E. CRÉTOIS (Grenoble)

ESTIMATION OF REDUCED PALM DISTRIBUTIONS BY RANDOM METHODS FOR COX PROCESSES WITH UNKNOWN PROBABILITY LAW

Abstract. Let $N_{i}, i \geq 1$, be i.i.d. observable Cox processes on $[a, b]$ directed by random measures M_{i}. Assume that the probability law of the M_{i} is completely unknown. Random techniques are developed (we use data from the processes N_{1}, \ldots, N_{n} to construct a partition of $[a, b]$ whose extremities are random) to estimate

$$
L(\mu, g)=E(\exp (-(N(g)-\mu(g))) \mid N-\mu \geq 0)
$$

1. Introduction. Let $[a, b]$ be a compact interval of \mathbb{R} and N a Cox process on $[a, b]$ directed by a random measure M on $[a, b]$ (see [3]-[5] for detailed definition).

In [4], A. F. Karr gives state estimators $E\left(e^{-M(f)} \mid F_{A}^{N}\right)$, where

$$
F_{A}^{N}=\sigma\left(N\left(g 1_{A}\right): g \in \mathcal{C}_{+}\right)
$$

and \mathcal{C}_{+}denotes the set of nonnegative continuous functions on $[a, b]$.
In the case of a Cox process, he proves, by means of Proposition 2.2 recalled in Section 2, that it is sufficient to estimate the Laplace functionals $L(\mu, g)$ of the reduced Palm process of N (see [4] and [5] for detailed definitions). A. F. Karr constructs an estimator $\widehat{L}_{n}(\mu, g)$ of $L(\mu, g)$ by means of fixed partitions. He shows that, under some conditions, for each compact subset K of \mathcal{C}_{+}and each compact subset K^{\prime} of \mathcal{M}_{p},

$$
\sup _{g \in K} \sup _{\mu \in K^{\prime}}\left|\widehat{L}_{n}(\mu, g)-L(\mu, g)\right| \rightarrow 0 \quad \text { almost surely, }
$$

where \mathcal{M}_{p} denotes the set of finite, integer-valued measures on $[a, b]$.
We construct in Section 3 an estimator $\widehat{L}_{n}(\mu, g)$ of the same Laplace functional $L(\mu, g)$ using random partitions, and we study its behaviour in

[^0]Section 4. The interest of this partition is that it takes into account the number of points of the copies to construct locally the estimator.
2. Notations and results. Let N be a simple point process on $[a, b]$ and let Q_{N}^{\prime} be the measure on \mathcal{M}_{p} defined by

$$
Q_{N}^{\prime}(\Gamma)=\sum_{k=0}^{\infty} \frac{1}{k!} E\left(\int_{[a, b]} \mathbf{1}_{\Gamma}\left(\sum_{i=1}^{k} \varepsilon_{x_{i}}\right) N^{(k)}(d x)\right),
$$

where ε_{x} is the point mass at x and $N^{(k)}$ is the factorial moment measure

$$
\begin{aligned}
N^{(k)}(d x) & =N^{(k)}\left(d x_{1}, \ldots, d x_{k}\right) \\
& =N\left(d x_{1}\right)\left(N-\varepsilon_{x_{1}}\right)\left(d x_{2}\right) \ldots\left(N-\sum_{i=1}^{k-1} \varepsilon_{x_{i}}\right)\left(d x_{k}\right) .
\end{aligned}
$$

We define similarly a measure Q_{M}^{\prime} with

$$
M^{k}(d x)=M\left(d x_{1}\right) \ldots M\left(d x_{k}\right)
$$

The compound Campbell measures of N and M are respectively the measures C_{N}^{\prime} on $\mathcal{M}_{p} \times \mathcal{M}_{p}$ and C_{M}^{\prime} on $\mathcal{M}_{p} \times \mathcal{M}(\mathcal{M}$ is the set of finite, not necessarily integer-valued measures on $[a, b])$ given by

$$
\begin{aligned}
& \int_{[a, b]} e^{-\mu(f)} e^{-\nu(g)}
\end{aligned} \begin{aligned}
& C_{N}^{\prime}(d \mu, d \nu) \\
& = \\
& \int_{[a, b]} e^{-\mu(f)} e^{-\nu(g)} \frac{1}{k!} E\left[e^{-N(g)} \int_{[a, b]} e^{-\sum_{i=1}^{k} f\left(x_{i}\right)} e^{-\sum_{i=1}^{k} g\left(x_{i}\right)} N^{(k)}(d x)\right], \\
& = \\
& =\sum_{k=0}^{\infty} \frac{1}{k!} E\left[e^{-N(g)} \int_{[a, b]} e^{-\sum_{i=1}^{k} f\left(x_{i}\right)} e^{-\sum_{i=1}^{k} g\left(x_{i}\right)} M^{k}(d x)\right] .
\end{aligned}
$$

Assume that for each k, the mean measure of $N^{(k)}$ is finite. Then there exists a disintegration of C_{N}^{\prime} with respect to Q_{N}^{\prime}, that is, a transition probability Q_{N} from \mathcal{M}_{p} into itself such that

$$
C_{N}^{\prime}(d \mu, d \nu)=Q_{N}^{\prime}(d \mu) Q_{N}(\mu, d \nu)
$$

The probability distributions $\left\{Q_{N}(\mu, \cdot): \mu \in \mathcal{M}_{p}\right\}$ are the reduced Palm distributions of N.

A point process $N^{(\mu)}$ with probability law $Q_{N}(\mu, \cdot)$ is called a reduced Palm process of N.

