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OPTIMAL SOLUTIONS OF MULTIVARIATE
COUPLING PROBLEMS

Abstract. Some necessary and some sufficient conditions are established
for the explicit construction and characterization of optimal solutions of mul-
tivariate transportation (coupling) problems. The proofs are based on ideas
from duality theory and nonconvex optimization theory. Applications are
given to multivariate optimal coupling problems w.r.t. minimal `p-type met-
rics, where fairly explicit and complete characterizations of optimal trans-
portation plans (couplings) are obtained. The results are of interest even
in the one-dimensional case. For the first time an explicit criterion is given
for the construction of optimal multivariate couplings for the Kantorovich
metric `1.

1. Introduction. In this paper we deal with the following basic cou-
pling problem. Let P,Q ∈ M1(Rk,Bk) be two probability measures on
(Rk,Bk) and define, for p ≥ 1 and | | a norm on Rk, the minimal `p-metric
(w.r.t. the distance | |)

(1.1) `p(P,Q) := inf{(E|X − Y |p)1/p : X d= P, Y
d= Q},

all r.v.’s X,Y being defined on a rich enough probability space. The trans-
portation problem (or coupling problem) is to determine the value of the
optimal transportation `p(P,Q) and to construct an optimal pair (X,Y ) of
random variables. In this paper we restrict ourselves to the second part of
the problem. The multivariate coupling problem is a well-known long-time
open problem which has many applications in probability theory (cf. Rachev
(1991)). The aim of the paper is to characterize optimal transportation plans
(couplings), to describe the necessary notions and arguments from noncon-
vex optimization theory and consider extensions of the transportation prob-
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lem in (1.1) to general cost functions c(x, y). We remark that several parts of
this paper do not need the context of euclidean spaces (cf. also Rüschendorf
(1991b)). In Sections 1 and 2 we review some basic notions and results
which are up to now only available in some conference volumes. In the fol-
lowing Section 3 we develop some new criteria which allow us to determine
optimal explicit coupling results in a series of interesting examples.

In the case p = 2 and | | the euclidean metric, the following basic char-
acterization of an optimal coupling (resp. an optimal solution of (1.1)) was
given in Rüschendorf and Rachev (1990).

Theorem 1. Let X d= P and Y
d= Q have finite second moments, and

| | be the euclidean metric on Rk.
(a) (X,Y ) is `2-optimal if and only if

(1.2) Y ∈ ∂f(X) a.s. for some closed convex function f,

where ∂f(x) denotes the subgradient of f at x.
(b) There exists an optimal pair in (a).

Some previous versions of this result were developed in Knott and Smith
(1984) and Smith and Knott (1992). A condition equivalent to (1.2) is that
the support Γ of the distribution of (X,Y ) is cyclically monotone, i.e. for
all (x1, y1), . . . , (xn, yn) ∈ Γ and xn+1 := x1 we have

(1.3)
n∑

i=1

(xi+1 − xi)yi ≤ 0

(cf. Rockafellar (1970)). Theorem 1 allows one to construct many examples
of optimal transportation plans. The cases of normal distributions, radial
transformations, spherically invariant distributions and others are consid-
ered in Cuesta, Rüschendorf and Tuero (1993). If φ is a function on Rk and
φ = ∇f is the gradient of a closed (= lsc) convex function f , then (X,φ(X))
is an `2-optimal pair for any r.v. X in the domain of φ. This property sug-
gests calling φ an optimal coupling function. If φ = (φ1, . . . , φk) and φi

are continuously differentiable and defined on a convex domain, then the
`2-optimality of φ is equivalent to

(1.4) φ is cyclically monotone (i.e. the graph of φ, Γ = {(x, φ(x) : x ∈
domφ} is cyclically monotone)

or, equivalently,

(1.5) the matrix (∂φi(x)/∂xj) is symmetric for all x ∈ domφ and φ is
monotone (i.e. (y − x)(φ(y)− φ(x)) ≥ 0 for all x, y)

or, equivalently,
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(1.6) φ = ∇f for some smooth convex function f

(cf. Rüschendorf (1991b) and Levin (1992)).
For radially continuous functions φ on a convex set in Rk the condition

that φ = ∇f for some Gateaux differentiable function f is equivalent to the
condition that the integral

∫
x0→x

φ(u) du is independent of the path of inte-
gration, i.e. φ(u) du is closed (cf. Vainberg (1973), Th. 6.2) and in this case
f(x) = f0 +

∫ 1

0
φ(x0 + t(x−x0))(x−x0) dt = f0 +

∫
x0→x

φ(u) du. Therefore,
under closedness of φ(u) du, convexity of f is equivalent to monotonicity
of φ.

