

Remark. Studies analogous to the one developed here can be made by replacing the function $(1+x^2)^k$ in the definition of the space $\mathcal{H}_{\mu,k}$, $k \in \mathbb{Z}$, k < 0, by other functions. For example, if we put the function e^{-kx} instead of $(1+x^2)^k$ our procedure permits defining the Hankel convolution in the spaces of E. L. Koh and A. H. Zemanian [KZ].

References

- [BM1] J. J. Betancor and I. Marrero, Multipliers of Hankel transformable generalized functions, Comment. Math. Univ. Carolin. 33 (1992), 389-401.
- [BM2] —, —, The Hankel convolution and the Zemanian spaces β_{μ} and β'_{μ} , Math. Nachr. 160 (1993), 277–298.
- [BM3] --, --, Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japon. 160 (1993), 1141-1155.
- [BM4] --, --, Some properties of Hankel convolution operators, Canad. Math. Bull. 36 (1993), 398-406.
- [DP] L. S. Dube and J. N. Pandey, On the Hankel transform of distributions, Tôhoku Math. J. 27 (1975), 337-354.
- [GN1] B. J. González and E. R. Negrin, Convolution over the spaces S'_k , J. Math. Anal. Appl. 190 (1995), 829-843.
- [GN2] —, —, Fourier transform over the spaces S'_k , ibid. 194 (1995), 780-798.
 - [H] D. T. Haimo, Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc. 116 (1965), 330-375.
- [Hi] I. I. Hirschman, Jr., Variation diminishing Hankel transforms, J. Anal. Math. 8 (1960/61), 307-336.
- [KL] E. L. Koh and C. K. Li, The complex Hankel transformation on M'_{μ} , Congr. Numer. 87 (1992), 145–151.
- [KZ] E. L. Koh and A. H. Zemanian, The complex Hankel and I-transformations of generalized functions, SIAM J. Appl. Math. 16 (1968), 945-957.
- [S] A. M. Sánchez, La transformación integral generalizada de Hankel-Schwartz, Ph.D. Thesis, Dep. Análisis Matemático, Universidad de La Laguna, 1987.
- [W] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, London, 1958.
- [Z1] A. H. Zemanian, The distributional Hankel transformation, SIAM J. Appl. Math. 14 (1966), 561-576.
- [Z2] —, The Hankel transformation of certain distributions of rapid growth, ibid., 678-690.
- [Z3] —, Generalized Integral Transformations, Interscience, New York, 1968.

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO UNIVERSIDAD DE LA LAGUNA

38271 LA LAGUNA, ISLAS CANARIAS

SPAIN

E-mail: JBE'TANCOR@ULL.ES

Received January 27, 1995 Revised version May 9, 1995 (3412)

On rank one elements

by

ROBIN HARTE (Dublin)

Abstract. Without the "scarcity lemma", two kinds of "rank one elements" are identified in semisimple Banach algebras.

Suppose A is a complex Banach algebra, with identity 1 (usually not zero), and invertible group A^{-1} : then the radical of A can be defined ([5], Theorem 7.2.3) as the set

(0.1)
$$\operatorname{Rad}(A) = \{ a \in A : 1 + Aa \subset A^{-1} \}.$$

It is familiar that this is a closed two-sided ideal; also,

(0.2)
$$1 + Aa \subseteq A^{-1} \Rightarrow 1 + A^{-1}a \subseteq A^{-1} \Rightarrow A^{-1} + a \subseteq A^{-1} \Rightarrow 1 + (A^{-1} + A^{-1})a \subseteq A^{-1};$$

since of course $A^{-1} + A^{-1} = A$ this gives an alternative description of Rad(A), and also provides an elementary instance of the "scarcity lemma" ([1], Theorem 7.1.7). We recall the *spectrum* and the *non-zero spectrum*,

(0.3)
$$\sigma_A(a) = \sigma(a) = \{\lambda \in \mathbb{C} : a - \lambda \not\in A^{-1}\}$$
 and $\sigma'(a) = \sigma(a) \setminus \{0\};$ thus

$$(0.4) a \in \operatorname{Rad}(A) \Leftrightarrow \sigma'(xa) = \emptyset \text{for every } x \in A.$$

or equivalently, for every $x \in A^{-1}$. We call the algebra A semisimple iff $Rad(A) = \{0\}$, or equivalently, if

$$(0.5) #\sigma'(xa) = 0 ext{ for every } x \in A \Rightarrow a = 0,$$

and semiprime iff

$$(0.6) aAa = \{0\} \Rightarrow a = 0;$$

since the left hand side of (0.6) implies that $a \in \text{Rad}(A)$ it is clear that a semisimple algebra is always semiprime. We observe

¹⁹⁹¹ Mathematics Subject Classification: 46H05, 46H10.