Under the assumption that each M^{k} admits a finite mean measure there exist Palm distributions $Q_{M}(\mu, d \nu)$ satisfying

$$
C_{M}^{\prime}(d \mu, d \nu)=Q_{M}^{\prime}(d \mu) Q_{N}(\mu, d \nu)
$$

A random measure $M^{(\mu)}$ with distribution $Q_{M}(\mu, \cdot)$ is termed a Palm process of M. For further details on Palm distributions see [5].

In the context of Cox processes a key result is the following (see [4]):
Proposition 2.1. Let M be a random measure on $[a, b]$ with finite mean measure and let N be a Cox process directed by M. Then almost everywhere on \mathcal{M}_{p} with respect to Q_{M}^{\prime}, the reduced Palm process $N^{(\mu)}$ is a Cox process directed by the Palm process $M^{(\mu)}$.

Under the same notations, we have (see [4]) the following proposition which allows us to deal with state estimation.

Proposition 2.2. For each Borel subset A of $[a, b]$ and each $f \in \mathcal{C}_{+}$,

$$
E\left(e^{-M(f)} \mid F_{A}^{N}\right)=\left.\frac{E\left(e^{-M^{(\mu)}(A)} e^{-M^{(\mu)}(f)}\right)}{E\left(e^{-M^{(\mu)}(A)}\right)}\right|_{\mu=N_{A}}
$$

where N_{A} denotes the restriction of N to A, and $F_{A}^{N}=\sigma\left(N\left(g 1_{A}\right): g \in \mathcal{C}_{+}\right)$.
We define

$$
L_{N}(\mu, f)=E\left(\exp \left(-N^{(\mu)}(f)\right)\right), \quad L_{M}(\mu, f)=L_{N}(\mu,-\ln (1-f))
$$

Thus, we only need to estimate $L_{N}(\mu, g)$ to estimate $E\left(e^{-M(f)} \mid F_{A}^{N}\right)$.
3. Definition of the estimator. Let N_{1}, \ldots, N_{n} be i.i.d. copies of a Cox process N on $[a, b]$ assumed to satisfy $E\left(N^{(2)}([a, b])\right)<\infty . N$ is directed by a random measure M. The problem is to construct an estimator $\widehat{L}_{n}(\mu, g)$ of the Laplace functional

$$
L(\mu, g)=L_{N^{(\mu)}}(g)=E\left(\exp \left(-N^{(\mu)}(g)\right)\right)
$$

which can be interpreted as

$$
L(\mu, g)=E(\exp (-(N(g)-\mu(g))) \mid N-\mu \geq 0)
$$

We construct, for each realization r of the variable

$$
R_{n}=\sum_{i=1}^{n} N_{i}([a, b]),
$$

a random partition with fixed integers $k(r)$ growing to infinity with r and other fixed integers $\lambda_{j}(r)$ satisfying

$$
\sum_{j=1}^{k(r)} \lambda_{j}(r)=r+1
$$

Let $a=x_{0} \leq x_{1} \leq \ldots \leq x_{r} \leq x_{r+1}=b$ be the r ordered points of the n realizations of the process, and let the integers $\nu_{j}(r), j=0, \ldots, k(r)$, be defined by

$$
\nu_{0}=0, \quad \nu_{j}(r)=\nu_{j-1}(r)+\lambda_{j}(r), \quad j=1, \ldots, k(r)
$$

Then we have the random partition $\left\{A_{j}(r): j=1, \ldots, k(r)\right\}$, where

$$
A_{j}(r)=\left[x_{\nu_{j-1}(r)}, x_{\nu_{j}(r)}[.\right.
$$

We study the estimator

$$
\widehat{L}_{n}(\mu, g)=\frac{e^{\mu(g)} \sum_{i=1}^{n}\left(e^{-N_{i}(g)} \prod_{j=1}^{k\left(R_{n}\right)} \mathbf{1}_{\left\{N_{i}\left(A_{j}\left(R_{n}\right)\right) \geq \mu\left(A_{j}\left(R_{n}\right)\right)\right\}}\right)}{\sum_{i=1}^{n} \prod_{j=1}^{k\left(R_{n}\right)} \mathbf{1}_{\left\{N_{i}\left(A_{j}\left(R_{n}\right)\right) \geq \mu\left(A_{j}\left(R_{n}\right)\right)\right\}}} .
$$

4. Main result

Proposition 4.1. Assume that:
(1) There exists $t>0$ such that $E\left(e^{t M([a, b])}\right)<\infty$.
(2) For each $g \in \mathcal{C}_{+}, \mu \rightarrow L(\mu, g)$ is continuous on \mathcal{M}_{p}.
(3) For each k,

$$
\sum_{n=1}^{\infty} \frac{(k(n))^{k}}{n^{2}}<\infty
$$

(4) $\lim _{r \rightarrow \infty} \inf _{j=1, \ldots, k(r)} \frac{\lambda_{j}(r)}{\ln (r)}=\infty$.

