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ESTIMATION OF REDUCED PALM DISTRIBUTIONS
BY RANDOM METHODS FOR COX PROCESSES

WITH UNKNOWN PROBABILITY LAW

Abstract . Let Ni, i ≥ 1, be i.i.d. observable Cox processes on [a, b]
directed by random measures Mi. Assume that the probability law of the Mi

is completely unknown. Random techniques are developed (we use data from
the processes N1, . . . , Nn to construct a partition of [a, b] whose extremities
are random) to estimate

L(µ, g) = E(exp(−(N(g)− µ(g))) | N − µ ≥ 0).

1. Introduction. Let [a, b] be a compact interval of R and N a Cox
process on [a, b] directed by a random measure M on [a, b] (see [3]–[5] for
detailed definition).

In [4], A. F. Karr gives state estimators E(e−M(f) | FN
A ), where

FN
A = σ(N(g1A) : g ∈ C+)

and C+ denotes the set of nonnegative continuous functions on [a, b].
In the case of a Cox process, he proves, by means of Proposition 2.2

recalled in Section 2, that it is sufficient to estimate the Laplace functionals
L(µ, g) of the reduced Palm process of N (see [4] and [5] for detailed defini-
tions). A. F. Karr constructs an estimator L̂n(µ, g) of L(µ, g) by means of
fixed partitions. He shows that, under some conditions, for each compact
subset K of C+ and each compact subset K ′ of Mp,

sup
g∈K

sup
µ∈K′

|L̂n(µ, g)− L(µ, g)| → 0 almost surely,

where Mp denotes the set of finite, integer-valued measures on [a, b].
We construct in Section 3 an estimator L̂n(µ, g) of the same Laplace

functional L(µ, g) using random partitions, and we study its behaviour in
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Section 4. The interest of this partition is that it takes into account the
number of points of the copies to construct locally the estimator.

2. Notations and results. Let N be a simple point process on [a, b]
and let Q′N be the measure on Mp defined by

Q′N (Γ ) =
∞∑

k=0

1
k!

E
( ∫

[a,b]

1Γ

( k∑
i=1

εxi

)
N (k)(dx)

)
,

where εx is the point mass at x and N (k) is the factorial moment measure

N (k)(dx) = N (k)(dx1, . . . , dxk)

= N(dx1)(N − εx1)(dx2) . . .
(
N −

k−1∑
i=1

εxi

)
(dxk).

We define similarly a measure Q′M with

Mk(dx) = M(dx1) . . .M(dxk).

The compound Campbell measures of N and M are respectively the measures
C ′N on Mp×Mp and C ′M on Mp×M (M is the set of finite, not necessarily
integer-valued measures on [a, b]) given by∫

[a,b]

e−µ(f)e−ν(g) C ′N (dµ, dν)

=
∞∑

k=0

1
k!

E
[
e−N(g)

∫
[a,b]

e−Σk
i=1f(xi)e−Σk

i=1g(xi) N (k)(dx)
]
,∫

[a,b]

e−µ(f)e−ν(g) C ′M (dµ, dν)

=
∞∑

k=0

1
k!

E
[
e−N(g)

∫
[a,b]

e−Σk
i=1f(xi)e−Σk

i=1g(xi) Mk(dx)
]
.

Assume that for each k, the mean measure of N (k) is finite. Then there
exists a disintegration of C ′N with respect to Q′N , that is, a transition prob-
ability QN from Mp into itself such that

C ′N (dµ, dν) = Q′N (dµ)QN (µ, dν).

The probability distributions {QN (µ, ·) : µ ∈ Mp} are the reduced Palm
distributions of N .

A point process N (µ) with probability law QN (µ, ·) is called a reduced
Palm process of N .
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Under the assumption that each Mk admits a finite mean measure there
exist Palm distributions QM (µ, dν) satisfying

C ′M (dµ, dν) = Q′M (dµ)QN (µ, dν).

A random measure M (µ) with distribution QM (µ, ·) is termed a Palm process
of M . For further details on Palm distributions see [5].

In the context of Cox processes a key result is the following (see [4]):

Proposition 2.1. Let M be a random measure on [a, b] with finite mean
measure and let N be a Cox process directed by M . Then almost everywhere
on Mp with respect to Q′M , the reduced Palm process N (µ) is a Cox process
directed by the Palm process M (µ).

