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Sure monochromatic subset sums
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Noga Alon (Tel Aviv) and Paul Erdős (Budapest)

1. Introduction. For an integer n > 1 let f(n) denote the smallest
integer f such that one can color the integers {1, . . . , n− 1} by f colors so
that there is no monochromatic subset the sum of whose elements is n. Paul
Erdős [2] asked if for every positive ε, f(n) > n1/3−ε for all n > n0(ε). In
this note we prove that this is indeed the case, in the following more precise
form.

Theorem 1.1. There exist positive constants c1, c2 so that

c1
n1/3

log4/3 n
≤ f(n) ≤ c2n

1/3(log log n)1/3

log1/3 n

for all n > 1.

We suspect that the upper bound is closer to the actual value of f(n)
than the lower bound but this remains open. The (simple) proof of the upper
bound is described in Section 2. The lower bound is established in Section 3.

To simplify the presentation, we omit all floor and ceiling signs, when-
ever these are not essential. We make no attempt to optimize the absolute
constants throughout the paper. For a set of integers A, let A∗ denote the
set of all sums of subsets of A.

2. The upper bound. Given n, we prove that

f(n)� n1/3(log log n)1/3

log1/3 n

by exhibiting an explicit family of subsets of N = {1, . . . , n−1} whose union
covers N , so that n 6∈ A∗ for each subset A in the family. Define

s =
n1/3(log log n)1/3

log1/3 n
.

For each integer k satisfying 1 ≤ k ≤ s, let Ak = {i ∈ N : n/(k + 1) ≤ i <
n/k}. Note that n 6∈ A∗k, since the sum of any set of at most k members
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of Ak is less than n whereas the sum of any set of at least k + 1 members
of Ak exceeds n. For each prime p ≤ s that does not divide n define Bp =
{i ∈ N : p | i}. Since all members of B∗p are divisible by p it follows that
n 6∈ B∗p . It is well known (see, e.g., [4]) that Brun’s sieve method gives that
for any set P of primes which are all at most m, the number of integers
between 1 and m which are not divisible by any member of P does not
exceed O(m

∏
p∈P (1− 1/p)). It follows that there is an absolute constant c

so that the number, call it S, of integers in N not covered by the union of
all sets Ak and Bp above satisfies

S ≤ c n

s logn
∏
p|n, p≤s(1− 1/p)

.

(Note that all these integers are smaller than n/s.) However, it is easy to
check that ∏

p|n, p≤s
(1− 1/p)� 1

log log n
,

showing that

S � n2/3(log log n)2/3

log2/3 n
.

We can now split the set of these remaining integers arbitrarily into dS/se
sets Cj of size at most s each. Since each member of Cj is at most n/s,
n 6∈ C∗j for any Cj . The sets Ak, Bp and Cj together cover N , and their
total number is at most

O

(
n1/3(log log n)1/3

log1/3 n

)
,

completing the proof of the upper bound in Theorem 1.1.

3. The lower bound. The proof of the lower bound is based on the
following result of Sárközy [5] (see also [3] and [1] for similar results).

Theorem 3.1 ([5], Theorem 4). Let m > 2500 be an integer , and let A
be a subset of {1, . . . ,m} of cardinality |A| = 1000(m logm)1/2. Then there
are integers d, y, z such that 1 ≤ d ≤ 10m1/2/ log1/2m, z > 10m logm, and
y < z/(10 logm), such that {yd, (y + 1)d, (y + 2)d, . . . , zd} ⊂ A∗.

We also need the following simple lemma.

Lemma 3.2. Let d be a positive integer , and let B be a set of d−1 positive
integers, all relatively prime to d. Then for any integer x, B∗ contains a
member congruent to x modulo d.

P r o o f. Let B = {b1, . . . , bd−1} and define b′i = bi (mod d), Bi =
{b′1, . . . , b′i}. Then Bi is a subset of the cyclic group Zd. Let B∗i denote
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the set of all sums of subsets of Bi, computed in Zd. Our objective is to
prove that B∗d−1 = Zd. Note that B∗1 = {0, b′1} and B∗i = B∗i−1∪ (B∗i−1 + b′i),
where the sum is computed in Zd. If for some i, |B∗i | = |B∗i−1|, then for
every b ∈ B∗i−1, b + b′i is also in B∗i−1, and since 0 ∈ B∗i−1 and b′i generates
Zd, B∗i−1 = Zd, as needed. Otherwise, |B∗i | > |B∗i−1| for all i, and hence
B∗d−1 = Zd, completing the proof.

Corollary 3.3. Let C ⊂ {1, . . . ,m} be a set of primes of cardinality

|C| = 1000(m logm)1/2 + 20
m1/2

log1/2m
+ k,

where m > 2500. Let S denote the sum of the largest k members of C. Then
any integer t satisfying 200m3/2/ log1/2m ≤ t ≤ S lies in C∗.

P r o o f. Let A denote the set of the 1000(m logm)1/2 smallest members
of C. By Theorem 3.1 there are d, y, z as in the theorem, so that yd, (y +
1)d, . . . , zd are all in A∗. Thus, in particular,

(1) zd ≤ m|A| ≤ 1000m3/2 log1/2m.

Let B be the set of the 20m1/2/ log1/2m smallest members of C −A.

Claim. Every integer x satisfying yd+md ≤ x ≤ zd lies in (A ∪B)∗.

P r o o f. B contains at least d−1 elements larger than d, and all of them
are relatively prime to d. Therefore, by Lemma 3.2, there is a number x′

which is the sum of at most d−1 members of B and x′ ≡ x (mod d). Clearly
x′ ≤ md and thus zd ≥ x ≥ x− x′ ≥ yd. Since x− x′ is divisible by d it lies
in A∗, implying that x ∈ B∗ +A∗ = (A ∪B)∗, as needed.

Returning to the proof of the corollary let I denote the interval of all
integers between yd + md and zd, and let x1, . . . , xk be all elements in
C − (A ∪ B). Then the length of I is at least zd/2 ≥ 5m logm > m and
all the k + 1 intervals I, I + x1, I + (x1 + x2), . . . , I + (x1 + . . . + xk) lie
in C∗. The union of these intervals contains all the integers t satisfying
yd+md ≤ t ≤ S + zd, and the desired result follows from (1), since

yd ≤ zd

10 logm
≤ 100

m3/2

log1/2m
,

and md ≤ 10m3/2/ log1/2m.

Corollary 3.4. For all sufficiently large n, and for any set C of at least
200n1/3 log2/3 n primes between n2/3 log1/3 n/200 and n2/3 log1/3 n/100,
the number n lies in C∗.
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P r o o f. Apply the previous corollary with m = n2/3 log1/3 n/100. Here

k > 50n1/3 log2/3 n, 200m3/2/ log1/2m < n and S > k
n2/3 log1/3 n

200
> n,

implying that indeed n ∈ C∗.
P r o o f o f T h e o r e m 1.1 (lower bound). Clearly we may assume that

n is sufficiently large, by an appropriate choice of c1. Given a large n, and a
coloring of {1, . . . , n−1} by f = f(n) colors without a monochromatic subset
whose sum is n, there is, by the prime number theorem, a monochromatic
set containing at least

(1 + o(1))
3n2/3

2f · 200 log2/3 n

primes between n2/3 log1/3 n/200 and n2/3 log1/3 n/100. By the last corol-
lary, this number cannot exceed

200n1/3(log n)2/3,

implying the assertion of the theorem.
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