Then for each compact subset K of \mathcal{C}_{+}and each compact subset K^{\prime} of \mathcal{M}_{p}, the estimator $\widehat{L}_{n}(\mu, g)$ satisfies

$$
\sup _{g \in K, \mu \in K^{\prime}}\left|\widehat{L}_{n}(\mu, g)-L(\mu, g)\right| \rightarrow 0 \quad \text { almost completely. }
$$

We mean that for all $\varepsilon>0$,

$$
P\left[\sup _{g \in K, \mu \in K^{\prime}}\left|\widehat{L}_{n}(\mu, g)-L(\mu, g)\right|>\varepsilon\right]
$$

is the general term of a convergent series.
Proof. Let K be a compact subset of \mathcal{C}_{+}and K^{\prime} a compact subset of \mathcal{M}_{p}. For each k, let $\mathcal{M}_{p}(k)=\left\{\mu \in \mathcal{M}_{p}: \mu([a, b])=k\right\}$. We can assume that K^{\prime} is a subset of $\mathcal{M}_{p}(k)$ for some fixed k. We form the decomposition

$$
\begin{aligned}
\widehat{L}_{n}(\mu, g)= & \frac{e^{\mu(g)} E\left[e^{-N(g)} \prod_{j=1}^{k\left(R_{n}\right)} \mathbf{1}_{\left\{N\left(A_{j}\left(R_{n}\right)\right) \geq \mu\left(A_{j}\left(R_{n}\right)\right)\right\}}\right]}{E\left[\prod_{j=1}^{k\left(R_{n}\right)} \mathbf{1}_{\left\{N\left(A_{j}\left(R_{n}\right)\right) \geq \mu\left(A_{j}\left(R_{n}\right)\right)\right\}}\right]} \\
& \times\left(\frac{\frac{1}{n} \sum_{i=1}^{n} e^{-N_{i}(g)} \prod_{j=1}^{k\left(R_{n}\right)} \mathbf{1}_{\left\{N_{i}\left(A_{j}\left(R_{n}\right)\right) \geq \mu\left(A_{j}\left(R_{n}\right)\right)\right\}}}{E\left[e^{-N(g)} \prod_{j=1}^{k\left(R_{n}\right)} \mathbf{1}_{\left\{N\left(A_{j}\left(R_{n}\right)\right) \geq \mu\left(A_{j}\left(R_{n}\right)\right)\right\}}\right]}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \quad \times \frac{E\left[\prod_{j=1}^{k\left(R_{n}\right)} \mathbf{1}_{\left\{N\left(A_{j}\left(R_{n}\right)\right) \geq \mu\left(A_{j}\left(R_{n}\right)\right)\right\}}\right]}{\left.\frac{1}{n} \sum_{i=1}^{n} \prod_{j=1}^{k\left(R_{n}\right)} \mathbf{1}_{\left\{N_{i}\left(A_{j}\left(R_{n}\right)\right) \geq \mu\left(A_{j}\left(R_{n}\right)\right)\right\}}\right)} \\
& =A_{n} \times\left(B_{n} / C_{n}\right)
\end{aligned}
$$

and show that $A_{n} \rightarrow L(\mu, g)$, while $B_{n} \rightarrow 1$ almost completely and $C_{n} \rightarrow 1$ almost completely.

First, we need some lemmas.
Lemma 4.2. If l is the Lebesgue measure on $[a, b]$, then the random variable $\sup _{j=1, \ldots, k\left(R_{n}\right)} l\left(A_{j}\left(R_{n}\right)\right)$ converges to 0 almost completely.

Proof.
First step. Let Z_{1}, \ldots, Z_{r} be r i.i.d. copies of the uniform law on $[0,1]$. Then the distribution of $\nu\left(A_{j}(r)\right) / \nu([a, b])$ where $\nu=E(M)$ is the distribution of $Z_{\nu_{j}(r)}-Z_{\nu_{j-1}(r)}$.

Proof. Conditionally on M, the distribution of the random variable (random partition) $M\left(A_{j}(r)\right) / M([a, b])$ is the distribution of $Z_{\nu_{j}(r)}-Z_{\nu_{j-1}(r)}$ (see [1]). Then

$$
\frac{\nu\left(A_{j}(r)\right)}{\nu([a, b])}=\frac{\int_{\mathcal{M}_{p}}\left(\frac{M\left(A_{j}(r)\right)}{M([a, b])}\right) M([a, b]) P(d M)}{M([a, b])}
$$

and hence the distribution of $\nu\left(A_{j}(r)\right) / \nu([a, b])$ is the distribution of

$$
\left(Z_{\nu_{j}(r)}-Z_{\nu_{j-1}(r)}\right) \frac{\int_{\mathcal{M}_{p}} M([a, b]) P(d M)}{\nu([a, b])} .
$$

The result is proved.
Recall that $R_{n}=\sum_{i=1}^{n} N_{i}([a, b])$.
SEcond step. Let $0<\delta<1 / 2$ and $I_{n}=\left[n \nu([a, b])\left(1-n^{-\delta}\right), n \nu([a, b])\right.$ $\left.\times\left(1+n^{-\delta}\right)\right]$. Then $P\left(R_{n} \notin I_{n}\right)$ is the general term of a convergent series.

Proof. There exist random measures M_{i} associated with the processes N_{i}. Conditionally on $\left\{M_{i}: i=1, \ldots, n\right\}, R_{n}$ is a Poisson random variable with parameter $\sum_{i=1}^{n} M_{i}([a, b])$. We can write

$$
\begin{aligned}
P\left(R_{n}\right. & \left.\notin I_{n}\right) \\
& =\int_{\mathcal{M}_{p}} \ldots \int_{\mathcal{M}_{p}} \sum_{r \notin I_{n}} e^{-\Sigma_{i=1}^{n} M_{i}([a, b])} \frac{\left(\sum_{i=1}^{n} M_{i}([a, b])\right)^{r}}{r!} P\left(d M_{1}\right) \ldots P\left(d M_{n}\right) .
\end{aligned}
$$

