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NOTE ON UNBIASED ESTIMABILITY
OF THE LARGER OF TWO MEAN VALUES

Abstract. An unbiased estimator of the larger of two mean values is
constructed provided that the number of observations is random.

1. Introduction. This paper is motivated by the result of Kumar
and Sharma (1993). They gave general conditions under which there does
not exist an unbiased estimator of the larger of the two components of the
expectation of a two-dimensional random vector. They applied this result
to show unbiased inestimability of the larger of the two location parameters
in the case of uniform as well as double exponential densities.

In Section 2 we give a general scheme for constructing unbiased estima-
tors with a random sample size which can be applied to several situations
where there does not exist an unbiased estimator of a given parameter. For
example, a somewhat similar idea was investigated earlier by Rychlik (1995)
[see also Rychlik (1990)] in order to construct an unbiased estimator of the
unknown density of a given random variable.

In Section 3 we consider the problem of unbiased estimability of the
larger of two mean values.

2. Unbiased estimation from the sample of a random size. As-
sume that T1, T2, . . . is a sequence of k-dimensional random vectors with
distributions depending on some parameter θ ∈ Θ, where Θ is a subset of
Rk. The question is how to construct an unbiased estimator of the param-
eter θ when it is known that no Ti is unbiased. The following proposition
characterizes the situation when randomizing the sample size provides an
unbiased estimator of θ.
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Proposition 2.1. Let N be a random variable with the distribution in-
dependent of θ and such that P (N = n) = pn, pn > 0 for n = 1, 2, . . . and∑∞

n=1 pn = 1. Then there exists a sequence of statistics {θ∗n, n = 1, 2, . . .}
independent of N and such that

Eθ∗N = θ, for every θ ∈ Θ,

if and only if there exists an asymptotically unbiased estimator Tn, n =
1, 2, . . . , of the parameters θ ∈ Θ which is independent of N and such that

∞∑
n=1

Eθ |Tn − Tn−1| < ∞.

P r o o f. We first prove the “if” part. Assume that Tn is an asymptoti-
cally unbiased estimator of θ ∈ Θ, i.e.

lim
n→∞

EθTn = θ.

Assume that N is a random variable independent of {T1, T2, . . .}. For every
n = 1, 2, . . . , define

θ∗n =
Tn − Tn−1

pn
,

where T0 ≡ 0. Then

Eθ|θ∗N | = Eθ(Eθ(|θ∗N | | N)) =
∞∑

n=1

Eθ

(∣∣∣∣TN − TN−1

pN

∣∣∣∣ ∣∣∣∣ N = n

)
pn

=
∞∑

n=1

Eθ|Tn − Tn−1| < ∞.

Moreover,

Eθθ
∗
N = Eθ(Eθ(θ∗N | N)) =

∞∑
n=1

Eθ

(
TN − TN−1

pN

∣∣∣∣ N = n

)
pn

= lim
n→∞

EθTn = θ,

which proves the “if” part. Now assume that there is a sequence of statistics
{θ∗n, n = 1, 2, . . .} independent of N and such that

Eθθ
∗
N = θ, for every θ ∈ Θ.

For every n = 1, 2, . . . , define

Tn = θ∗1p1 + . . . + θ∗npn.

Since

Eθ|θ∗N | =
∞∑

n=1

Eθ|Tn − Tn−1|,



Unbiased estimability 241

where T0 = 0, the series on the right side converges. Moreover, {Tn, n =
1, 2, . . .} is asymptotically unbiased. Indeed,

lim
n→∞

EθTn = lim
n→∞

n∑
i=1

piEθθ
∗
i = Eθ(Eθ(θ∗N | N)) = θ.

So in order to construct an unbiased estimator of some parameter it
is enough to find an asymptotically unbiased sequence of estimators (Tn,
n = 1, 2, . . .) for which

∑∞
n=1 Eθ|Tn−Tn−1| < ∞. The next section concerns

finding an unbiased estimator of the greater of two expectations.