R e m a r k 1. Theorem 1 solves “one half” of the problem of construction
of optimal `2-transportation plans. It gives a characterization of all `2-
optimal transportation plans. A still open problem is to find for given P,Q
an optimal coupling function φ. If P,Q have densities f , g w.r.t. λk and if a
regular invertible solution φ exists, then by the transformation formula the
problem to be solved is the Monge nonlinear partial differential equation:
Find φ (regular) cyclically monotone such that

(1.7) g(x) = f(φ−1(x))|detDφ−1(x)|

for x in the support of Q.
The usual boundary conditions of PDE’s are replaced by the condition

of cyclical monotonicity of φ. For the (approximate) solution of (1.7) there
seem to be two strategies, except in simple cases. Firstly, to develop nu-
merical solutions of (1.7), and secondly, to give a “sufficiently” large list of
examples φ of optimal coupling functions and the resulting pairs of densities
f , g. This second path has begun to be investigated in Cuesta et al. (1993)
but needs a lot of further extensions. Apparently, the first approach has not
been taken up yet.

2. c-Convex functions; the general case. Theorem 1 has been
extended to general cost functions c : Rk × Rk → R1 (c also might be
defined on subsets) in Rüschendorf (1991a, b). Call a pair X d= P, Y

d= Q
c-optimal if

(2.1) Ec(X,Y ) = sup{Ec(U, V ) : U d= P, V
d= Q}.

We consider the corresponding sup problem in order to avoid notational
conflict with relevant notions from nonconvex optimization theory. For the
inf problem just switch over from c to the cost function −c. A function f
on Rk is called c-convex if for some index set I and yi ∈ Rk, ai ∈ R1, i ∈ I,

(2.2) f(x) = sup
i∈I

(c(x, yi) + ai).
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For c(x, y) = xy (on Rk) one obtains the closed convex functions. This case
corresponds to the minimal `2-metrics considered in Section 1. c-convex
functions have been studied in several recent papers on nonconvex optimiza-
tion theory (cf. Elster and Nehse (1974) and Dietrich (1988) and references
therein). Denote the c-conjugate of f by

(2.3) f∗(y) := sup
x

(c(x, y)− f(x)),

the sup being over the domain of f , and the double c-conjugate by

(2.4) f∗∗(x) := sup
y

(c(x, y)− f∗(y)).

Then f∗ and f∗∗ are c-convex; f∗∗ is the largest c -convex function majorized
by f ; f = f∗∗ if and only if f is c-convex (cf. Elster and Nehse (1974)); and
f∗, f∗∗ are “admissible” in the sense that

(2.5) f∗(y) + f∗∗(x) ≥ c(x, y), ∀x, y.
The (double) conjugate functions are basic for the theory of inequalities as
in (2.5). The c-subgradient of a function f is defined by

(2.6) ∂cf(x) := {y : f(z)− f(x) ≥ c(z, y)− c(x, y), ∀z ∈ dom f}

The following result gives the basic characterization of c-optimal trans-
portation plans (X,Y ). It is the analogue to Theorem 1 for the case of
`2-couplings.

Let Lm(P,Q) denote the set of all lower majorized measurable functions
c = c(x, y), i.e. c(x, y) ≥ f1(x) + f2(y) for some f1 ∈ L1(P ), f2 ∈ L1(Q).

Theorem 2 (cf. Rüschendorf (1991b)). Let c ∈ Lm(P,Q) and assume
that I(c) := inf{

∫
h1 dP +

∫
h2 dQ : c ≤ h1 ⊕ h2, h1 ∈ L1(P ), h2 ∈ L1(Q)}

<∞.

(a) X d= P , Y d= Q is a c-optimal pair if and only if

(2.7) Y ∈ ∂cf(X) a.s. for some c-convex function f.

(b) If c is upper semicontinuous, then there exists an optimal pair
(X,Y ).