This expression is bounded from above by

$$
\begin{array}{r}
\int \ldots \int_{\left\{\left(M_{1}, \ldots, M_{n}\right) \notin E_{n}\right\}} \sum_{r \notin I_{n}} e^{-\sum_{i=1}^{n} M_{i}([a, b]) \frac{\left(\sum_{i=1}^{n} M_{i}([a, b])\right)^{r}}{r!} P\left(d M_{1}\right) \ldots P\left(d M_{n}\right)} \\
+P\left(\left(M_{1}, \ldots, M_{n}\right) \in E_{n}\right),
\end{array}
$$

where E_{n} is the set

$$
E_{n}=\left\{\left(M_{1}, \ldots, M_{n}\right):\left|\sum_{i=1}^{n} M_{i}([a, b])-n \nu([a, b])\right|>\nu([a, b]) n^{1-\delta} / 2\right\} .
$$

The second term of the sum is bounded from above by

$$
\begin{aligned}
& \quad \sum_{r<n \nu([a, b])\left(1-n^{-\delta}\right)} e^{-n \nu([a, b])\left(1-n^{-\delta} / 2\right)} \frac{\left(n \nu([a, b])\left(1-n^{-\delta} / 2\right)\right)^{r}}{r!} \\
& \quad+\sum_{r>n \nu([a, b])\left(1+n^{-\delta}\right)} e^{-n \nu([a, b])\left(1+n^{-\delta} / 2\right)} \frac{\left(n \nu([a, b])\left(1+n^{-\delta} / 2\right)\right)^{r}}{r!} .
\end{aligned}
$$

Using the Stirling formula, we obtain the bound

$$
\begin{aligned}
& \quad \sum_{r<n \nu([a, b])\left(1-n^{-\delta}\right)} e^{-n \nu([a, b])\left(1-n^{-\delta} / 2\right)} \frac{\left(n e \nu([a, b])\left(1-n^{-\delta} / 2\right)\right)^{r}}{r^{r}} \\
& \quad+\sum_{r>n \nu([a, b])\left(1+n^{-\delta}\right)} e^{-n \nu([a, b])\left(1+n^{-\delta} / 2\right)} \frac{\left(n e \nu([a, b])\left(1+n^{-\delta} / 2\right)\right)^{r}}{r^{r}} .
\end{aligned}
$$

For large n, the first term is bounded from above by

$$
\begin{aligned}
n \nu([a, b])\left(1-n^{-\delta}\right) & e^{-n \nu([a, b])\left(1-n^{-\delta} / 2\right)} \frac{\left(e\left(1-n^{-\delta} / 2\right)\right)^{n \nu([a, b])\left(1-n^{-\delta}\right)}}{\left(1-n^{-\delta}\right)^{n \nu([a, b])\left(1-n^{-\delta}\right)}} \\
& \times e^{-n \nu([a, b])\left(1+n^{-\delta} / 2\right)} \frac{\left(e\left(1+n^{-\delta} / 2\right)\right)^{n \nu([a, b])\left(1+n^{-\delta}\right)-2}}{\left(1+n^{-\delta}\right)^{n \nu([a, b])\left(1+n^{-\delta}\right)-2}} \\
& \times \frac{\left(n e \nu([a, b])\left(1+n^{-\delta} / 2\right)\right)^{2} \pi^{2}}{6}
\end{aligned}
$$

Therefore the first term is the general term of a convergent series.
Now, to show the same for the second term, it is sufficient to see that the assumption (1) implies (using the Bernstein inequality) that
$P\left(\left|\sum_{i=1}^{n}\left(M_{i}-\nu([a, b])\right)\right|>\nu([a, b]) n^{1-\delta} / 2\right) \leq 2 e^{-n\left(\nu([a, b])^{2} n^{-2 \delta} / 4\right) /(4 \operatorname{VAR}(M))}$
if n is large enough since $\nu([a, b]) n^{-\delta} / 2<\operatorname{VAR}(M)$. Thus the proof is complete since $0<\delta<1 / 2$.

$$
\begin{aligned}
& \text { Proof of Lemma } 4.2 \\
& P\left(\sup _{j=1, \ldots, k\left(R_{n}\right)} l\left(A_{j}\left(R_{n}\right)\right)>\varepsilon\right) \\
& \qquad \leq P\left(\sup _{j=1, \ldots, k\left(R_{n}\right)} \nu\left(A_{j}\left(R_{n}\right)\right)>\frac{\varepsilon}{\sup _{x \in[a, b]} f(x)}\right),
\end{aligned}
$$

where f is the density of the measure ν. Therefore

$$
\begin{aligned}
& P\left(\sup _{j=1, \ldots, k\left(R_{n}\right)} l\left(A_{j}\left(R_{n}\right)\right)>\varepsilon\right) \\
& \quad \leq \sum_{r \in N} \sum_{j=1}^{k(r)} P\left(\frac{\nu\left(A_{j}(r)\right)}{\nu([a, b])}>\frac{\varepsilon}{\sup _{x \in[a, b]} f(x) \nu([a, b])}\right) P\left(R_{n}=r\right) .
\end{aligned}
$$

Hence, the result follows from the proofs above (see [2]).
Lemma 4.3. Under the assumptions of Proposition 4.1, for all $\varepsilon>0$,

$$
P\left(\sup _{g \in K} \sup _{\mu \in K^{\prime}}\left|A_{n}-L(\mu, g)\right|>\varepsilon\right)
$$

is the general term of a convergent series.
Proof. Let us introduce

$$
\begin{aligned}
& K_{1, n}^{\prime}=\left\{\mu \in K^{\prime}: \forall j=1, \ldots, k\left(R_{n}\right), \mu\left(A_{j}\left(R_{n}\right)\right) \leq 1\right\}, \\
& K_{2, n}^{\prime}=\left\{\mu \in K^{\prime}: \forall j=1, \ldots, k\left(R_{n}\right), \mu\left(A_{j}\left(R_{n}\right)\right) \geq 1\right\} .
\end{aligned}
$$

