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1. Introduction. Many diophantine problems can be reduced to (ordi-
nary) unit equations and S-unit equations in two unknowns (for references,
see e.g. [15], [24], [11], [16], [25]). Several effective bounds have been estab-
lished for the heights of the solutions of such equations (see e.g. [24], [11],
[25], [3] and the references given there). Except in [3], their proofs involved
Baker’s method and its p-adic analogue as well as certain quantitative results
concerning independent units. The best known estimates for S-unit equa-
tions are due to Győry [13] and, for (ordinary) unit equations, to Schmidt
[23], Sprindžuk [25] (with not completely explicit constants) and Győry [14]
(with explicit constants). These led to a lot of applications.

The purpose of the present paper is to considerably improve (in com-
pletely explicit form) the above-mentioned estimates in terms of the car-
dinality of S and of the parameters involved (degree, unit rank, regulator,
class number) of the ground field. To obtain these improvements we use,
among other things, some recent improvements of Waldschmidt [26] and
Kunrui Yu [27] concerning linear forms in logarithms, some recent estimates
of Brindza [5] and Hajdu [18] for fundamental systems of S-units, some up-
per and lower bounds for S-regulators (cf. Lemma 3 of this paper) and an
idea of Schmidt [23]. Further, in our arguments we pay a particular atten-
tion to the dependence on the parameters in question. As a consequence of
our result, we derive explicit bounds for the solutions of homogeneous linear
equations of three terms in S-integers of bounded S-norm. These improve
some earlier estimates of Győry [13], [14].

An application of our improvements is given in [17] to decomposable form
equations (including Thue equations, norm form equations and discriminant
form equations) in S-integers of a number field. Some other applications will
be published in two further works.

Research of the second author was supported in part by Grant 1641 from the Hun-
garian National Foundation for Scientific Research and by the Foundation for Hungarian
Higher Education and Research.
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2. Bounds for the solutions of S-unit equations. We shall use
throughout this paper the following standard notation. LetK be an algebraic
number field of degree d with regulator RK, class number hK and unit rank r.
Denote by OK the ring of integers of K, and by O∗K the unit group of OK.
Let S be a finite set of places on K containing the set of infinite places S∞.
Denote by s the cardinality of S, by t the number of finite places in S, and
by P the largest of the rational primes lying below the finite places of S,
with the convention that P = 1 if S = S∞, i.e. if t = 0. Further, denote
by OS the ring of S-integers, and by O∗S the group of S-units in K. Then
s − 1 = r + t is the rank of O∗S . The case s = 1 being trivial, we assume
throughout the paper that s ≥ 2. We denote by RS the S-regulator of K
(for its definition, see Section 3). We note that for S = S∞ (i.e. t = 0), we
have OS = OK and RS = RK.

For any algebraic number α, we denote by h(α) the (absolute) height
of α (cf. Section 3). There exists a δK > 0, depending only on K, such
that d log h(α) ≥ δK for any α ∈ K \ {0} which is not a root of unity (cf.
Section 3).

Throughout this paper, we use the notation log∗ a for max{log a, 1}.
Let α, β be non-zero elements of K with

max{h(α), h(β)} ≤ H (H ≥ e).
Consider the S-unit equation

(1) αx+ βy = 1 in x, y ∈ O∗S .
When S = S∞ (i.e. t = 0) then (1) is an (ordinary) unit equation.

Theorem. All solutions x, y of (1) satisfy

(2) max{h(x), h(y)} < exp{c1P dRS(log∗RS)(log∗(PRS)/ log∗ P ) logH},
where

c1 = c1(d, s,K) = 325(9d2/δK)s+1s5s+10.

Further , if in particular S = S∞ (i.e. t = 0), then the bound in (2) can be
replaced by

(3) exp{c2RK(log∗RK) logH}
where

c2 = c2(d, r,K) = 3r+27(r + 1)5r+17d3δ
−(r+1)
K .