For c(x, y) = |x− y|p, we have I(c) < ∞ if c(·, a) ∈ L1(P ) and c(a, ·) ∈
L1(Q), i.e. if P and Q have finite pth moments. The same condition im-
plies that c(x, y) = −|x − y|p is lower majorized, i.e. c ∈ Lm(P,Q). As
in (1.4) and by a similar proof, condition (2.7) is equivalent to the con-
dition that the support Γ of (X,Y ) is c-cyclically monotone, i.e. for all
(x1, y1), . . . , (xn, yn) ∈ Γ and xn+1 := x1 we have

(2.8)
n∑

i=1

(c(xi+1, yi)− c(xi, yi)) ≤ 0
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(cf. Dietrich (1988) and Smith and Knott (1992)). For a differentiable
cost function c(x, y) and a function φ on Rk define c1(x, y) := ∂

∂xc(x, y).
The differential form c1(x, φ(x)) dx is called closed if its integral is path
independent. For the case of regular φ the following lemma was given in
Rüschendorf (1991b).

Lemma 3. If c(·, y) is differentiable for all y and c1(x, φ(x)) dx is closed ,
then (2.7), (2, 8) are equivalent to

(2.9)
∫

y→x

(c1(u, φ(y))− c1(u, φ(u))) du ≤ 0, ∀x, y.

P r o o f. If (2.9) holds, then define, for some x0 ∈ domφ,

(2.10) f(x) :=
∫

x0→x

c1(u, φ(u)) du.

From (2.9) we conclude that for all z,

f(z)− f(x) =
∫

x→z

c1(u, φ(u)) du ≥
∫

x→z

c1(u, φ(x)) du

= c(z, φ(x))− c(x, φ(x)).

Therefore, φ(x) ∈ ∂cf(x). The converse direction is similar.

R e m a r k 2. If c(·, y) is concave, then (without differentiability) the
following version of Lemma 3 holds: If −hx(u) is in the subgradient
∂(−c(·, φ(x))) at u and if hu(u) du is closed, then (2.7), (2.8) are equiva-
lent to

(2.11)
∫

y→x

(hy(u)− hu(u)) du ≤ 0, ∀x, y.

This conclusion follows from the inequality

c(z, φ(x))− c(x, φ(x)) ≤
∫

x→z

hx(u) du

and replacing (2.10) by f(x) :=
∫

x0→x
hu(u) du.

For the application of the theory in this section one needs manageable
criteria to determine c-subgradients resp. c-cyclically monotone functions
φ. To establish these criteria is the main contribution of this paper.

3. c-Optimal coupling functions. Call a function φ c-cyclically
monotone if the graph of φ, Γ := {(x, φ(x)) : x ∈ domφ}, is c-cyclically
monotone. By Theorem 2 for any c-cyclically monotone function φ and any
r.v. X in the domain of φ the pair (X,φ(X)) is c-optimal. The idea of
the following simple criterion for the construction of c-cyclically monotone
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functions φ is basically due to Smith and Knott (1992) who also consider
the case of general pairs (X,Y ). It is based on criterion (2.8) and relates
c-cyclically monotone functions to cyclically monotone functions. This in
an interesting relation since the cyclically monotone functions are studied
in several papers.

Theorem 4. If for some cyclically monotone function h and all x, y in
the domain of φ,

(3.1) c(x, φ(x))− c(x, φ(x)) ≤ h(x)(y − x),

then φ is c-cyclically monotone.

P r o o f. For all x1, . . . , xn ∈ domφ and xn+1 := x1 we have
n∑

i=1

(c(xi+1, φ(xi))− c(xi, φ(xi))) ≤
n∑

i=1

h(xi)(xi+1 − xi) ≤ 0,

since h is cyclically monotone.

Corollary 5. If c(·, y) is concave and differentiable for all y and if
h(u) := c1(u, φ(u)) is cyclically monotone, then φ is c-cyclically monotone.

P r o o f. From concavity of c(·, y) we obtain

c(y, φ(x))− c(x, φ(x)) ≤ c1(x, φ(x))(y − x) = h(x)(y − x);

i.e. condition (3.1) is satisfied.

R e m a r k 3. For the application to nondifferentiable functions c like
c(x, y) = −|x − y|p the following extension of Corollary 5 is of interest: If
c(·, y) is concave and −h(u) is in the subgradient of −c(·, φ(u)) at u, and if
h is cyclically monotone, then φ is c-cyclically monotone.