We have the inclusion

$$
\begin{aligned}
& \left\{\sup _{g \in K} \sup _{\mu \in K^{\prime}}\left|A_{n}-L(\mu, g)\right|>\varepsilon\right\} \\
& \subseteq\left\{\sup _{g \in K} \sup _{\mu \in K_{1, n}^{\prime}}\left|A_{n}-L(\mu, g)\right|>\varepsilon\right\} \cup\left\{\sup _{g \in K} \sup _{\mu \in K_{2, n}^{\prime}}\left|A_{n}-L(\mu, g)\right|>\varepsilon\right\} .
\end{aligned}
$$

Remember that K^{\prime} is assumed to be a subset of $\mathcal{M}_{p}(k)$ for some fixed k.
If $\mu \in K_{1, n}^{\prime}$ then

$$
\begin{aligned}
& \prod_{j=1}^{k\left(R_{n}\right)} \mathbf{1}_{\left\{N\left(A_{j}\left(R_{n}\right)\right) \geq \mu\left(A_{j}\left(R_{n}\right)\right)\right\}} \\
&=\frac{1}{k!} \int_{[a, b]^{k}} \prod_{j=1}^{k\left(R_{n}\right)} \mathbf{1}_{\left\{\Sigma_{j=1}^{k} \varepsilon_{x_{j}}\left(A_{j}\left(R_{n}\right)\right) \geq \mu\left(A_{j}\left(R_{n}\right)\right)\right\}} N^{(k)}(d x)
\end{aligned}
$$

so that, with $\Gamma_{n}(\mu)=\left\{c \in \mathcal{M}_{p}: \prod_{j=1}^{k\left(R_{n}\right)} \mathbf{1}_{\left\{c\left(A_{j}\left(R_{n}\right)\right) \geq \mu\left(A_{j}\left(R_{n}\right)\right)\right\}}=1\right\}$,

$$
E\left(\prod_{j=1}^{k\left(R_{n}\right)} \mathbf{1}_{\left\{N\left(A_{j}\left(R_{n}\right)\right) \geq \mu\left(A_{j}\left(R_{n}\right)\right)\right\}}\right)=\frac{1}{k!} E\left(\int_{[a, b]^{k}} \mathbf{1}_{\Gamma_{n}(\mu)}\left(\sum_{j=1}^{k} \varepsilon_{x_{j}}\right) N^{(k)}(d x)\right)
$$

Hence

$$
E\left(\prod_{j=1}^{k\left(R_{n}\right)} \mathbf{1}_{\left\{N\left(A_{j}\left(R_{n}\right)\right) \geq \mu\left(A_{j}\left(R_{n}\right)\right)\right\}}\right)=E\left(Q_{N}^{\prime}\left(\Gamma_{n}(\mu) \cap \mathcal{M}_{p}(k)\right)\right) .
$$

Similarly, if $\mu \in K_{1, n}^{\prime}$ then

$$
\begin{aligned}
e^{\mu(g)} E\left(e^{-N(g)} \prod_{j=1}^{k\left(R_{n}\right)} \mathbf{1}_{\left\{N\left(A_{j}\left(R_{n}\right)\right) \geq \mu\left(A_{j}\left(R_{n}\right)\right)\right\}}\right) & \\
& =E\left(\int_{\Gamma_{n}(\mu) \cap \mathcal{M}_{p}(k)} Q_{N}^{\prime}(d c) L(c, g)\right)
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& \left\{\sup _{g \in K} \sup _{\mu \in K_{1, n}^{\prime}}\left|A_{n}-L(\mu, g)\right|>\varepsilon\right\} \\
& \quad \subseteq\left\{\sup _{g \in K} \sup _{\mu \in K_{1, n}^{\prime}}\left|\frac{E\left(\int_{\Gamma_{n}(\mu) \cap \mathcal{M}_{p}(k)} Q_{N}^{\prime}(d c) L(c, g)\right)}{E\left(Q_{N}^{\prime}\left(\mathcal{M}_{p}(k) \cap \Gamma_{n}(\mu)\right)\right)}-L(\mu, g)\right|>\varepsilon\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\{\sup _{g \in K} \sup _{\mu \in K_{1, n}^{\prime}}\left|A_{n}-L(\mu, g)\right|>\varepsilon\right\} \\
& \quad \subseteq\left\{\sup _{g \in K} \sup _{\mu \in K_{1, n}^{\prime}} \frac{E\left(\int_{\Gamma_{n}(\mu) \cap \mathcal{M}_{p}(k)} Q_{N}^{\prime}(d c)|L(c, g)-L(\mu, g)|\right)}{E\left(Q_{N}^{\prime}\left(\mathcal{M}_{p}(k) \cap \Gamma_{n}(\mu)\right)\right)}>\varepsilon\right\} .
\end{aligned}
$$

Using the definition of $\Gamma_{n}(\mu)$, we obtain

$$
\Gamma_{n}(\mu) \cap \mathcal{M}_{p}(k) \subseteq B\left(\mu, \sup _{j=1, \ldots, k\left(R_{n}\right)} l\left(A_{j}\left(R_{n}\right)\right)\right)
$$

