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ESTIMATING MEDIAN AND OTHER QUANTILES

IN NONPARAMETRIC MODELS

Abstract. Though widely accepted, in nonparametric models admitting
asymmetric distributions the sample median, if n = 2k, may be a poor
estimator of the population median. Shortcomings of estimators which are
not equivariant are presented.

1. Results. Let F be the class of all distribution functions such that
if F ∈ F then there exist a and b (−∞ < a < b < ∞) such that F (a) = 0,
F (b) = 1, and F is a strictly increasing differentiable function on (a, b). We
consider F as a group family obtained by subjecting a random variable with
a fixed distribution F ∈ F to the family of all strictly increasing continuous
transformations (see Lehmann (1983), Sec. 1.3, Example 3.4).

In applications F can be considered as a basic nonparametric family

which is contained in various nonparametric families including the family of
all continuous distributions, the family of all distribution functions which
have a density, the family of distributions which have first moments, and so
on.

Let X1, . . . ,X2n, for a fixed n, be a sample from an F ∈ F and let
Mn = 1

2 (Xn:2n+Xn+1:2n) be the sample estimator of the population median
mF . Here X1:2n ≤ X2:2n ≤ . . . ≤ X2n:2n are the order statistics from the
sample X1, . . . ,X2n. Let Med(F, T ) denote the median of the distribution
of the statistic T from a sample which comes from the distribution F .

The statistic Mn is a widely used estimator of the population median
(see e.g. Gross (1985), Brown (1985), Bickel and Doksum (1977), Lehmann
(1983), to mention only a few most important references in estimation the-
ory).
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The aim of this note is to show that Mn is a rather poor estimator of
mF for F ∈ F . It appears that using Mn as a population median estimator
requires some more restrictions on the nonparametric family F .

Theorem. For every C > 0 there exists F ∈ F such that

Med(F,Mn) − mF > C.

P r o o f (Construction of F for a given C > 0). Let F0 be the class of
all strictly increasing differentiable functions G on (0, 1) satisfying G(0) = 0
and G(1) = 1. Then F is the class of all functions F satisfying F (x) =
G((x − a)/(b − a)) for some a and b (−∞ < a < b < ∞), and for some
G ∈ F0.

For a fixed t ∈
(

1
4
, 1

2

)

and a fixed ε ∈
(

0, 1
4

)

, let Ft,ε ∈ F0 be a distribu-
tion function such that

Ft,ε

(

1
2

)

= 1
2 , Ft,ε(t) = 1

2 − ε,

Ft,ε

(

t − 1
4

)

= 1
2
− 2ε, Ft,ε

(

t + 1
4
) = 1 − 2ε.

Let Y1, . . . , Y2n be a sample from Ft,ε. We shall prove that for every t ∈
(

1
4 , 1

2

)

there exists ε > 0 such that

(1) Med
(

Ft,ε,
1
2 (Yn:2n + Yn+1:2n)

)

≤ t.

Consider two random events:

A1 = {0 ≤ Yn:2n ≤ t, 0 ≤ Yn+1:2n ≤ t},

A2 =
{

0 ≤ Yn:2n ≤ t − 1
4
, 1

2
≤ Yn+1:2n ≤ t + 1

4

}

,

and observe that A1 ∩ A2 = ∅ and

(2) A1 ∪ A2 ⊆
{

1
2 (Yn:2n + Yn+1:2n) ≤ t

}

.

If the sample comes from a distribution G with a probability density func-
tion g, then the joint probability density function h(x, y) of Yn:2n, Yn+1:2n

is given by the formula

h(x, y) =
Γ (2n + 1)

Γ (n)Γ (n)
Gn−1(x) [1 − G(y)]n−1 g(x)g(y), 0 ≤ x ≤ y ≤ 1,

and the probability of A1 equals

PG(A1) =
t∫

0

dx
t∫

x

dy h(x, y).

Using the formula

Γ (p + q)

Γ (p)Γ (q)

x∫

0

tp−1(1 − t)q−1 dt =

p+q−1
∑

j=p

(

p + q − 1

j

)

xj(1 − x)p+q−1−j
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we obtain

PG(A1) =

2n
∑

j=n+1

(

2n

j

)

Gj(t)(1 − G(t))2n−j .

For PG(A2) we obtain

PG(A2) =

t−1/4∫

0

dx

t+1/4∫

1/2

dy h(x, y)

=

(

2n

n

)

Gn

(

t −
1

4

)[(

1 − G

(

1

2

))n

−

(

1 − G

(

t +
1

4

))n]

.