Example 1. (a) (Optimal `p-couplings) Let c(x, y) := −|x− y|p, p > 1,
x, y ∈ Rk, where | | is the euclidean metric, i.e. we consider the problem of
constructing optimal transportation plans w.r.t. the minimal `p-metric as
defined in (1.1) (up to the pth root). Then c(·, y) is (strictly) concave since
the Minkowski inequality yields

c(αx1 + (1− α)x2, y) = −|α(x1 − y) + (1− α)(x2 − y)|p(3.2)
≥ −(α|x1 − y|+ (1− α)|x2 − y|)p

≥ −α|x1 − y|p + (1− α)|x2 − y|p

= αc(x1, y) + (1− α)c(x2, y)

by the convexity of t → tp on the positive real line. (This argument holds
true for any norm.) Let h be any cyclically monotone function. Then the
equation

(3.3) c1(x, φ(x)) = −|x− φ(x)|p−2(x− φ(x)) = h(x)
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has the unique solution

(3.4) φ(x) = |h(x)|−(p−2)/(p−1)h(x) + x.

Therefore, from Corollary 5 for any cyclically monotone function h, the
function φ = φh from (3.4) is c-cyclically monotone and so for any r.v. X in
the domain of φ the pair (X,φ(X)) is an optimal coupling w.r.t. minimal
`p-metrics. Some partial result in the case 1 < p ≤ 2 was given in Smith and
Knott (1992). For p = 2 we find that φ(x) = h(x)+x is cyclically monotone.
By Theorem 1 cyclical monotonicity of h is necessary and sufficient in this
case.

If in particular h(x) := Ax, A positive semidefinite, symmetric, linear
(cf. (1.5)), then we obtain optimality of

(3.5) φ(x) = (xTA2x)−(p−2)/(2(p−1))Ax+ x.

If h(x) = α(|x|)x/|x|, with α nondecreasing, is a radial transformation, then

(3.6) φ(x) = g(|x|) x
|x|
,

where g(|x|) := (α(|x|))1/(p−1) + |x| is optimal. φ is again a radial transfor-
mation. Optimality of radial transformations has been established before in
Cuesta et al. (1993).

(b) For c(x, y) = −
∑k

i=1 |xi − yi|p, p > 1, and h = (h1, . . . , hk) any
cyclically monotone function define

(3.7) ĥ(x) := (|hi(x)|−(p−2)/(p−1) hi(x)).

Then as in example (a) we conclude that

(3.8) φ(x) = ĥ(x) + x is c-optimal.

(c) For

c(x, y) = −
( k∑

i=1

|xi − yi|p
)r/p

= −|x− y|rp, p, r > 1,

consider the equation

(3.9) c1(x, φ(x)) = −r|x−φ(x)|r−p
p (|xi−φi(x)|p−2 (xi−φi(x))) = rh(x)

for any cyclically monotone function h. From (3.9) we obtain

|hi(x)| = |x− φ(x)|r−p
p |xi − φi(x)|p−1

and with the conjugate index q = p/(p− 1) to p,

|h(x)|q =
( ∑

|hi(x)|p/(p−1)
)(p−1)/p

= |x− φ(x)|r−1
p .
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Therefore,

|xi − φi(x)|p−2 = |hi(x)|
p−2
p−1 |x− φ(x)|

(p−r)(p−2)
p−1

p(3.10)

= |hi(x)|
p−2
p−1 |h(x)|

p−r
r−1

p−2
p−1

q

and

φi(x)− xi = hi(x)|x− φ(x)|p−r
p |xi − φi(x)|2−p

= hi(x)|h(x)|
p−r
r−1

p
p−1

|hi(x)|
2−p
p−1 |h(x)|

r−p
r−1

p−2
p−1

q

= hi(x)|hi(x)|
2−p
p−1 |h(x)|

p−r
r−1
q .

From (3.9) and Corollary 5, therefore,

(3.11) φ(x) := ĥ(x) + x is c-optimal,

where ĥ(x) := |h(x)|(p−r)/(r−1)
q (hi(x)/|hi(x)|(p−2)/(p−1)).

(d) (Kantorovich metric `1) For

c(x, y) = −|x− y|p = −
( ∑

|xi − yi|p
)1/p

, p ≥ 1,

a different situation occurs. Note that this cost function corresponds to the
minimal `1-metric (based on the p-norm in Rk).