R e m a r k 1. It is clear that the factor (log∗(PRS)/ log∗ P ) in (2) does
not exceed 2 log∗RS , and if log∗RS ≤ log∗ P , then it is at most 2. Further,
by Lemma 3 (cf. Section 3), we have

(4) RS ≤ RKhK(d log∗ P )t.
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R e m a r k 2. As is known, RKhK can be estimated from above in terms
of d and DK, the discriminant of K. Denote by q the number of complex
places of K, and put ∆ = (2/π)q|DK|1/2. If d ≥ 2, then we have e.g. (cf.
[21])

(5) RKhK ≤ ∆(log∆)d−1−q(d− 1 + log∆)q/(d− 1)!.

Our theorem provides a considerable improvement of earlier estimates
of Kotov and Trelina [19], Győry [13], [14], Schmidt [23] and Sprindžuk [25]
for S-unit equations.

For α ∈ K \ {0}, the ideal generated by α can be uniquely written in
the form a1 · a2 where the ideal a1 (resp. a2) is composed of prime ideals
outside (resp. inside) S. Then the S-norm of α, denoted by NS(α), is defined
as N(a1). In the particular case S = S∞, we have NS∞(α) = |NK/Q(α)|.
Further, NS(α) is a positive integer for every α ∈ OS \ {0}.

In some applications, it is more convenient to consider the following
equation instead of (1):

(6) α1x1 + α2x2 + α3x3 = 0

in xi ∈ OS \ {0} with NS(xi) ≤ N for i = 1, 2, 3,

where α1, α2, α3 ∈ K \ {0} with max1≤i≤3 h(αi) ≤ H (H ≥ e).
Let c3 = c3(d, r,K) = rr+1 δ

−(r−1)
K /2 and let c1 = c1(d, s,K), c2 =

c2(d, r,K) denote the numbers specified in the Theorem. Then we have

Corollary. For every solution x1, x2, x3 of (6) there is an ε ∈ O∗S
such that

max
1≤i≤3

h(εxi) < exp {3c1c3P dRS(log∗RS)(log∗(PRS)/ log∗ P )(7)

× (RK + thK log∗ P + log(HN))}.
Further , if S = S∞, then the bound in (7) can be replaced by

exp{3c2c3RK(log∗RK)(RK + log(HN))}.
Our Corollary considerably improves the earlier bounds of Győry [13],

[14] concerning equation (6).

3. Bounds for S-units and S-regulators. Keeping the notations of
Section 2, denote by MK the set of places on K. In every place v we choose
a valuation | · |v in the following way: if v is infinite and corresponds to an
embedding σ : K→ C then we put, for every α ∈ K,

|α|v = |σ(α)|dv ,
where dv = 1 or 2 according as σ(K) is contained in R or not; if v is a finite
place corresponding to the prime ideal p in K then we put |0|v = 0 and, for
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α ∈ K \ {0},
|α|v = N(p)−ordp(α).

The (absolute) height of an algebraic number α contained in K is defined
by

h(α) =
( ∏

v∈MK
max(1, |α|v)

)1/d
.

This height is independent of the choice of K. If the algebraic number α is
of degree n with minimal polynomial a0(X − α1) . . . (X − αn) ∈ Z[X] over
Z, then, by ([20], p. 54), we have

(8) h(α) =
(
|a0|

n∏

i=1

max(1, |αi|)
)1/n

.

There is a positive constant δK, depending only on K, such that for
every non-zero algebraic number α ∈ K which is not a root of unity we have
log h(α) ≥ δK/d (we recall that d denotes the degree of K). Further, if α is
not an algebraic integer then (8) implies that log h(α) ≥ log 2/d. Hence we
have δK ≤ log 2.

It is easy to see that we can take

δK =
log 2
r + 1

for d = 1, 2,

where r denotes the unit rank of K. Further, it follows from results of
Blanksby and Montgomery [2] and of Dobrowolski [7], [8] that both

δK =
1

53d log 6d
and δK =

1
1201

(
log log d

log d

)3

(1)

are appropriate choices for d ≥ 3. For large d, the factor 1/1201 can be
replaced by a larger one (see e.g. [9]).