Now, by the assumption (2) and since for each measure $\mu \in \mathcal{M}_{p}, g \rightarrow L(\mu, g)$ is continuous on \mathcal{C}_{+}, it follows that for all $\varepsilon>0$, there exists $\eta>0$ satisfying

$$
\begin{aligned}
& \forall \mu \in K^{\prime} \text { (compact), } \forall g \in K \text { (compact) } \\
& \qquad c \in B(\mu, \eta), g^{\prime} \in B(g, \eta) \Rightarrow\left|L\left(c, g^{\prime}\right)-L(\mu, g)\right|<\varepsilon .
\end{aligned}
$$

Actually, for all $\varepsilon>0$, there exists $\eta>0$ satisfying

$$
\begin{aligned}
& \forall \mu \in K^{\prime} \text { (compact), } \forall g \in K \text { (compact) } \\
& \qquad c \in B(\mu, \eta) \Rightarrow|L(c, g)-L(\mu, g)|<\varepsilon .
\end{aligned}
$$

Finally, we get the inclusion

$$
\left\{\sup _{g \in K} \sup _{\mu \in K_{1, n}^{\prime}}\left|A_{n}-L(\mu, g)\right|>\varepsilon\right\} \subseteq\{\varepsilon>\varepsilon\} \cup\left\{\sup _{j=1, \ldots, k\left(R_{n}\right)} l\left(A_{j}\left(R_{n}\right)\right)>\eta\right\} .
$$

By Lemma 4.2, for all $\varepsilon>0$,

$$
P\left\{\sup _{g \in K} \sup _{\mu \in K_{1, n}^{\prime}}\left|A_{n}-L(\mu, g)\right|>\varepsilon\right\}
$$

is the general term of a convergent series.

We must now show that

$$
P\left\{\sup _{g \in K} \sup _{\mu \in K_{2, n}^{\prime}}\left|A_{n}-L(\mu, g)\right|>\varepsilon\right\}
$$

is the general term of a convergent series. We will use the convention that $\sup _{x \in \emptyset}|a(x)|=0$. Thus, it suffices to show that $P\left(K_{2, n}^{\prime} \neq \emptyset\right)$ is the general term of a convergent series. Recall that

$$
K_{2, n}^{\prime}=\left\{\mu \in K^{\prime}: \exists j=1, \ldots, k\left(R_{n}\right), \mu\left(A_{j}\left(R_{n}\right)\right) \geq 2\right\} .
$$

Since $\mu \in \mathcal{M}_{p}(k)$, we can write $\mu=\sum_{p=1}^{k} \varepsilon_{x_{p}}$ where $\varepsilon_{x_{p}}$ is the point mass at x_{p} and the x_{p} are ordered on $[a, b]$. We set $x_{0}=a$ and $x_{k+1}=b$. We also define

$$
\inf (\mu)=\inf _{p=1, \ldots, k+1}\left(x_{p}-x_{p-1}\right)
$$

Since K^{\prime} is a compact set and

$$
K^{\prime} \subseteq \bigcup_{\mu \in K^{\prime}} B(\mu, \inf (\mu) / 3)
$$

there exists a finite set $\left\{\mu_{1}, \ldots, \mu_{l}\right\}$ of elements of K^{\prime} for which

$$
K^{\prime} \subseteq \bigcup_{r=1}^{l} B\left(\mu, \inf \left(\mu_{r}\right) / 3\right)
$$

Hence

$$
K_{2, n}^{\prime} \subseteq \bigcup_{r=1}^{l}\left(B\left(\mu, \inf \left(\mu_{r}\right) / 3\right) \cap K_{2, n}^{\prime}\right)
$$

We have

$$
\begin{aligned}
\left\{K_{2, n}^{\prime}\right. & \neq \emptyset\} \\
& =\bigcup_{r=1}^{l}\left\{\exists \mu \in B\left(\mu_{r}, \inf (\mu) / 3\right) \text { and } j \in\left\{1, \ldots, k\left(R_{n}\right)\right\}: \mu\left(A_{j}\left(R_{n}\right)\right) \geq 2\right\} .
\end{aligned}
$$

It is then straightforward to obtain

$$
\left\{K_{2, n}^{\prime} \neq \emptyset\right\} \subseteq \bigcup_{r=1}^{l}\left\{\sup _{j=1, \ldots, k\left(R_{n}\right)} l\left(A_{j}\left(R_{n}\right)\right)>\inf \left(\mu_{r}\right) / 6\right\}
$$

Lemma 4.2 completes the proof.
Lemma 4.4. Under the assumptions of Proposition 4.1, for all $\varepsilon>0$,

$$
P\left\{\sup _{g \in K} \sup _{\mu \in K^{\prime}}\left|C_{n}-1\right|>\varepsilon\right\}
$$

is the general term of a convergent series.