Define C1(ε) = PFt,ε
(A1) and C2(ε) = PFt,ε

(A2). Then

C1(ε) =
2n
∑

j=n+1

(

2n

j

)(

1

2
− ε

)j(
1

2
+ ε

)2n−j

,

C2(ε) =

(

2n

n

)(

1

2
− 2ε

)n[(

1

2

)n

− (2ε)n

]

.

Observe that

C1(ε) ր
1

2
as ε ց 0

and

C2(ε) ր

(

2n

n

)(

1

2

)2n

as ε ց 0.

Let ε1 > 0 be such that

(∀ε < ε1) C1(ε) >
1

2
−

1

2

(

2n

n

)(

1

2

)2n

and let ε2 be such that

(∀ε < ε2) C2(ε) >
1

2

(

2n

n

)(

1

2

)2n

.

Then for every ε < ε = min{ε1, ε2} we have C1(ε) + C2(ε) > 1
2 and by (2)

for every ε < ε,

PFt,ε

{

1
2
(Yn:2n + Yn+1:2n) ≤ t

}

> C1(ε) + C2(ε) > 1
2
,

which proves (1).

For a fixed t ∈
(

1
4 , 1

2

)

and ε < ε, let Y, Y1, . . . , Y2n be i.i.d. random
variables distributed as Ft,ε, and for a given C > 0 define

X = C ·
1
2
− Y

1
2 − t

,
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Xi:2n = C ·
1
2 − Y2n+1−i:2n

1
2
− t

, i = 1, . . . , 2n.

Let F denote the distribution function of X. Then

P{X ≤ 0} = P
{

Y ≥ 1
2

}

= 1
2 ,

hence F−1
(

1
2

)

= 0 and

P
{

1
2
(Xn:2n + Xn+1:2n) ≤ C

}

= P
{

1
2
(Yn:2n + Yn+1:2n) ≥ t

}

≤ 1
2
.

Thus Med
(

F, 1
2
(Xn:2n + Xn+1:2n)

)

> C, which proves the Theorem.

2. A comment. It is true that the sample median Mn is asymptotically
normal with mean equal to mF . The problem is that the convergence is not
uniform in F and for every n the Theorem holds.

3. Two remedies. Let ξ1, . . . , ξN be a sample and let G be the to-
tality of transformations ξ′i = g(ξi), i = 1, . . . ,N , such that g is contin-
uous and strictly increasing. A statistic T = T (ξ1, . . . , ξN ) is said to be
equivariant with respect to strictly increasing continuous transformations
or G-equivariant if

(3) T (g(ξ1), . . . , g(ξN )) = g(T (ξ1, . . . , ξN )) for all g ∈ G.

A reason for the above behaviour of Mn is that Mn is not G-equivariant.
Actually, the only G-equivariant statistics are those of the form

(4) T (ξ1, . . . , ξN ) = ξJ:N ,

where J is a random variable taking values in the set {1, . . . ,N} (see e.g.
Uhlmann (1963)).

Having a sample X1, . . . ,X2n, two natural G-equivariant estimators of
the population median are available:

1) a randomized estimator

M (p)
n = XJ:2n,

where J is a random variable with distribution

pj = Prob{J = j}, j = 1, . . . , 2n,

which is constructed in such a way that

Med(F,M (p)
n ) = mF for all F ∈ F ;

2) the sample median

M (2)
n = Xn:2n−1
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from the sample X1, . . . ,X2n−1 obtained by removing one of the observa-
tions X1, . . . ,X2n, say X2n. Here again

Med(F,M (2)
n ) = mF for all F ∈ F .

The choice between M
(p)
n and M

(2)
n , and if M

(p)
n is chosen, the choice of

the distribution p = (p1, . . . , p2n) depends of course on a “loss function” or
a “criterion” adopted.

Mean Square Error criterion. If T is an estimator of the popula-
tion median mF then F (T ) should be close to 1

2 whatever F ∈ F . Uhlmann
(1963) considered the risk of T defined as

R1(F, T ) = EF

(

F (T ) − 1
2

)2
.

He has proved that M
(p)
n minimizing the risk in the class of all T satisfying

(3), i.e. in the class of T of the form (4), is M
(p)
n with pn = pn+1 = 1

2 ,

pj = 0 if j 6∈ {n, n + 1}. This estimator will be denoted by M
(1)
n . He has

also shown that

R1(F,M (1)
n ) = R1(F,M (2)

n ) =
1

4(2n + 1)
for all F ∈ F .