We recall that s denotes the cardinality of S. For v ∈ S, denote by
| · |v the corresponding valuation normalized as above. Let v1, . . . , vs−1 be
a subset of S, and let {ε1, . . . , εs−1} be a fundamental system of S-units
in K. Denote by RS the absolute value of the determinant of the matrix
(log |εi|vj )i,j=1,...,s−1. It is easy to verify that RS is a positive number which
is independent of the choice of v1, . . . , vs−1 and of the fundamental system
of S-units {ε1, . . . , εs−1}. RS is called the S-regulator of K. If in particular
S = S∞, then we have RS = RK.

There are several quantitative results in the literature for units and S-
units of small height; for references, see e.g. [24], [5] and [18]. The following
lemma is in fact due to Hajdu [18]. It is an extended version of an earlier

(1) Added in proof. By a recent result of P. M. Voutier (see this issue), one can
take here 1/4 instead of 1/1201.
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theorem of Brindza [5]. For convenience of the reader, we give here a proof
for Lemma 1 with a slightly better value for c4 than in [18].

Put

c4 = c4(d, s) = ((s− 1)!)2/(2s−2ds−1)

and

c5 = c5(d, s,K) = c4

(
δK
d

)2−s
, c6 = c6(d, s,K) = c4d

s−1δ−1
K .

Lemma 1. There exists in K a fundamental system {ε1, . . . , εs−1} of
S-units with the following properties:

(i)
s−1∏

i=1

log h(εi) ≤ c4RS ;

(ii) log h(εi) ≤ c5RS , i = 1, . . . , s− 1;

(iii) the absolute values of the entries of the inverse matrix of
(log |εi|vj )i,j=1,...,s−1 do not exceed c6.

P r o o f. We shall combine some arguments from the proofs of [5] and
[18]. For α ∈ K \ {0} put

v(α) = (log |α|v1 , . . . , log |α|vs−1).

The lattice Λ in Rs−1 spanned by the vectors v(η) with η ∈ O∗S has deter-
minant RS .

The function F : Rs−1 → R defined by

F (x) = |x1|+ . . .+ |xs−1|
for x = (x1, . . . , xs−1) ∈ Rs−1 is a symmetric convex distance function (cf.
[6], Ch. IV), i.e. it is non-negative, continuous, F (αx) = αF (x) (α ≥ 0 real)
and F (x + y) ≤ F (x) + F (y) for x, y ∈ Rs−1. Denote by VF the volume
of the bounded set {x ∈ Rs−1 | F (x) < 1}. It is easy to check that VF =
2s−1/(s− 1)!. By a theorem of Minkowski (cf. [6], Ch. VIII) the successive
minima λ1, . . . , λs−1 of Λ with respect to F have the property

(9) λ1 . . . λs−1 ≤ 2s−1RS/VF = (s− 1)!RS .

Further, there are multiplicatively independent S-units η1, . . . , ηs−1 for which

(10) F (v(ηi)) = λi, i = 1, . . . , s− 1.

It follows (cf. [6], p. 135, Lemma 8) that there exists a fundamental system
{ε1, . . . , εs−1} of S-units such that

(11) F (v(εi)) ≤ max{1, i/2}F (v(ηi)), i = 1, . . . , s− 1.
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However, for every η ∈ O∗S , we have
∏
v∈S |η|v = 1, hence

log h(η) =
1
d

∑

v∈S
max{0, log |η|v} =

1
2d

∑

v∈S
|log |η|v|,

which implies that

(12)
1
2d
F (v(η)) ≤ log h(η) ≤ 1

d
F (v(η)).

Hence, by (12), (11), (10) and (9), we have
s−1∏

i=1

log h(εi) ≤ 1
ds−1

s−1∏

i=1

F (v(εi)) ≤ (s− 1)!
2s−2ds−1

s−1∏

i=1

F (v(ηi))(13)

≤ ((s− 1)!)2RS/(2s−2ds−1),

which proves (i).
(ii) follows immediately from (i) and log h(εi) ≥ δK/d for i = 1, . . . , s−1.
To prove (iii), let E = (log |εi|vj )i,j=1,...,s−1 and eij = det(Eij)/det(E),

where Eij denotes the matrix obtained from E by omitting the ith row and
jth column. It follows from (13) and Hadamard’s inequality that

|det(Eij)| ≤
s−1∏
p=1
p 6=i

√√√√√
s−1∑
q=1
q 6=j

(log |εp|vq )2 ≤
s−1∏
p=1
p 6=i

F (v(εp)) ≤ c4RS/F (v(εi)).