Under the same notations, we have (see [4]) the following proposition
which allows us to deal with state estimation.

Proposition 2.2. For each Borel subset A of [a, b] and each f ∈ C+,

E(e−M(f) | FN
A ) =

E(e−M(µ)(A)e−M(µ)(f))
E(e−M(µ)(A))

∣∣∣∣
µ=NA

,

where NA denotes the restriction of N to A, and FN
A = σ(N(g1A) : g ∈ C+).

We define

LN (µ, f) = E(exp(−N (µ)(f))), LM (µ, f) = LN (µ,− ln(1− f)).

Thus, we only need to estimate LN (µ, g) to estimate E(e−M(f) | FN
A ).

3. Definition of the estimator. Let N1, . . . , Nn be i.i.d. copies
of a Cox process N on [a, b] assumed to satisfy E(N (2)([a, b])) < ∞. N is
directed by a random measure M . The problem is to construct an estimator
L̂n(µ, g) of the Laplace functional

L(µ, g) = LN(µ)(g) = E(exp(−N (µ)(g))),

which can be interpreted as

L(µ, g) = E(exp(−(N(g)− µ(g))) | N − µ ≥ 0).

We construct, for each realization r of the variable

Rn =
n∑

i=1

Ni([a, b]),

a random partition with fixed integers k(r) growing to infinity with r and
other fixed integers λj(r) satisfying

k(r)∑
j=1

λj(r) = r + 1.
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Let a = x0 ≤ x1 ≤ . . . ≤ xr ≤ xr+1 = b be the r ordered points of the
n realizations of the process, and let the integers νj(r), j = 0, . . . , k(r), be
defined by

ν0 = 0, νj(r) = νj−1(r) + λj(r), j = 1, . . . , k(r).

Then we have the random partition {Aj(r) : j = 1, . . . , k(r)}, where

Aj(r) = [xνj−1(r), xνj(r)[.

We study the estimator

L̂n(µ, g) =
eµ(g)

∑n
i=1(e

−Ni(g)
∏k(Rn)

j=1 1{Ni(Aj(Rn))≥µ(Aj(Rn))})∑n
i=1

∏k(Rn)
j=1 1{Ni(Aj(Rn))≥µ(Aj(Rn))}

.

4. Main result

Proposition 4.1. Assume that :

(1) There exists t > 0 such that E(etM([a,b])) < ∞.
(2) For each g ∈ C+, µ → L(µ, g) is continuous on Mp.
(3) For each k,

∞∑
n=1

(k(n))k

n2
< ∞.

(4) lim
r→∞

inf
j=1,...,k(r)

λj(r)
ln(r)

= ∞.

Then for each compact subset K of C+ and each compact subset K ′ of Mp,
the estimator L̂n(µ, g) satisfies

sup
g∈K, µ∈K′

|L̂n(µ, g)− L(µ, g)| → 0 almost completely.

We mean that for all ε > 0,

P [ sup
g∈K, µ∈K′

|L̂n(µ, g)− L(µ, g)| > ε]

is the general term of a convergent series.

P r o o f. Let K be a compact subset of C+ and K ′ a compact subset of
Mp. For each k, let Mp(k) = {µ ∈ Mp : µ([a, b]) = k}. We can assume
that K ′ is a subset of Mp(k) for some fixed k. We form the decomposition

L̂n(µ, g) =
eµ(g)E[e−N(g)

∏k(Rn)
j=1 1{N(Aj(Rn))≥µ(Aj(Rn))}]

E[
∏k(Rn)

j=1 1{N(Aj(Rn))≥µ(Aj(Rn))}]

×
( 1

n

∑n
i=1 e−Ni(g)

∏k(Rn)
j=1 1{Ni(Aj(Rn))≥µ(Aj(Rn))}

E[e−N(g)
∏k(Rn)

j=1 1{N(Aj(Rn))≥µ(Aj(Rn))}]
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×
E[

∏k(Rn)
j=1 1{N(Aj(Rn))≥µ(Aj(Rn))}]

1
n

∑n
i=1

∏k(Rn)
j=1 1{Ni(Aj(Rn))≥µ(Aj(Rn))}

)
= An × (Bn/Cn)

and show that An → L(µ, g), while Bn → 1 almost completely and Cn → 1
almost completely.