1. Lemma. If A is semisimple and if

$$(1.1) a \in A^{-1} \Rightarrow \#\sigma'(a) = 1,$$

then $A = \mathbb{C}1$ is one-dimensional.

Proof. Begin by noticing that (1.1) can be rewritten as

$$(1.2) a \in A \Rightarrow \#\sigma(a) = 1,$$

for (1.1) is the same as (1.2) with A replaced by A^{-1} ; but now if $a \in A$ and $|\lambda| > ||a||$ then the spectrum of $a - \lambda \in A^{-1}$ is a singleton. Now if $a \in A$ has spectrum $\{\lambda\}$ and $x \in A^{-1}$ is arbitrary then $x(a - \lambda)$ is not invertible and hence has spectrum $\{0\}$. But this says $a - \lambda \in \operatorname{Rad}(A) = \{0\}$.

By the same argument the Hirschfeld/Johnson criterion [6] for A to be finite-dimensional can be rewritten as

$$(1.3) a \in A^{-1} \Rightarrow \#\sigma(a) < \infty.$$

We are ready for two definitions of "rank one element":

2. Definition. We call the element $a \in A$ spatially of rank one iff

$$(2.1) aAa \subseteq \mathbb{C}a,$$

and spectrally of rank one iff

$$(2.2) x \in A \Rightarrow \#\sigma'(xa) \le 1.$$

It is clear that both kinds of "rank one" elements form two-sided ideals of the multiplicative semigroup A. Evidently, if $a \in A$ is spatially of rank one, there is ([10], Definition 2.2) a linear functional τ_a on A, uniquely determined if $a \neq 0$, for which $axa = \tau_a(x)a$; by the closed graph theorem τ_a is also continuous. When a = 0 we shall take $\tau_a = 0$. By an abuse of language we include 0 among the rank one elements. We recall ([3], Proposition 30.6) that under condition (2.1), $a \in A$ generates a minimal left ideal of semiprime A:

$$(2.3) \{0\} \neq AJ \subseteq J \subseteq Aa \Rightarrow Aa \subseteq J.$$

Indeed, if $0 \neq ba \in J$ then by (0.6) there exists $c \in A$ with $bacba \neq 0$, and by (2.1), $0 \neq \lambda \in \mathbb{C}$ with $\lambda a = acba \in J$. It is clear that

(2.4) a spatially of rank one \Rightarrow a spectrally of rank one;

the converse fails ([9], p. 214) for $0 \neq a \in \text{Rad}(A)$ when A is semiprime and not semisimple. What we want to demonstrate here is that the converse of (2.4) holds when A is semisimple; this is easy to see when A = BL(X, X), for if there are x_1 and x_2 in X for which (Tx_1, Tx_2) is linearly independent then there are linear functionals $g_j \in X^{\dagger}$ for which $g_i(Tx_j) = \delta_{ij}$; but now if $S = \lambda_1 g_1 \odot x_1 + \lambda_2 g_2 \odot x_2$ then λ_1 and λ_2 are eigenvalues of ST. We claim that the converse of (2.4) also holds when $a = a^2$ is idempotent:

3. LEMMA. If A is semisimple and $p = p^2 \in A$ is spectrally of rank one then it is spatially of rank one.

Proof. Note first that if $B = pAp + \mathbb{C}(1-p) \subseteq A$ and $b \in pAp$ then

(3.1)
$$\sigma'_{pAp}(b) = \sigma'_{B}(b) \text{ and } \partial \sigma_{B}(b) \subseteq \sigma_{A}(b) \subseteq \sigma_{B}(b);$$

thus p also satisfies condition (2.2) in the algebra pAp. Also, pAp is semi-simple if A is; indeed,

$$(3.2) Rad(pAp) \subseteq Rad(A),$$

since if px'p is inverse to p-pxpap in pAp then px'p+(1-p)xpapx'p+(1-p) is inverse to 1-xpap in A (think of triangular 2×2 matrices). Thus Lemma 1 applies. \blacksquare

The converse to (2.3) holds ([3], Proposition 30.6): if $J \subseteq A$ is a minimal left ideal then J = Ap with $p = p^2$ of rank 1. Indeed, since $J^2 \neq \{0\}$ there is $a \in J$ with $Ja \neq \{0\}$ and hence Ja = J, and thus $p \in J$ with pa = a. This says $1 - p \in a_{-1}(0) = \{x \in A : xa = 0\}$; now

$$p - p^2 \in J \cap a_{-1}(0) \subseteq J \not\subseteq a_{-1}(0)$$

says $p - p^2 = 0$, and then $\{0\} \neq Ap \subseteq J$ says Ap = J. Finally for the rank one condition every non-zero element of pAp has a left inverse: if $0 \neq pbp$ then $\{0\} \neq Apbp \subseteq J$ giving Apbp = J and hence $c \in A$ for which cpbp = p and hence $pcp \cdot pbp = p$.