Together with (12), |det(E)| = RS and log h(εi) ≥ δK/d this implies |eij | ≤
c4δ
−1
K ds−1, which completes the proof.

The next lemma has various versions in the literature (for references, see
e.g. [15], [24], [10], [18]). Our lemma is an explicit version of Lemma 10 of
[10].

Let c3 = c3(d, r,K) denote the constant specified in the Corollary.

Lemma 2. For every α ∈ OS \ {0} and every integer n ≥ 1 there exists
an S-unit ε such that

(14) h(εnα) ≤ NS(α)1/d exp{n(c3RK + thK log∗ P )}.
P r o o f. First consider the case when S = S∞. So let α ∈ OK\{0} and put

M = |NK/Q(α)|. Let S∞ = {v1, . . . , vr+1} and L(α) = max1≤i≤r |log |α|vi |.
Then there are multiplicatively independent units η1, . . . , ηr in OK such
that L(η1) . . . L(ηr) ≤ RK (cf. [14]). On the other hand, we have L(ηj) ≥
(d/r) log h(ηj) ≥ δK/r, whence L(ηj) ≤ rr−1δ

−(r−1)
K RK for each j.

Consider the system of linear equations
r∑

j=1

Xj log |ηj |vi = − log(M−dvi/d|α|vi), i = 1, . . . , r + 1,
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in X1, . . . , Xr. It has a unique solution x1, . . . , xr in R. For 1 ≤ j ≤ r, there
exist bj ∈ Z and %j ∈ R with |%j | ≤ n/2 such that xj = nbj + %j . Putting
ηb11 . . . ηbrr = ε, we infer that

|log(M−dvi/d|αεn|vi)| =
∣∣∣
r∑

j=1

%j log |ηj |vi
∣∣∣(15)

≤ nr

2
max

1≤j≤r
|log |ηj |vi | ≤

nr

2
· r max

1≤j≤r
L(ηj)

≤ nc3RK, i = 1, . . . , r + 1,

which implies (14).
The general case of our lemma follows from the case S = S∞ as in the

proof of Lemma 10 of [10].

Denote by p1, . . . , pt the prime ideals in K corresponding to the finite
places in S. We recall that P denotes the largest of the rational primes lying
below of these prime ideals.

The following lemma is an improvement of some estimates of Pethő [22]
and Hajdu [18] forRS . It should, however, be remarked that Pethő’s estimate
was established in a more general situation, for some S-orders instead of OS .

Lemma 3. If t > 0, then

(16) RS ≤ RKhK
t∏

i=1

logN(pi) ≤ RKhK(d log∗ P )t

and

(17) RS ≥ RK
t∏

i=1

logN(pi) ≥ c7(log 2)(log∗ P ),

where c7 = 0.2052.

P r o o f. O∗S/O
∗
K is a free abelian group of rank t which is isomorphic to

the multiplicative group of principal ideals in K generated by the elements
of O∗S . This latter group is a subgroup of finite index, say iS , of the multi-
plicative group generated by p1, . . . , pt and we have iS ≤ hK. Hence, as is
known (see e.g. [4], pp. 85 and 125), this subgroup has a basis of the form

(εi) = paiii p
ai,i+1
i+1 . . . paitt , i = 1, . . . , t,

with rational integers aij such that aii > 0 for i = 1, . . . , t and that
a11 . . . att = iS . It now follows that if {εt+1, . . . , εt+r} is a fundamental
system of units in OK then {ε1, . . . , εt, . . . , εt+r} is a fundamental system of
S-units in K. Consequently, it is easy to see that

(18) RS = |det(log |εi|vj )i,j=1,...,r+t| = RKiS

t∏

i=1

logN(pi),
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which gives (16). Inequalities (17) follow from (18) and the estimate RK ≥ c7
of Friedman [12].