First, we need some lemmas.

Lemma 4.2. If l is the Lebesgue measure on [a, b], then the random
variable supj=1,...,k(Rn) l(Aj(Rn)) converges to 0 almost completely.

P r o o f.

First step. Let Z1, . . . , Zr be r i.i.d. copies of the uniform law on
[0, 1]. Then the distribution of ν(Aj(r))/ν([a, b]) where ν = E(M) is the
distribution of Zνj(r) − Zνj−1(r).

P r o o f. Conditionally on M , the distribution of the random variable
(random partition) M(Aj(r))/M([a, b]) is the distribution of Zνj(r)−Zνj−1(r)

(see [1]). Then

ν(Aj(r))
ν([a, b])

=

∫
Mp

(M(Aj(r))
M([a,b])

)
M([a, b])P (dM)

M([a, b])

and hence the distribution of ν(Aj(r))/ν([a, b]) is the distribution of

(Zνj(r) − Zνj−1(r))

∫
Mp

M([a, b])P (dM)

ν([a, b])
.

The result is proved.

Recall that Rn =
∑n

i=1 Ni([a, b]).

Second step. Let 0 < δ < 1/2 and In = [nν([a, b])(1 − n−δ), nν([a, b])
× (1 + n−δ)]. Then P (Rn 6∈ In) is the general term of a convergent series.

P r o o f. There exist random measures Mi associated with the processes
Ni. Conditionally on {Mi : i = 1, . . . , n}, Rn is a Poisson random variable
with parameter

∑n
i=1 Mi([a, b]). We can write

P (Rn 6∈ In)

=
∫
Mp

. . .
∫
Mp

∑
r 6∈In

e−Σn
i=1Mi([a,b]) (

∑n
i=1 Mi([a, b]))r

r!
P (dM1) . . . P (dMn).

This expression is bounded from above by∫
. . .

{(M1,...,Mn) 6∈En}

∫ ∑
r 6∈In

e−Σn
i=1Mi([a,b]) (

∑n
i=1 Mi([a, b]))r

r!
P (dM1) . . . P (dMn)

+P ((M1, . . . ,Mn) ∈ En),
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where En is the set

En =
{

(M1, . . . ,Mn) :
∣∣∣ n∑

i=1

Mi([a, b])− nν([a, b])
∣∣∣ > ν([a, b])n1−δ/2

}
.

The second term of the sum is bounded from above by∑
r<nν([a,b])(1−n−δ)

e−nν([a,b])(1−n−δ/2) (nν([a, b])(1− n−δ/2))r

r!

+
∑

r>nν([a,b])(1+n−δ)

e−nν([a,b])(1+n−δ/2) (nν([a, b])(1 + n−δ/2))r

r!
.

Using the Stirling formula, we obtain the bound∑
r<nν([a,b])(1−n−δ)

e−nν([a,b])(1−n−δ/2) (neν([a, b])(1− n−δ/2))r

rr

+
∑

r>nν([a,b])(1+n−δ)

e−nν([a,b])(1+n−δ/2) (neν([a, b])(1 + n−δ/2))r

rr
.

For large n, the first term is bounded from above by

nν([a, b])(1− n−δ)e−nν([a,b])(1−n−δ/2) (e(1− n−δ/2))nν([a,b])(1−n−δ)

(1− n−δ)nν([a,b])(1−n−δ)

× e−nν([a,b])(1+n−δ/2) (e(1 + n−δ/2))nν([a,b])(1+n−δ)−2

(1 + n−δ)nν([a,b])(1+n−δ)−2

× (neν([a, b])(1 + n−δ/2))2π2

6
.

Therefore the first term is the general term of a convergent series.
Now, to show the same for the second term, it is sufficient to see that

the assumption (1) implies (using the Bernstein inequality) that

P
(∣∣∣ n∑

i=1

(Mi − ν([a, b]))
∣∣∣ > ν([a, b])n1−δ/2

)
≤ 2e−n(ν([a,b])2n−2δ/4)/(4 VAR(M))

if n is large enough since ν([a, b])n−δ/2 < VAR(M). Thus the proof is
complete since 0 < δ < 1/2.