Lemma 3 gives the general result:

4. THEOREM. If A is semisimple and $a \in A$ then

(4.1) a spectrally of rank one
$$\Rightarrow$$
 a spatially of rank one.

Proof. Suppose $a \in A$ is spectrally of rank one; then 0 is certainly not an accumulation point of the spectrum of a, and hence ([5], Theorem 7.5.3) we have a "support projection" $p \in A$ for which

$$(4.2) p = p^2 = ca = ac with \sigma(a(1-p)) \subseteq \{0\}$$

(1-p) is the spectral projection induced by a at $0 \in \mathbb{C}$). We claim

$$(4.3) pAp = \mathbb{C}p \text{ and } a = ap;$$

this then gives $aAa = \mathbb{C}a$ by the ideal property of rank one elements. The first part of (4.3) is clear from Lemma 3: if $x \in A$ then

$$\#\sigma'(xp) = \#\sigma'(xca) \le 1.$$

For the second part of (4.3), we claim that every element of $Aa(1-p) \subseteq Aa$ is quasinilpotent, so that $a(1-p) \in \text{Rad}(A) = \{0\}$. Indeed, if $b \in Aa(1-p)$ has a non-zero point of spectrum then its support projection q as in (4.2)

has $0 \neq q \neq 1-p$; but then elements $\lambda q + \mu(1-q) \in Aa(1-p)$ would have two-point spectrum $\{\lambda, \mu\}$.

Theorem 4 is not original: a stronger version is given by Mouton and Raubenheimer ([9], Theorem 2.2), in which (2.2) is replaced by the weaker condition

$$(4.4) x \in A^{-1} \Rightarrow \#\sigma'(xa) \le 1.$$

Of course, this is equivalent to (2.2) by the scarcity lemma ([1], Theorem 7.1.7; [9], Lemma 2.7). A similar version of the special case of Theorem 4 in which A = BL(X, X) is given by Jafarian and Sourour ([7], Theorem 1). The condition (2.2) is the definition of "rank one" adopted by Aupetit and Mouton [2], who go on to characterise the socle and its "inessential hull" in a similar fashion.

Rank one elements are the cornerstone of Mouton's proof [8] of Aupetit's perturbation theorem ([1], Theorem 5.7.4):

5. THEOREM. If A is semisimple, if $a \in A$ and if $d \in A$ is of rank one, then

(5.1)
$$\operatorname{acc} \sigma(a+d) \subseteq \eta \sigma(a) \quad and \quad \operatorname{acc} \sigma(a) \subseteq \eta \sigma(a+d).$$

Proof. Here ηK denotes the "connected hull" ([5], Definition 7.10.1) of a compact set $K \subseteq \mathbb{C}$: the complement of ηK is the unbounded component of the complement of K. Since $dxd = \tau_d(x)d$ for $x \in A$ it follows that

$$(5.2) a \in A^{-1} \Rightarrow \sigma(a+d) = \{\lambda \in \mathbb{C} : \tau_d((a-\lambda)^{-1}) = 1\}.$$

Now the function $f = \tau_d((a-z)^{-1}) - 1$ is holomorphic and not identically zero on the connected set $\sigma(a+d) \setminus \eta \sigma(a)$, and therefore ([4], Theorem 3.7) its zero set $f^{-1}(0)$ has no accumulation points (is this the tip of the iceberg of the scarcity lemma?); hence $\sigma(a+d) \setminus \eta \sigma(a) \subseteq \text{iso } \sigma(a+d)$. This gives the first part of (5.1), and hence also the second.

References

- [1] B. Aupetit, A Primer on Spectral Theory, Springer, 1991.
- [2] B. Aupetit and H. du T. Mouton, Spectrum preserving linear mappings in Banach algebras, Studia Math. 109 (1994), 91-100.
- 3] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973.
- [4] J. B. Conway, Functions of One Complex Variable, Springer, 1978.
- 5] R. E. Harte, Invertibility and Singularity, Dekker, 1988.
- [6] R. A. Hirschfeld and B. E. Johnson, Spectral characterization of finite-dimensional algebras, Indag. Math. 34 (1972), 19-23.
- [7] A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261.

- [8] H. du T. Mouton, On inessential ideals in Banach algebras, Quaestiones Math. 17 (1994), 59-66.
- [9] H. du T. Mouton and H. Raubenheimer, On rank one and finite elements in Banach algebras, Studia Math. 104 (1993), 211-219.
- [10] J. Puhl, The trace of finite and nuclear elements in Banach algebras, Czechoslovak Math. J. 28 (1978), 656-676.

SCHOOL OF MATHEMATICS TRINITY COLLEGE DUBLIN, IRELAND E-mail: RHARTE@MATHS.TCD.TE

Received March 15, 1995
Revised version June 21, 1995
(3434)