We remark that, in our Theorem and its Corollary, the improvements of
the previous bounds in terms of RK, hK and P are mainly due to the use of
fundamental systems of S-units, S-regulators as well as Lemmas 1 to 3.

4. Estimates for linear forms in logarithms. In our proofs, we shall
use the best known estimates, due to Waldschmidt [26] and Kunrui Yu [27]
respectively, for linear forms in logarithms in the complex and in the p-adic
case. We shall formulate them in a more convenient form for our purpose.
These estimates enable us to considerably improve the previous bounds for
the solutions of equation (1) in terms of d, r and s.

Let α1, . . . , αn (n ≥ 2) be non-zero algebraic numbers and let K =
Q(α1, . . . , αn). Put [K : Q] = d. Let A1, . . . , An be real numbers such that

(19) logAi ≥ max
{

log h(αi),
|logαi|

3.3d
,

1
d

}
, i = 1, . . . , n,

where log denotes the principal value of the logarithm. Let b1, . . . , bn be
rational integers and put B = max{|b1|, . . . , |bn|, 3}. Further, set

Λ = αb11 . . . αbnn − 1.

In Proposition 1, it will be convenient to make the following technical as-
sumptions:

(20) B ≥ logAn exp{4(n+ 1)(7 + 3 log(n+ 1))}
and

(21) 7 + 3 log(n+ 1) ≥ log d.

Proposition 1 is a consequence of Corollary 10.1 of Waldschmidt [26].

Proposition 1 (M. Waldschmidt [26]). If Λ 6= 0, bn = 1 and (20), (21)
hold , then

(22) |Λ| ≥ exp
{
− c8(n)dn+2 logA1 . . . logAn log

(
2nB

logAn

)}
,

where c8(n) = 1500 · 38n+1(n+ 1)3n+9.

We remark that a recent explicit estimate of Baker and Wüstholz [1] for
linear forms in logarithms would give here a smaller value for c8(n) in terms
of n. However, the lower bound in (22) is better in terms of An, which is
essential for our present applications.

P r o o f o f P r o p o s i t i o n 1. We denote by log the principal value
of the logarithm. Setting α0 = −1, there is a b0 ∈ Z such that |b0| ≤
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|b1|+ . . .+ |bn−1|+ 2 ≤ nB and that

log(αb11 . . . αbnn ) =
n∑

j=1

bj logαj + b0 logα0 := Ω,

where bn = 1. It suffices to deal with the case when |Λ| ≤ 1/3. Since |log z| ≤
2|z − 1| for any z ∈ C with |z − 1| ≤ 1/3, we get

(23) |Λ| ≥ |Ω|/2.
After some calculations and under the conditions (20), (21), Corollary 10.1
of [26] implies the following inequality with the choice E = e, f = 1/(3.3d)
and g = 2:

|Ω| ≥ 2 exp
{
− c8(n)dn+2 logA1 . . . logAn log

(
2nB

logAn

)}
.

Together with (23) this implies (22).

In Proposition 2, let v = vp be a finite place on K, corresponding to
the prime ideal p of K. Let p denote the rational prime lying below p, and
denote by | · |v the non-archimedean valuation normalized as in Section 3.
Instead of (19), assume now that A1, . . . , An are real numbers such that

(24) logAi ≥ max{log h(αi), |logαi|/(10d), log p}, i = 1, . . . , n.

The following proposition is a simple consequence of the main result of
Kunrui Yu [27].

Proposition 2 (Kunrui Yu [27]). Let

Φ = c9(n)(d/
√

log p)2(n+1)pd logA1 . . . logAn log(10nd logA),

where c9(n) = 22000(9.5(n + 1))2(n+1) and A = max{A1, . . . , An, e}. If
Λ 6= 0 then

|Λ|v ≥ exp{−d(log p)Φ log(dB)}.
Further , if bn = 1 and An ≥ Ai for i = 1, . . . , n−1, then A can be replaced
by max{A1, . . . , An−1, e} and for any δ with 0 < δ ≤ 1, we have

|Λ|v ≥ exp{−d(log p) max{Φ log(δ−1Φ/ logAn), δB}}.
P r o o f. This is a reformulation of the result presented in the introduction

of Kunrui Yu [27].