P r o o f o f L e m m a 4.2.

P ( sup
j=1,...,k(Rn)

l(Aj(Rn)) > ε)

≤ P

(
sup

j=1,...,k(Rn)

ν(Aj(Rn)) >
ε

supx∈[a,b] f(x)

)
,
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where f is the density of the measure ν. Therefore

P ( sup
j=1,...,k(Rn)

l(Aj(Rn)) > ε)

≤
∑
r∈N

k(r)∑
j=1

P

(
ν(Aj(r))
ν([a, b])

>
ε

supx∈[a,b] f(x)ν([a, b])

)
P (Rn = r).

Hence, the result follows from the proofs above (see [2]).

Lemma 4.3. Under the assumptions of Proposition 4.1, for all ε > 0,

P (sup
g∈K

sup
µ∈K′

|An − L(µ, g)| > ε)

is the general term of a convergent series.

P r o o f. Let us introduce

K ′
1,n = {µ ∈ K ′ : ∀j = 1, . . . , k(Rn), µ(Aj(Rn)) ≤ 1},

K ′
2,n = {µ ∈ K ′ : ∀j = 1, . . . , k(Rn), µ(Aj(Rn)) ≥ 1}.

We have the inclusion

{sup
g∈K

sup
µ∈K′

|An − L(µ, g)| > ε}

⊆ {sup
g∈K

sup
µ∈K′

1,n

|An − L(µ, g)| > ε} ∪ {sup
g∈K

sup
µ∈K′

2,n

|An − L(µ, g)| > ε}.

Remember that K ′ is assumed to be a subset of Mp(k) for some fixed k.
If µ ∈ K ′

1,n then

k(Rn)∏
j=1

1{N(Aj(Rn))≥µ(Aj(Rn))}

=
1
k!

∫
[a,b]k

k(Rn)∏
j=1

1{Σk
j=1εxj

(Aj(Rn))≥µ(Aj(Rn))}N
(k)(dx)

so that, with Γn(µ) = {c ∈Mp :
∏k(Rn)

j=1 1{c(Aj(Rn))≥µ(Aj(Rn))} = 1},

E
( k(Rn)∏

j=1

1{N(Aj(Rn))≥µ(Aj(Rn))}

)
=

1
k!

E
( ∫

[a,b]k

1Γn(µ)

( k∑
j=1

εxj

)
N (k)(dx)

)
.

Hence

E
( k(Rn)∏

j=1

1{N(Aj(Rn))≥µ(Aj(Rn))}

)
= E(Q′N (Γn(µ) ∩Mp(k))).



254 E. Crétois

Similarly, if µ ∈ K ′
1,n then

eµ(g)E
(
e−N(g)

k(Rn)∏
j=1

1{N(Aj(Rn))≥µ(Aj(Rn))}

)
= E

( ∫
Γn(µ)∩Mp(k)

Q′N (dc)L(c, g)
)

and therefore

{sup
g∈K

sup
µ∈K′

1,n

|An − L(µ, g)| > ε}

⊆
{

sup
g∈K

sup
µ∈K′

1,n

∣∣∣∣E(
∫

Γn(µ)∩Mp(k)
Q′N (dc) L(c, g))

E(Q′N (Mp(k) ∩ Γn(µ)))
− L(µ, g)

∣∣∣∣ > ε

}
and

{sup
g∈K

sup
µ∈K′

1,n

|An − L(µ, g)| > ε}

⊆
{

sup
g∈K

sup
µ∈K′

1,n

E(
∫

Γn(µ)∩Mp(k)
Q′N (dc) |L(c, g)− L(µ, g)|)

E(Q′N (Mp(k) ∩ Γn(µ)))
> ε

}
.

Using the definition of Γn(µ), we obtain

Γn(µ) ∩Mp(k) ⊆ B(µ, sup
j=1,...,k(Rn)

l(Aj(Rn))).

Now, by the assumption (2) and since for each measure µ ∈Mp, g → L(µ, g)
is continuous on C+, it follows that for all ε > 0, there exists η > 0 satisfying

∀µ ∈ K ′ (compact), ∀g ∈ K (compact),

c ∈ B(µ, η), g′ ∈ B(g, η) ⇒ |L(c, g′)− L(µ, g)| < ε.

