\begin{aligned} |\langle \delta_{\mu}, \phi \rangle| &= 2^{\mu} \Gamma(\mu + 1) \lim_{x \to 0^{+}} |x^{-\mu - 1/2} \phi(x)| \\ &\leq 2^{\mu} \Gamma(\mu + 1) \sup_{0 < x < \infty} (1 + x^{2})^{k} x^{-\mu - 1/2} |\phi(x)|, \quad \phi \in \mathcal{H}_{\mu, k}. \end{aligned}$$

Hence  $\delta_{\mu} \in \mathcal{H}'_{\mu,k}$ .

On the other hand,

$$\begin{split} h'_{\mu}(\delta_{\mu})(y) &= \langle \delta_{\mu}(x), \sqrt{xy} \, J_{\mu}(xy) \rangle \\ &= 2^{\mu} \Gamma(\mu+1) \lim_{x \to 0^{+}} x^{-\mu-1/2} \sqrt{xy} \, J_{\mu}(xy) = y^{\mu+1/2}, \quad y \in I. \end{split}$$

Therefore by invoking (a) we obtain  $h'_{\mu}(f \sharp \delta_{\mu}) = h'_{\mu}(f)$ . Then Proposition 2.8 shows that  $f \sharp \delta_{\mu} = f$ .

(e) This property follows from Propositions 2.8 and 2.4 by using again (a). ■

The following continuity property of \$\pm\$-convolution is an immediate consequence of Lemma 3.3.

PROPOSITION 3.1. Let  $k \in \mathbb{Z}$ , k < 0. Assume that  $(f_n)_{n \in \mathbb{N}}$  is a sequence in  $\mathcal{H}'_{\mu,k}$  that converges to  $f \in \mathcal{H}'_{\mu,k}$  in the weak\* topology (respectively, in the strong topology) of  $\mathcal{H}'_{\mu,k}$ . Then for every  $g \in \mathcal{H}'_{\mu,k}$ ,

$$f_n \sharp g \to f \sharp g \quad as \ n \to \infty$$

in the weak\* topology (respectively, in the strong topology) of  $\mathcal{H}'_{u,k}$ .



Remark. Studies analogous to the one developed here can be made by replacing the function  $(1+x^2)^k$  in the definition of the space  $\mathcal{H}_{\mu,k}$ ,  $k \in \mathbb{Z}$ , k < 0, by other functions. For example, if we put the function  $e^{-kx}$  instead of  $(1+x^2)^k$  our procedure permits defining the Hankel convolution in the spaces of E. L. Koh and A. H. Zemanian [KZ].

#### References

- [BM1] J. J. Betancor and I. Marrero, Multipliers of Hankel transformable generalized functions, Comment. Math. Univ. Carolin. 33 (1992), 389-401.
- [BM2] —, —, The Hankel convolution and the Zemanian spaces  $\beta_{\mu}$  and  $\beta'_{\mu}$ , Math. Nachr. 160 (1993), 277–298.
- [BM3] --, --, Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japon. 160 (1993), 1141-1155.
- [BM4] —, —, Some properties of Hankel convolution operators, Canad. Math. Bull. 36 (1993), 398-406.
- [DP] L. S. Dube and J. N. Pandey, On the Hankel transform of distributions, Tôhoku Math. J. 27 (1975), 337-354.
- [GN1] B. J. González and E. R. Negrin, Convolution over the spaces  $S'_k$ , J. Math. Anal. Appl. 190 (1995), 829-843.
- [GN2] —, —, Fourier transform over the spaces  $S'_k$ , ibid. 194 (1995), 780-798.
  - [H] D. T. Haimo, Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc. 116 (1965), 330-375.
- [Hi] I. I. Hirschman, Jr., Variation diminishing Hankel transforms, J. Anal. Math. 8 (1960/61), 307-336.
- [KL] E. L. Koh and C. K. Li, The complex Hankel transformation on  $M'_{\mu}$ , Congr. Numer. 87 (1992), 145–151.
- [KZ] E. L. Koh and A. H. Zemanian, The complex Hankel and I-transformations of generalized functions, SIAM J. Appl. Math. 16 (1968), 945-957.
- [S] A. M. Sánchez, La transformación integral generalizada de Hankel-Schwartz, Ph.D. Thesis, Dep. Análisis Matemático, Universidad de La Laguna, 1987.
- [W] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, London, 1958.
- [Z1] A. H. Zemanian, The distributional Hankel transformation, SIAM J. Appl. Math. 14 (1966), 561-576.
- [Z2] —, The Hankel transformation of certain distributions of rapid growth, ibid., 678-690.
- [Z3] —, Generalized Integral Transformations, Interscience, New York, 1968.

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO UNIVERSIDAD DE LA LAGUNA

38271 LA LAGUNA, ISLAS CANARIAS

SPAIN

E-mail: JBE'TANCOR@ULL.ES

Received January 27, 1995 Revised version May 9, 1995 (3412)

### On rank one elements

by

## ROBIN HARTE (Dublin)

Abstract. Without the "scarcity lemma", two kinds of "rank one elements" are identified in semisimple Banach algebras.

Suppose A is a complex Banach algebra, with identity 1 (usually not zero), and invertible group  $A^{-1}$ : then the radical of A can be defined ([5], Theorem 7.2.3) as the set

(0.1) 
$$\operatorname{Rad}(A) = \{ a \in A : 1 + Aa \subset A^{-1} \}.$$

It is familiar that this is a closed two-sided ideal; also,

(0.2) 
$$1 + Aa \subseteq A^{-1} \Rightarrow 1 + A^{-1}a \subseteq A^{-1} \Rightarrow A^{-1} + a \subseteq A^{-1} \Rightarrow 1 + (A^{-1} + A^{-1})a \subseteq A^{-1};$$

since of course  $A^{-1} + A^{-1} = A$  this gives an alternative description of Rad(A), and also provides an elementary instance of the "scarcity lemma" ([1], Theorem 7.1.7). We recall the *spectrum* and the *non-zero spectrum*,

(0.3) 
$$\sigma_A(a) = \sigma(a) = \{\lambda \in \mathbb{C} : a - \lambda \not\in A^{-1}\} \text{ and } \sigma'(a) = \sigma(a) \setminus \{0\};$$
 thus

$$(0.4) a \in \operatorname{Rad}(A) \Leftrightarrow \sigma'(xa) = \emptyset \text{for every } x \in A,$$

or equivalently, for every  $x \in A^{-1}$ . We call the algebra A semisimple iff  $Rad(A) = \{0\}$ , or equivalently, if

$$(0.5) #\sigma'(xa) = 0 ext{ for every } x \in A \Rightarrow a = 0,$$

and semiprime iff

$$(0.6) aAa = \{0\} \Rightarrow a = 0;$$

since the left hand side of (0.6) implies that  $a \in \text{Rad}(A)$  it is clear that a semisimple algebra is always semiprime. We observe

<sup>1991</sup> Mathematics Subject Classification: 46H05, 46H10.