We first consider the case p > 1. Then for f(x) = |x|p the subdifferential
is given by (cf. Rockafellar (1970))

(3.12) ∂f(x) =
{

(|xi|p−2xi/|x|p−1
p ) = ∇f(x) for x 6= 0,

Uq for x = 0,

where Uq is the unit ball w.r.t. q-norm. Therefore, for any y ∈ ∂f(x) we
have |y|q = 1 for x 6= 0, while |y|q ≤ 1 for x = 0. Let h be any cyclically
monotone function with

(3.13) |h(x)|q = 1

and consider the equation

(3.14)
(
|xi − φi(x)|p−2

|x− φ(x)|p−1
p

(φi(x)− xi)
)

= h(x), x 6= φ(x).

Then from the definition of the subgradient we obtain

c(y, φ(x))− c(x, φ(x)) ≤ h(x)(y − x)

and, therefore, by Theorem 4 (or Remark 3), φ is cyclically monotone.
For any nonnegative function α(x) ≥ 0 define

(3.15) φ(x) := (α(x))1/(p−1)

(
hi(x)

|hi(x)|(p−2)/(p−1)

)
+ x.
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Then

|φ(x)− x|p−1
p = α(x)|h(x)|q = α(x).

Furthermore,

|φi(x)− xi| = (α(x)|hi(x)|)1/(p−1)

and

φi(x)− xi = (α(x))1/(p−1) hi(x)
|hi(x)|(p−2)/(p−1)

= (α(x)hi(x))
α(x)(2−p)/(p−1)

|hi(x)|(p−2)/(p−1)
= α(x)hi(x)/|φi(x)− xi|p−2.

This implies that φ satisfies equation (3.14). So in the case of the `1-metric
the optimality equation has no longer a unique solution. In the case p = 2,
(3.15) simplifies to

(3.16) φ(x) = α(x)h(x) + x

and the optimality equation (3.14) reduces to the condition of h(x) =
(φ(x)− x)/(|φ(x)− x|) being cyclically monotone.

In the case p = 1 we have, analogously, with f(x) = |x|1, the following
characterization of ∂f(x):

u ∈ ∂f(x) if and only if ui = xi/(|xi|) for xi 6= 0 and(3.17)
|ui| ≤ 1 for xi = 0.

Similar to the preceding calculations or by Remark 3 we obtain the opti-
mality equation

(3.18)
φi(x)− xi

|φi(x)− xi|
= hi(x), xi 6= φi(x),

and |hi(x)| ≤ 1, h cyclically monotone. The solutions of (3.18) are given by

(3.19) φi(x) = αi(x)hi(x) + xi

for some nonnegative functions αi(x).

Corollary 6. Let c(x, y) = −|x − y|p, p ≥ 1, let α(x) with αi(x) ≥ 0
be measurable, and let h(x) be cyclically monotone with |h(x)|q = 1 for all
x, where q = p/(p− 1) is the conjugate index to p. Then

(3.20) φ(x) = (α(x))1/(p−1)

(
hi(x)

|hi(x)|(p−2)/(p−1)

)
+ x for p > 1

and

(3.21) φ(x) = (αi(x)hi(x)) + x for p = 1

are c-cyclically monotone.
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So for all r.v.’s X in the domain of φ the pair (X,φ(X)) is an opti-
mal coupling for the `1-metric (Kantorovich metric) based on the p-norm
distance | |p on Rk. It remains to be investigated how large the class of
admissible h is.

From definition (2.6) the c-subgradient of a function f has a characteri-
zation as solution of a nonconvex optimization problem: y∗ ∈ ∂cf(y) if and
only if

(3.22) ϕy(x) ≥ ϕy(y) for all x, y,

where ϕy(x) := f(x) − c(x, y∗); i.e. ϕy has its minimum at x = y. If
y∗ = φ(y) and c1(u, φ(u)) du is closed, then by (2.10),

(3.23)
∂

∂x
ϕy(y) = 0.

With the second derivatives

B(x, y) := − ∂2

∂x∂x′
ϕy(x)(3.24)

=
∂2

∂x∂x′
c(x, φ(y))− ∂2

∂x∂x′
c(x, φ(x))

− ∂2

∂x∂y
c(x, φ(x))Dφ(x)

one obtains

Proposition 7. If c is differentiable in the first component and
c1(u, φ(u)) du is closed , then:

(a) B(x, y) ≤ 0 (in the sense of negative definiteness) implies that φ is
c-optimal.