Proof. There are $k\left(R_{n}\right)^{k}$ possibilities to set k points of a measure of $\mathcal{M}_{p}(k)$ in the $k\left(R_{n}\right)$ intervals $A_{j}\left(R_{n}\right)$. Thus, we can write

$$
\mathcal{M}_{p}(k)=\bigcup_{l=1}^{k\left(R_{n}\right)^{k}} \Gamma_{n, l}
$$

where the $\Gamma_{n, l}$ are sets of measures having the same number of points in each $A_{j}\left(R_{n}\right)$. We then have

$$
P\left\{\sup _{g \in K} \sup _{\mu \in K^{\prime}}\left|C_{n}-1\right|>\varepsilon\right\} \leq P\left\{\bigcup_{l=1}^{k\left(R_{n}\right)^{k}}\left|\frac{n^{-1} \sum_{i=1}^{n} \mathbf{1}_{\left\{N_{i} \in \Gamma_{n, l}\right\}}}{P\left(N \in \Gamma_{n, l}\right)}-1\right|>\varepsilon\right\}
$$

Consequently,

$$
\begin{aligned}
& P\left\{\sup _{g \in K} \sup _{\mu \in K^{\prime}}\left|C_{n}-1\right|>\varepsilon\right\} \\
& \leq \sum_{r \in \mathbb{N}} k(r)^{k} \varepsilon^{-4} E\left(\frac{n^{-1} \sum_{i=1}^{n} \mathbf{1}_{\left\{N_{i} \in \Gamma_{n, l}\right\}}}{P\left(N \in \Gamma_{n, l}\right)}\right)^{4} P\left(R_{n}=r\right)
\end{aligned}
$$

and

$$
P\left\{\sup _{g \in K} \sup _{\mu \in K^{\prime}}\left|C_{n}-1\right|>\varepsilon\right\} \leq \sum_{r \in N} k(r)^{k} \frac{\text { const }}{n^{2}} P\left(R_{n}=r\right) .
$$

Therefore

$$
\begin{aligned}
P\left\{\sup _{g \in K} \sup _{\mu \in K^{\prime}}\left|C_{n}-1\right|>\varepsilon\right\} \leq & \sum_{r \in I_{n}} k(r)^{k} \frac{\text { const }}{n^{2}} P\left(R_{n}=r\right) \\
& +\sum_{r<n \nu([a, b])\left(1-n^{-\delta}\right)} k(r)^{k} \frac{\text { const }}{n^{2}} P\left(R_{n}=r\right) \\
& +\sum_{r>n \nu([a, b])\left(1+n^{-\delta}\right)} k(r)^{k} \frac{\text { const }}{n^{2}} P\left(R_{n}=r\right) .
\end{aligned}
$$

Let us consider the first term of this sum. Since $k(r)$ grows to infinity (see the construction of the random partition), we can write

$$
\sum_{r \in I_{n}} k(r)^{k} \frac{\text { const }}{n^{2}} P\left(R_{n}=r\right) \leq \mathrm{const} \frac{k\left(\left[n \nu([a, b])\left(1+n^{-\delta}\right)\right]\right)}{n^{2}}
$$

By the assumption (3), this is the general term of a convergent series.
For the second term of the sum, we can write

$$
\sum_{r<n \nu([a, b])\left(1-n^{-\delta}\right)} k(r)^{k} \frac{\mathrm{const}}{n^{2}} P\left(R_{n}=r\right) \leq \text { const } \frac{k\left(\left[n \nu([a, b])\left(1-n^{-\delta}\right)\right]\right)}{n^{2}} .
$$

The assumption (3) shows that this is the general term of a convergent series.

For the third term of the sum, we have

$$
\begin{aligned}
\sum_{r>n \nu([a, b])\left(1+n^{-\delta}\right)} k(r)^{k} & \frac{\text { const }}{n^{2}} P\left(R_{n}=r\right) \\
& \leq \sum_{r>n \nu([a, b])\left(1+n^{-\delta}\right)} k(r)^{k} \frac{\text { const }}{r^{2}} \cdot \frac{r^{2}}{n^{2}} P\left(R_{n}=r\right) .
\end{aligned}
$$

Since $k(r)^{k} / r^{2}$ decreases for large r, for $n \geq n_{0}$ we have

$$
\begin{aligned}
\sum_{r>n \nu([a, b])\left(1+n^{-\delta}\right)} & k(r)^{k} \frac{\text { const }}{n^{2}} P\left(R_{n}=r\right) \\
& \leq \frac{\operatorname{const}\left(k\left(\left[n \nu([a, b])\left(1+n^{-\delta}\right)\right]\right)\right)^{k}}{\left(\left[n \nu([a, b])\left(1+n^{-\delta}\right)\right]\right)^{2}} \sum_{r \in \mathbb{N}} \frac{r^{2}}{n^{2}} P\left(R_{n}=r\right) .
\end{aligned}
$$

Using the fact that R_{n} is a Poisson variable with parameter $n \nu([a, b])$ we obtain, for n large,

$$
\begin{aligned}
& \sum_{r>n \nu([a, b])\left(1+n^{-\delta}\right)} k(r)^{k} \frac{\text { const }}{n^{2}} P\left(R_{n}=r\right) \\
& \leq \frac{\operatorname{const}\left(k\left(\left[n \nu([a, b])\left(1+n^{-\delta}\right)\right]\right)\right)^{k}}{\left(\left[n \nu([a, b])\left(1+n^{-\delta}\right)\right]\right)^{2}}(2 \nu([a, b]))^{2} .
\end{aligned}
$$

By the assumption (3), this implies that the third term of the sum is the general term of a convergent series.