R e m a r k 6. We remark that, in Propositions 1 and 2, the condition K =
Q(α1, . . . , αn) can be removed. It is enough to assume that K is an algebraic
number field of degree d which contains α1, . . . , αn. This observation will be
needed in Section 5.
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5. Proofs of the Theorem and the Corollary

P r o o f o f t h e T h e o r e m . Let x, y be an arbitrary but fixed solution
of

(1) αx+ βy = 1 in x, y ∈ O∗S .
We assume that h(x) ≥ h(y). Let {ε1, . . . , εs−1} be a fundamental system of
S-units in K with the properties specified in Lemma 1. Then we can write

(25) y = ζεb11 . . . ε
bs−1
s−1

with a root of unity ζ in K and with rational integers b1, . . . , bs−1. Put
B = max{|b1|, . . . , |bs−1|, 3} and S = {v1, . . . , vs}. Then (25) implies

log |y|vj =
s−1∑

i=1

bi log |εi|vj , j = 1, . . . , s− 1,

whence, by (iii) of Lemma 1 and (12), we get

(26) B ≤ c6
s−1∑

j=1

|log |y|vj | ≤ 2dc6 log h(y) ≤ 2dc6 log h(x)

with the c6 = c6(d, s,K) specified in Lemma 1.
Let v ∈ S for which |x|v is minimal. Setting αs = ζβ and bs = 1, we

deduce from (1) that

(27) |αx|v = |εb11 . . . ε
bs−1
s−1 α

bs
s − 1|v.

We shall derive a lower bound for |αx|v.
First assume that v is infinite. In order to apply Proposition 1, put

(28)
logAi = δ−1

K log h(εi), i = 1, . . . , s− 1,

logAs = δ−1
K logH.

It is easy to check that 7+3 log(s+1) ≥ log d. Further, we may assume that

(29) B ≥ logAs exp{4(s+ 1)(7 + 3 log(s+ 1))}.
Indeed, (1) implies that

(30) h(x) ≤ 2H2h(y).

Further, it follows from (25) and (ii) of Lemma 1 that

(31) h(y) ≤
s−1∏

i=1

h(εi)|bi| ≤ exp{(s− 1)c5RSB}.

Hence, if (29) does not hold, we get at once a bound for h(x) which is better
than that in the Theorem.
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We have | · |v = |σ(·)|dv for some σ : K → C. Applying σ to equation
(1) and then omitting σ everywhere, we may assume that | · |v = | · |dv . On
applying now Proposition 1 to (27) and using (i) of Lemma 1, we derive that

(32) |αx|v ≥ exp
{
− c10RS logH log

(
c11B

logH

)}
,

where c10 = dvc8(s)c4ds+2δ−sK and c11 = 2sδK.
Since |x|v is minimal, we have

(33) h(x) = h(1/x) ≤ |x|−(s−1)/d
v .

Hence it follows from (32), (26) and |α|v ≤ Hd that

log h(x)
logH

≤ 2(s− 1)
d

c10RS log
(
c12 log h(x)

logH

)
,

where c12 = 2dc6c11. This gives (2)

(34) h(x) ≤ exp{c13RS(log∗RS) logH}
with

c13 = 3s+26d3δ−sK s5s+12.

We remark that in the particular case S = S∞, i.e. when t = 0, (34)
implies the second part of the Theorem.

Next assume that v is finite. To apply Proposition 2, we put now

(35)
logAi = δ−1

K log h(εi) + log∗P, i = 1, . . . , s− 1,

logAs = δ−1
K logH + log∗P.

Using (i) of Lemma 1, we get

logA1 . . . logAs−1

≤
s−1∏

i=1

(δ−1
K log h(εi))

( s−1∑

j=0

(
s− 1
j

)
(d log∗P )j − (d log∗P )s−1

)

+ (log∗P )s−1

≤ (log∗P )s−2(c14RS + log∗P )

with c14 = (s/d)((s − 1)!)2δ
−(s−1)
K . Together with the second inequality of

Lemma 3 this gives

(36) logA1 . . . logAs−1 ≤ 2c14RS(log∗P )s−2.