(b) If φ is c-optimal , then

(3.25) −B(y, y) =
∂2

∂x∂x′
c(y, φ(y))φ(y) ≥ 0.

P r o o f. (a) If B(x, y) ≤ 0, then ϕy is convex and ∂
∂xϕ

y(y) = 0. This
implies that y is a global minimum of ϕy and, therefore, by (3.22), φ(y) ∈
∂cf(y), i.e. φ is a c-optimal function.

(b) is a well-known necessary condition for local optimality of ϕy at
x = y.

R e m a r k 4. In the case c(x, y) = −|x−y|p, 1 < p, with | | the euclidean
metric,

∂2

∂yj∂xi
c(x, y)

=
{
−p(p− 2)|x− y|p−3s(yj − xj)(xi − yi) for i 6= j,
−p(p− 2)|x− y|p−3s(yi − xi)(xi − yi) + p|x− y|p−2 for i = j,
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where s is the sign function and, therefore, the necessary condition (3.25)
reads

(3.26) −B(y, y)

= −p|y − φ(y)|p−2

(
(p− 2)

(y − φ(y))(y − φ(y))T

|y − φ(y)|2
− I

)
Dφ(y) ≥ 0.

For p = 2, (3.26) is equivalent to the necessary and sufficient condition
Dφ ≥ 0.

The following sufficient condition for c-optimality of φ does not assume
that the cost function is concave.

Theorem 8. If c(·, y) is differentiable for all y and c1(u, φ(u)) du is
closed and if for all x, y in the domain of φ,

(3.27) (x− y)(c1(x, φ(x))− c1(x, φ(y))) ≥ 0,

then φ is a c-optimal function.

P r o o f. By (3.22) and (2.9) it is sufficient to prove that

Fy(x) :=
∫

y→x

(c1(u, φ(y))− c1(u, φ(u))) du ≤ 0 = Fy(y).

For t ≥ 0, let xt := y + t(x− y) and H(t) := Fy(xt). Then by (3.27),
d

dt
H(t) =

∂

∂x
Fy(xt)(x− y) = (c1(xt, φ(y))− c1(xt, φ(xt)))(x− y)(3.28)

=
1
t
(c1(xt, φ(y))− c1(xt, φ(xt)))(xt − y) ≤ 0.

This implies that

Fy(x) = Fy(y) +
1∫

0

d

dt
H(t) dt ≤ 0.

R e m a r k 5. If c(·, y) is concave, then as in Remark 2 we have (without
differentiability) the following modified version of Theorem 8: If −hx(u) ∈
∂(−x(·, φ(x)))(u), if hu(u) du is closed and if for all x, y ∈ domφ,

(x− y)(hx(x)− hy(x)) ≥ 0,

then φ is c-cyclically monotone. This gives an alternative to the criterion in
Corollary 5 and Remark 3, which is advantageous in some examples.

Example 2. (a) In the case c(x, y) = −|x − y|p, p > 1, where | | is the
euclidean metric, condition (3.27) amounts to

(3.29) (gx(x)− gx(y)(x− y) ≥ 0 for all x, y,

with gx(y) := |x − φ(y)|p−2(x − φ(y)). A rough sufficient condition for
(3.29) is that for all x, gx is cyclically monotone. For a cyclically monotone
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function hx the equation

(3.30) gx(y) = hx(y), ∀y,
has the unique solution

φx(y) = |hx(y)|−(p−2)/(p−1)hx(y) + x.

The assumption that φx = φ does not depend on x leads to the following
equation with h := h0, r := (p− 2)/(p− 1), ψ(y) := h(y)/|h(y)|r:
(3.31) hx(y) = (ψ(y)− x)|ψ(y)− x|r/(1−r)

and

(3.32) φ(y) = |h(y)|−rh(y).

But now it has to be checked whether hx is cyclically monotone for all x.
For p = 2, φ(y) = h(y), this is trivially true.

(b) For c(x, y) = −|x− y|p = −(
∑
|xi − yi|p)1/p, p ≥ 1, the function

c1(x, y) := − 1
|x− y|p−1

p

(|xi − yi|p−2(xi − yi)), x 6= y,

defines a subgradient and conditions (3.27) and Remark 5 amount to

(3.33)
k∑

i=1

(xi − yi)
(
|xi − φi(x)|p−2

|x− φ(x)|p−1
p

(φi(x)− xi)

−|xi − φi(y)|p−2

|x− φ(y)|p−1
p

(φi(y)− xi)
)
≥ 0.