Actually, for all ε > 0, there exists η > 0 satisfying

∀µ ∈ K ′ (compact), ∀g ∈ K (compact),

c ∈ B(µ, η) ⇒ |L(c, g)− L(µ, g)| < ε.

Finally, we get the inclusion

{sup
g∈K

sup
µ∈K′

1,n

|An − L(µ, g)| > ε} ⊆ {ε > ε} ∪ { sup
j=1,...,k(Rn)

l(Aj(Rn)) > η}.

By Lemma 4.2, for all ε > 0,

P{sup
g∈K

sup
µ∈K′

1,n

|An − L(µ, g)| > ε}

is the general term of a convergent series.
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We must now show that

P{sup
g∈K

sup
µ∈K′

2,n

|An − L(µ, g)| > ε}

is the general term of a convergent series. We will use the convention that
supx∈∅ |a(x)| = 0. Thus, it suffices to show that P (K ′

2,n 6= ∅) is the general
term of a convergent series. Recall that

K ′
2,n = {µ ∈ K ′ : ∃j = 1, . . . , k(Rn), µ(Aj(Rn)) ≥ 2}.

Since µ ∈ Mp(k), we can write µ =
∑k

p=1 εxp where εxp is the point mass
at xp and the xp are ordered on [a, b]. We set x0 = a and xk+1 = b. We
also define

inf(µ) = inf
p=1,...,k+1

(xp − xp−1).

Since K ′ is a compact set and

K ′ ⊆
⋃

µ∈K′

B(µ, inf(µ)/3)

there exists a finite set {µ1, . . . , µl} of elements of K ′ for which

K ′ ⊆
l⋃

r=1

B(µ, inf(µr)/3).

Hence

K ′
2,n ⊆

l⋃
r=1

(B(µ, inf(µr)/3) ∩K ′
2,n).

We have

{K ′
2,n 6= ∅}

=
l⋃

r=1

{∃µ ∈ B(µr, inf(µ)/3) and j ∈ {1, . . . , k(Rn)} : µ(Aj(Rn)) ≥ 2}.

It is then straightforward to obtain

{K ′
2,n 6= ∅} ⊆

l⋃
r=1

{ sup
j=1,...,k(Rn)

l(Aj(Rn)) > inf(µr)/6}.

Lemma 4.2 completes the proof.

Lemma 4.4. Under the assumptions of Proposition 4.1, for all ε > 0,

P{sup
g∈K

sup
µ∈K′

|Cn − 1| > ε}

is the general term of a convergent series.
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P r o o f. There are k(Rn)k possibilities to set k points of a measure of
Mp(k) in the k(Rn) intervals Aj(Rn). Thus, we can write

Mp(k) =
k(Rn)k⋃

l=1

Γn,l,

where the Γn,l are sets of measures having the same number of points in
each Aj(Rn). We then have

P{sup
g∈K

sup
µ∈K′

|Cn − 1| > ε} ≤ P

{ k(Rn)k⋃
l=1

∣∣∣∣n−1
∑n

i=1 1{Ni∈Γn,l}

P (N ∈ Γn,l)
− 1

∣∣∣∣ > ε

}
.

Consequently,

P{sup
g∈K

sup
µ∈K′

|Cn − 1| > ε}

≤
∑
r∈N

k(r)kε−4E

(
n−1

∑n
i=1 1{Ni∈Γn,l}

P (N ∈ Γn,l)

)4

P (Rn = r)

and

P{sup
g∈K

sup
µ∈K′

|Cn − 1| > ε} ≤
∑
r∈N

k(r)k const
n2

P (Rn = r).

Therefore

P{sup
g∈K

sup
µ∈K′

|Cn − 1| > ε} ≤
∑
r∈In

k(r)k const
n2

P (Rn = r)

+
∑

r<nν([a,b])(1−n−δ)

k(r)k const
n2

P (Rn = r)

+
∑

r>nν([a,b])(1+n−δ)

k(r)k const
n2

P (Rn = r).

Let us consider the first term of this sum. Since k(r) grows to infinity
(see the construction of the random partition), we can write∑

r∈In

k(r)k const
n2

P (Rn = r) ≤ const
k([nν([a, b])(1 + n−δ)])

n2
.