(2) In certain applications (e.g. in case of practical solutions of S-unit equations), it
can be more useful to work with our upper bounds of B, provided by (26), (34) and (43).
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We distinguish two cases. First assume that logH < c5RS . Then, by
Lemmas 1 and 3, we have

(37) logA := max
1≤i≤s

logAi ≤ c15RS

with c15 = c5δ
−1
K + (c7 log 2)−1. We now apply to (27) the first part of

Proposition 2. Putting

Φ = c16
P d

(log∗P )s+1 logA1 . . . logAs log(10sd logA)

with c16 = c9(s)(d2/ log 2)s+1, we infer that

(38) |αx|v ≥ exp{−d(log∗P )Φ log(dB)},
whence, by (33), (26) and |α|v ≤ Hd,

log h(x) ≤ 2(s− 1)(log∗P )Φ log(c17 log h(x))

follows with c17 = 2d2c6. Together with (36), (37) and logH < c5RS this
gives

(39) h(x) ≤ exp{c18P
dRS(log∗RS)(log∗(PRS)/ log∗P ) logH},

where

c18 = 326(18d2/δK)s+1s4s+7.

Next assume that logH ≥ c5RS . Then, by Lemmas 1 and 3, we have
As ≥ Ai for i = 1, . . . , s− 1 and

(40) logA := max
1≤i≤s−1

logAi ≤ c15RS .

Consider now the above defined Φ with this value of logA. First we give an
upper bound for h(x) in terms of Φ.

If B < Φ(log∗P )/(c5RS) then (30), (31) and (35) imply that

(41) h(x) ≤ 2H2 exp{(s− 1)Φ log∗ P} < exp{sΦ log∗ P}.
Assume now that B ≥ Φ(log∗ P )/(c5RS). We apply the second part of

Proposition 2 to (27). Putting δ = Φ(log∗ P )/(Bc5RS) we obtain

|αx|v ≥ exp
{
− d(log∗ P )Φ log

(
Bc5RS

log∗ P logAs

)}
.

Hence, proceeding again as above, we deduce that

log h(x)
log∗ P logAs

≤ 2(s− 1)(Φ/ logAs) log
(
c19RS log h(x)
log∗ P logAs

)

with c19 = 2dc6c5. From this we infer as above that

(42) h(x) ≤ exp{c20Φ(log∗ P ) log∗(PRS)},
where c20 = 19(s− 1) log(c16).
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The right hand side of (42) is greater than that of (41). Lemma 3, (35)
and logH ≥ c5RS imply that logAs < c21 logH with c21 = (c5c7 log 2)−1 +
δ−1
K . Hence, estimating from above Φ, we obtain in both cases that

(43) h(x) ≤ exp{c18P
dRS(log∗RS)(log∗(PRS)/ log∗P ) logH},

with the constant c18 defined above. However, it is easy to verify that both
c13 in (34) and c18 in (39) and (43) are less than c1 = c1(d, s,K) specified
in the Theorem. This completes the proof of our assertion.

P r o o f o f t h e C o r o l l a r y. Let x1, x2, x3 be a solution of (6). Then,
by Lemma 2, there are εi ∈ O∗S such that

(44) h(εixi) ≤ N1/d exp{c3RK + thK log∗ P}
with the constant c3 specified in Lemma 2. Put

α =
α1(ε1x1)
α3(ε3x3)

, β =
α2(ε2x2)
α3(ε3x3)

.

Then x = −ε3/ε1, y = −ε3/ε2 is a solution of equation (1).
We have

max{h(α), h(β)} ≤ exp{2c3(RK + thK log∗ P + log(HN))}.
Now our Theorem provides an explicit upper bound for max{h(x), h(y)}.
Together with (44), this implies (7) with the choice ε = −ε3.

Acknowledgements. Most of the arguments used in the present paper
were found independently by the two authors. The first named author would
like to thank Professor Maurice Mignotte for his constant encouragement.

References
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