For p = 2, (3.33) reduces to

(3.34) (x− y)
(
φ(x)− x

|φ(x)− x|
− φ(y)− x

|φ(y)− x|

)
≥ 0 for all x, y.

So Theorem 8 has the following interesting consequence for the `1-metric
w.r.t. the euclidean distance | | = | |2.
Corollary 9 (Optimal couplings w.r.t. Kantorovich metric). If

φ(u)−u
|φ(u)−u| du is closed and φ satisfies the normalized angle monotonicity con-
dition

(3.35) (x− y)
(
φ(x)− x

|φ(x)− x|
− φ(y)− x

|φ(y)− x|

)
≥ 0 for all x, y.

then (X,φ(X)) is an optimal coupling for the `1-metric w.r.t. euclidean
distance on Rk for any r.v. X in the domain of φ.

R e m a r k 6. (a) Condition (3.35) has an obvious geometric interpre-
tation. If we consider φ(x) and φ(y) in the (by x) translated coordinate
system and normalized to norm 1, then this difference has an angle with the
difference of x and y (or y in the translated system) of less than 90 degrees.
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Without translation and normalization this is just the usual monotonicity.
Corollary 9 suggests to develop a theory of (3.35) since this notion is related
to optimality w.r.t. the Kantorovich metric `1, as monotonicity is related
to optimality w.r.t. the `2-metric (cf. Theorem 1).

(b) (One-dimensional case) Even in the one-dimensional case the con-
clusions of this section are of interest and new. They allow one to construct
optimal couplings in some cases of cost functions c which are not of Monge
type. On the real line condition (3.27) is equivalent to

(3.36) x

{
≥
≥

}
y implies c1(x, φ(x))

{
≤
≤

}
c1(x, φ(y)),

while in the concave case Corollary 5 gives the sufficient condition for opti-
mality:

(3.37) h(x) := c1(x, φ(x)) is nondecreasing.

To compare these criteria consider the case c(x, y) = (x − y)2, x, y ∈ R1.
Then condition (3.37) is equivalent to

(3.38) φ(x)− x is nondecreasing,

while condition (3.36) amounts to

(3.39) φ is nondecreasing.

So in this case Theorem 8 gives the best possible answer while Corollary 5
has a stronger sufficient condition.

(c) The sufficient condition B(x, y) ≤ 0 for c-optimality in Proposition 7
implies that ϕy (cf. (3.18)) is convex. If we can assure the weaker condition
that ϕy is quasi-convex, i.e.

(3.40) ϕy(αx+ (1− α)y) ≤ min(ϕy(x), ϕy(y)),

then a local minimum of ϕy is either situated in a domain where ϕy is con-
stant, or it is already a global minimum (cf. Roberts and Varberg (1973)).
Therefore, the sharpened necessary condition that B(y, y) < 0 is already a
sufficient condition for c-optimality of φ.

(d) Similar ideas to those in this section appear in a recent paper of Levin
(1992) on the Kantorovich–Rubinstein problem. Levin obtains for this prob-
lem (with fixed difference of the marginals) an explicit formula for the value
of the optimal transshipment problem in the case of differentiable cost func-
tions but no characterization of optimal plans. In contrast we obtain in this
paper explicit results for the form of optimal transportation plans but no
explicit formula for the optimal value. For the proof of the optimal value for-
mula in the transshipment problem the differentiability of the cost function
at the diagonal is a crucial assumption. Note that this assumption excludes
the natural cost functions cp(x, y)= |x− y|p, p≥1; the differentiable powers
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|x−y|αp , α>1, lead to trivial results in the transshipment problem. Some ex-
plicit results and bounds in the nondifferentiable case of the transshipment
problem were established in Rachev and Rüschendorf (1991).

Since the transshipment and transportation problems coincide for cost
functions satisfying the triangle inequality, the results of this paper can also
be seen in this context.
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L. Rüschendor f (1991a), Bounds for distributions with multivariate marginals, in: Pro-
ceedings: Stochastic Order and Decision under Risk , K. Mosler and M. Scarsini (eds.),
IMS Lecture Notes 19, 285–310.
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