By the assumption (3), this is the general term of a convergent series.
For the second term of the sum, we can write∑

r<nν([a,b])(1−n−δ)

k(r)k const
n2

P (Rn = r) ≤ const
k([nν([a, b])(1− n−δ)])

n2
.

The assumption (3) shows that this is the general term of a convergent
series.
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For the third term of the sum, we have∑
r>nν([a,b])(1+n−δ)

k(r)k const
n2

P (Rn = r)

≤
∑

r>nν([a,b])(1+n−δ)

k(r)k const
r2

· r2

n2
P (Rn = r).

Since k(r)k/r2 decreases for large r, for n ≥ n0 we have∑
r>nν([a,b])(1+n−δ)

k(r)k const
n2

P (Rn = r)

≤ const(k([nν([a, b])(1 + n−δ)]))k

([nν([a, b])(1 + n−δ)])2
∑
r∈N

r2

n2
P (Rn = r).

Using the fact that Rn is a Poisson variable with parameter nν([a, b]) we
obtain, for n large,∑

r>nν([a,b])(1+n−δ)

k(r)k const
n2

P (Rn = r)

≤ const(k([nν([a, b])(1 + n−δ)]))k

([nν([a, b])(1 + n−δ)])2
(2ν([a, b]))2.

By the assumption (3), this implies that the third term of the sum is the
general term of a convergent series.

This proves Lemma 4.4.

Lemma 4.5. Under the assumptions of Proposition 4.1, for all ε > 0,

P{sup
g∈K

sup
µ∈K′

|Bn − 1| > ε}

is the general term of a convergent series.

P r o o f. Using the notations of Lemma 4.4 and the fact that K is a
compact set and hence is covered with a finite number of B(g, α), we obtain

P{sup
g∈K

sup
µ∈K′

|Bn − 1| > ε}

= P

{ s⋃
r=1

k(Rn)k⋃
l=1

sup
g∈B(gr,α)

∣∣∣∣n−1
∑n

i=1 e−Ni(g)1Γn,l
(Ni)

E(e−N(g)1Γn,l
(N))

− 1
∣∣∣∣ > ε

}
.

Thus



258 E. Crétois

P{sup
g∈K

sup
µ∈K′

|Bn − 1| > ε}

≤ P

{ s⋃
r=1

k(Rn)k⋃
l=1

∣∣∣∣n−1
∑n

i=1 e−Ni(gr)1Γn,l
(Ni)

E(e−N(gr)1Γn,l
(N))

− 1
∣∣∣∣ >

ε

2

}

+ P

{ s⋃
r=1

k(Rn)k⋃
l=1

sup
g∈B(gr,α)

∣∣∣∣n−1
∑n

i=1 e−Ni(g)1Γn,l
(Ni)

E(e−N(g)1Γn,l
(N))

−
n−1

∑n
i=1 e−Ni(gr)1Γn,l

(Ni)
E(e−N(gr)1Γn,l

(N))

∣∣∣∣ >
ε

2

}
.

We show that the first term of this sum is the general term of a convergent
series exactly as in Lemma 4.4. For the second term, choose α satisfying

1− e−2α < ε/4 and e2α − 1 < ε/4.

The second term is then bounded from above by

P

{ s⋃
r=1

k(Rn)k⋃
l=1

∣∣∣∣n−1
∑n

i=1 e−Ni(gr)1Γn,l
(Ni)

E(e−N(gr)1Γn,l
(N))

∣∣∣∣ > 2
}

and thus by

P

{ s⋃
r=1

k(Rn)k⋃
l=1

∣∣∣∣n−1
∑n

i=1 e−Ni(gr)1Γn,l
(Ni)

E(e−N(gr)1Γn,l
(N))

− 1
∣∣∣∣ > 1

}
We complete the proof of Lemma 4.5 with the same method as in Lemma 4.4.

With Lemmas 4.3–4.5, the proof of Proposition 4.1 is complete.

5. Conclusion. We thus have a new estimator of the Laplace functional
L(µ, g) which converges almost completely. The estimator of Karr converges
almost surely but the conditions are not the same. The condition

(b) maxj≤ln diam Anj → 0 as n →∞
has been replaced by

(4) limr→∞ infj=1,...,k(r) λj(r)/ ln(r) = ∞.
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