This proves Lemma 4.4.
Lemma 4.5. Under the assumptions of Proposition 4.1, for all $\varepsilon>0$,

$$
P\left\{\sup _{g \in K} \sup _{\mu \in K^{\prime}}\left|B_{n}-1\right|>\varepsilon\right\}
$$

is the general term of a convergent series.
Proof. Using the notations of Lemma 4.4 and the fact that K is a compact set and hence is covered with a finite number of $B(g, \alpha)$, we obtain

$$
\begin{aligned}
& P\left\{\sup _{g \in K} \sup _{\mu \in K^{\prime}}\left|B_{n}-1\right|>\varepsilon\right\} \\
& \quad=P\left\{\bigcup_{r=1}^{s} \bigcup_{l=1}^{k\left(R_{n}\right)^{k}} \sup _{g \in B\left(g_{r}, \alpha\right)}\left|\frac{n^{-1} \sum_{i=1}^{n} e^{-N_{i}(g)} \mathbf{1}_{\Gamma_{n, l}}\left(N_{i}\right)}{E\left(e^{-N(g)} \mathbf{1}_{\Gamma_{n, l}}(N)\right)}-1\right|>\varepsilon\right\} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
P\left\{\sup _{g \in K} \sup _{\mu \in K^{\prime}}\right. & \left.\left|B_{n}-1\right|>\varepsilon\right\} \\
\leq & P\left\{\bigcup_{r=1}^{s} \bigcup_{l=1}^{k\left(R_{n}\right)^{k}}\left|\frac{n^{-1} \sum_{i=1}^{n} e^{-N_{i}\left(g_{r}\right)} \mathbf{1}_{\Gamma_{n, l}}\left(N_{i}\right)}{E\left(e^{-N\left(g_{r}\right)} \mathbf{1}_{\Gamma_{n, l}}(N)\right)}-1\right|>\frac{\varepsilon}{2}\right\} \\
& +P\left\{\bigcup_{r=1}^{s} \bigcup_{l=1}^{k\left(R_{n}\right)^{k}} \sup _{g \in B\left(g_{r}, \alpha\right)} \left\lvert\, \frac{n^{-1} \sum_{i=1}^{n} e^{-N_{i}(g)} \mathbf{1}_{\Gamma_{n, l}}\left(N_{i}\right)}{E\left(e^{-N(g)} \mathbf{1}_{\Gamma_{n, l}}(N)\right)}\right.\right. \\
& \left.\left.-\frac{n^{-1} \sum_{i=1}^{n} e^{-N_{i}\left(g_{r}\right)} \mathbf{1}_{\Gamma_{n, l}}\left(N_{i}\right)}{E\left(e^{-N\left(g_{r}\right)} \mathbf{1}_{\Gamma_{n, l}}(N)\right)} \right\rvert\,>\frac{\varepsilon}{2}\right\}
\end{aligned}
$$

We show that the first term of this sum is the general term of a convergent series exactly as in Lemma 4.4. For the second term, choose α satisfying

$$
1-e^{-2 \alpha}<\varepsilon / 4 \quad \text { and } \quad e^{2 \alpha}-1<\varepsilon / 4
$$

The second term is then bounded from above by

$$
P\left\{\bigcup_{r=1}^{s} \bigcup_{l=1}^{k\left(R_{n}\right)^{k}}\left|\frac{n^{-1} \sum_{i=1}^{n} e^{-N_{i}\left(g_{r}\right)} \mathbf{1}_{\Gamma_{n, l}}\left(N_{i}\right)}{E\left(e^{-N\left(g_{r}\right)} \mathbf{1}_{\Gamma_{n, l}}(N)\right)}\right|>2\right\}
$$

and thus by

$$
P\left\{\bigcup_{r=1}^{s} \bigcup_{l=1}^{k\left(R_{n}\right)^{k}}\left|\frac{n^{-1} \sum_{i=1}^{n} e^{-N_{i}\left(g_{r}\right)} \mathbf{1}_{\Gamma_{n, l}}\left(N_{i}\right)}{E\left(e^{-N\left(g_{r}\right)} \mathbf{1}_{\Gamma_{n, l}}(N)\right)}-1\right|>1\right\}
$$

We complete the proof of Lemma 4.5 with the same method as in Lemma 4.4.
With Lemmas 4.3-4.5, the proof of Proposition 4.1 is complete.
5. Conclusion. We thus have a new estimator of the Laplace functional $L(\mu, g)$ which converges almost completely. The estimator of Karr converges almost surely but the conditions are not the same. The condition
(b) $\max _{j \leq l_{n}} \operatorname{diam} A_{n_{j}} \rightarrow 0$ as $n \rightarrow \infty$
has been replaced by
(4) $\lim _{r \rightarrow \infty} \inf _{j=1, \ldots, k(r)} \lambda_{j}(r) / \ln (r)=\infty$.

References

[1] S. Abou-Jaoude, Convergence L_{1} et L_{∞} de certains estimateurs d'une densité de probabilité, thèse de doctorat d'état, Université Pierre et Marie Curie, 1979.
[2] E. Crétois, Estimation de la densité moyenne d'un processus ponctuel de Poisson par des méthodes aléatoires, Congrès des XXIVèmes Journées de Statistique de Bruxelles, Mai 1992.
[3] O. Kallenberg, Random Measures, 3rd ed., Akademie-Verlag, Berlin, and Academic Press, London.
[4] A. F. Karr, State estimation for Cox processes with unknown probability law, Stochastic Process. Appl. 20 (1985), 115-131.
[5] -, Point Processes and Their Statistical Inference, Marcel Dekker, New York, 1986.

EMMANUELLE CRÉTOIS
LABORATOIRE DE MODÉLISATION ET CALCUL/I.M.A.G.
TOUR IRMA
51, RUE DES MATHÉMATIQUES
B.P. 53

38041 GRENOBLE CEDEX, FRANCE

Received on 16.6.1993;

revised version on 20.4.1994

[^0]: 1991 Mathematics Subject Classification: 62G05, 62M99.
 Key words and phrases: random partition, Cox processes, reduced Palm processes.