3. Unbiased estimability of the larger of two expectations. We
start with two simple but useful lemmas.

Lemma 3.1. Let Z1, . . . , Zn be i.i.d. random variables with EZ1 = m
and σ2 = VarZ1 < ∞. Let ξn = n−1

∑n
i=1 Zi, ξ+

n = max(ξn, 0) and ξ−n =
max(−ξn, 0). Then

Var |ξn| =
σ2

n
− 4
∫

ξ−n (ω) dP (ω)
[ ∫

ξ−n (ω) dP (ω) + m
]

(1)

=
σ2

n
− 4
∫

ξ+
n (ω) dP (ω)

[ ∫
ξ+
n (ω) dP (ω)−m

]
.(2)

P r o o f. Observe that Eξ2
n = σ2/n + m2 and Var |ξn| = Eξ2

n − (E|ξn|)2.
Since E|ξn| = Eξn + 2

∫
ξ−n (ω) dP (ω), therefore

Var |ξn| = σ2/n + m2 −
[
m + 2

∫
ξ−n (ω) dP (ω)

]2

= σ2/n− 4
∫

ξ−n (ω) dP (ω)
[
m +
∫

ξ−n (ω) dP (ω)
]
.

The second equality can be proven in an analogous way.

R e m a r k 3.2. In order to evaluate
∫

ξ−n dP when m > 0 (or
∫

ξ+
n dP

when m < 0), one could apply first the Cauchy inequality and next the
Chebyshev inequality. Indeed, from the Cauchy inequality we get[ ∫

ξ−n (ω) dP (ω)
]2

≤
∫

[ξ−n (ω)]2 dP (ω) P (ξn < 0).

Now, observe that

P (ξn < 0) = P

(
1
n

n∑
i=1

Zi −m < −m

)
≤ P

(∣∣∣∣ 1
n

n∑
i=1

Zi −m

∣∣∣∣ > m

)
.

Hence, by the Chebyshev inequality, we obtain

P (ξn < 0) ≤ σ2

nm2
.
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And finally, ∫
ξ−n (ω) dP (ω) ≤

[
σ2

n
+ m2

]1/2
σ

m
√

n
.

So when m > 0,
∫

ξ−n dP decreases at least as fast as n−1/2. The lemma
below shows that the rate of decrease is in fact n−1.

Lemma 3.3. Under the assumptions of Lemma 3.1,∫
ξ−n (ω) dP (ω) ≤ 1

2

√
m2 + σ2/n− 1

2
m if m > 0;∫

ξ+
n (ω) dP (ω) ≤ 1

2

√
m2 + σ2/n +

1
2
m if m < 0.

P r o o f. Suppose that m > 0. From the equality (1) of Lemma 3.1 it
follows that x ≡

∫
ξ−n dP satisfies the inequality

(3)
σ2

n
− 4x(m + x) ≥ 0.

From (3) we get the bound∫
ξ−n (ω) dP (ω) ≤ 1

2

√
m2 + σ2/n− 1

2
m.

The case m < 0 can be treated analogously by applying (2) instead of (1).

Let X1, X2, . . . be i.i.d. random variables with a common expectation θ1

and variance σ2
1 . Let Y1, Y2, . . . be i.i.d. random variables with a common

expectation θ2 and variance σ2
2 . Assume that {Xi, i = 1, 2, . . .} and {Yi,

i = 1, 2, . . .} are mutually independent. The problem of our interest is to
estimate ϑ = max(θ1, θ2). Let us define the following estimator of ϑ:

(4) ϑ̂n = max
(

1
n

n∑
i=1

Xi,
1
n

n∑
i=1

Yi

)
.

Let ν denote the vector of parameters (θ1, θ2). The lemma below provides
evaluations of the bias and of the variance of ϑ̂n.

Lemma 3.4. Under the above assumptions the following inequalities hold :

(i) 0 ≤ Eν ϑ̂n − ϑ ≤ 1
2{[(σ

2
1 + σ2

2)/n + (θ1 − θ2)2]1/2 − |θ1 − θ2|};
(ii) Varν ϑ̂n ≤ (σ2

1 + σ2
2)/n.

P r o o f. (i) Observe that max(a1, a2) = 1
2 (a1 + a2) + 1

2 |a1 − a2| for any
a1, a2 ∈ R. Hence

(5) Eν ϑ̂n − ϑ =
1
2

[
Eν

∣∣∣∣ 1
n

n∑
i=1

(Xi − Yi)
∣∣∣∣− |θ1 − θ2|

]
.

Clearly, (5) implies the lower bound in (i).
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Now we will prove the upper bound. Let ξn = n−1
∑n

i=1(Xi − Yi).
Assume for the time being that m ≡ θ1 − θ2 > 0 and observe that

Eν |ξn| =
∫

ξ+
n (ω) dP (ω) +

∫
ξ−n (ω) dP (ω)(6)

= θ1 − θ2 + 2
∫

ξ−n (ω) dP (ω).