It is interesting to observe that the optimal randomized estimator M
(1)
n in

the sample X1, . . . ,X2n has the same risk as the nonrandomized estimator

M
(2)
n from the smaller sample X1, . . . ,X2n−1.

Interquartile criterion. Let Qp(F, T ) denote the pth quantile of the
distribution of the statistic F (T ) if the sample comes from the distribution
F . Take

R2(F, T ) = Q3/4(F, T ) − Q1/4(F, T )

as a criterion. Now again (see Zieliński (1988))

R2(F,M (1)
n ) ≤ R2(F, T ) for all F ∈ F

for all T satisfying (3). Also

(5) R2(F,M (1)
n ) = R2(F,M (2)

n ) for all F ∈ F .

To see this define the function

CT (q) = PF {F (T ) ≤ q}

and write

C1(q) = C
M

(1)
n

(q), C2(q) = C
M

(2)
n

(q).

Then (5) is a consequence of the equality

(6) C1(q) = C2(q) for all q ∈ (0, 1).
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To prove (6) observe that

C1(q) =
1

2
PF {F (Xn:2n) ≤ q} +

1

2
PF {F (Xn+1:2n) ≤ q}

=
1

2

2n
∑

j=n

(

2n

j

)

qj(1 − q)2n−j +
1

2

2n
∑

j=n+1

(

2n

j

)

qj(1 − q)2n−j

=
1

2

Γ (2n + 1)

Γ (n)Γ (n + 1)

q∫

0

(tn−1(1 − t)n + tn(1 − t)n−1) dt

and similarly

C2(q) =
Γ (2n)

Γ (n)Γ (n)

q∫

0

tn−1(1 − t)n−1 dt,

and hence C1(q) − C2(q) = 0 for all q ∈ (0, 1). Now again the optimal

randomized estimator M
(1)
n in the sample X1, . . . ,X2n has the same risk as

the nonrandomized estimator M
(2)
n from the smaller sample X1, . . . ,X2n−1.

4. A generalization. Statistics of the form Sλ =
∑n

i=1 λiXi:n, λi ≥ 0,
∑n

i=1 λi = 1, are frequently used as quantile estimators in nonparametric
models (e.g. Harrell and Davis (1982), and Kaigh and Lachenbruch (1982)).
However, if two or more of the coefficients λi are strictly positive then Sλ

is not an equivariant estimator. As a consequence, when estimating the qth
quantile, for every C > 0 there exists a distribution F ∈ F with the qth
quantile equal to xF (q), such that Med(F, Sλ) − xF (q) > C. The proof is
similar to that of the Theorem above so we omit it and we confine ourselves
to some simulation results.

Consider estimating the qth quantile for q = 0.25 of two distributions
from F0: Beta(α, 1) with α = 20 (Fig. 1a) and

H(x) =















q

(

x

q

)α

if 0 < x ≤ q,

q + (1 − q)

(

x − q

1 − q

)α

if q < x < 1,

for α = 20 (Fig. 1b).

Distributions of four estimators from samples of size n = 10 have been
simulated: WU – Uhlmann (1963), RZ – Zieliński (1988), HD – Harrell–
Davis (1982), and KL – Kaigh–Lachenbruch (1982) with the subsample size
m = 3. The empirical distribution functions are given in Fig. 2a (for parent
distribution Beta(20, 1)), and in Fig. 2b (for parent distribution H). In the
figures the value of the quantile to be estimated is also indicated.
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Fig. 1a. Cdf of Beta(20,1) Fig. 1b. Cdf of H(x)

Fig. 2a. Simulated distributions of four estimators
for the parent distribution from Fig. 1a

Fig. 2b. Simulated distributions of four estimators
for the parent distribution from Fig. 1b
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In Table 1 the simulated probabilities of taking on a value not greater
than the estimated qth quantile (q = 0.25) for all four estimators and for
both parent distributions are given; the probability is equal to 0.5 for every
median-unbiased estimator.

TABLE 1

EstimatorsParent
distributions WU RZ HD KL

Beta(20, 1) 0.5416 0.4985 0.6001 0.7486
H 0.5442 0.4953 0.0185 0.0065

All graphical and numerical results presented are based on 10,000 simu-
lations.
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