From (5), (6) and Lemma 3.3 the assertion follows. The case θ1 < θ2 can
be treated analogously.

(ii) Observe that

Varν ϑ̂n =
1
4
Eν

{
1
n

n∑
i=1

(Xi + Yi) +
∣∣∣∣ 1
n

n∑
i=1

(Xi − Yi)
∣∣∣∣(7)

− θ1 − θ2 − Eν

∣∣∣∣ 1
n

n∑
i=1

(Xi − Yi)
∣∣∣∣}2

=
1
4

{
Eν

[
1
n

n∑
i=1

(Xi + Yi)− θ1 − θ2

]2

+ Varν |ξn|

+ 2Eν

[
1
n

n∑
i=1

(Xi + Yi)− θ1 − θ2

]
[|ξn| − Eν |ξn|]

}

≤ 1
4

{√
σ2

1 + σ2
2

n
+

√
Varν |ξn|

}2

,

where the last inequality follows from the Cauchy inequality. From Lem-
ma 3.1 it follows that Varν |ξn| ≤ (σ2

1 + σ2
2)/n. Applying this to (7), we get

the assertion.

From Proposition 2.1 and Lemma 3.4 we get the following result.

Proposition 3.5. Let N be a random variable independent of the se-
quences (X1, X2, . . .) and (Y1, Y2, . . .) and such that P (N = n) = pn, pn > 0
for all n = 1, 2, . . . and

∑∞
n=1 pn = 1. Let kn be a sequence of integers such

that kn ↗∞ as n →∞. Define a sequence of statistics {T0, T1, . . .} by

T0 = 0 and Tn = ϑ̂kn
for n = 1, 2, . . . ,

where the ϑ̂kn
are defined by (4).

(i) If
∑∞

n=1 1/
√

kn < ∞, then ϑ∗N = (TN − TN−1)/pN is an unbiased
estimator of ϑ = max(θ1, θ2).

(ii) If , additionally ,
∑∞

n=1(knpn)−1 < ∞, then ϑ∗N has a finite variance.

P r o o f. (i) From Lemma 3.4(i), it follows that {Tn, n = 1, 2, . . .} is
asymptotically unbiased. Since for n > 1,

Eν |Tn − Tn−1| ≤
√

Varν Tn +
√

Varν Tn−1 + EνTn − ϑ + EνTn−1 − ϑ,
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using Lemma 3.4(i), (ii), we get

Eν |Tn − Tn−1| ≤ 2

√
σ2

1 + σ2
2

kn−1
+

[
σ2

1 + σ2
2

kn−1
+ (θ1 − θ2)2

]1/2

− |θ1 − θ2|

≤ 2

√
σ2

1 + σ2
2

kn−1
+

σ2
1 + σ2

2

2|θ1 − θ2|kn−1
.

From the above inequality and the assumption of (i), it follows that
∞∑

n=1

Eν |Tn − Tn−1| < ∞

and, by Proposition 2.1, ϑ∗N is unbiased.
(ii) Notice that

(8) Eν(ϑ∗N )2 = Eν

{
Eν

[
TN − TN−1

pN

]2 ∣∣∣∣ N

}
=

∞∑
n=1

Eν(Tn − Tn−1)2

pn
.

From Lemma 3.4, we get

(9) Eν(Tn − Tn−1)2

= Eν [Tn − EνTn − (Tn−1 − EνTn−1) + EνTn − EνTn−1]2

≤ Varν Tn + Varν Tn−1 + (EνTn − EνTn−1)2 − 2 Covν(Tn, Tn−1)

≤ (
√

Varν Tn +
√

Varν Tn−1)2 + [Eν(Tn − Tn−1)]2

≤ 4
[
σ2

1 + σ2
2

kn−1
+

(
σ2

1 + σ2
2

2kn−1|θ1 − θ2|

)2]
.

From (8), (9) and the assumption of (ii), it follows that Eν(ϑ∗N )2 < ∞.

R e m a r k 3.6. One can easily give examples of sequences of integers kn

satisfying the assumption of (ii) of Proposition 3.5 and such that
∑∞

n=1 knpn

< ∞, which means that the average number of observations needed to con-
struct an unbiased estimator of ϑ is finite. In view of Proposition 3.5(ii) in
order to have a finite variance, ϑ∗N needs a random number of observations
which does not have a finite expectation. Therefore the following problem
arises: does there exist a sequential estimator ϑ̂M of ϑ = max(θ1, θ2) based
on a random number M of observations for which both EνM and Varν ϑ̂M

are finite?
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