Congruence of Ankeny-Artin-Chowla type modulo p^{2} for cyclic fields of prime degree l

by
Stanislav Jakubec (Bratislava)

Introduction. Let $p \equiv 1(\bmod 4)$, let $T+U \sqrt{p}>1$ be the fundamental unit, and let h be the class number of $\mathbb{Q}(\sqrt{p})$. The following congruence (Ankeny-Artin-Chowla congruence) holds:

$$
h \frac{U}{T} \equiv B_{(p-1) / 2}(\bmod p)
$$

For a cubic field $K \subset \mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right), p \equiv 1(\bmod 3)$ the analogous congruence was proved by Feng Ke Qin in [1]. In general, for fields of the l th degree, the analogous congruence is proved in [5].

The aim of this paper is to prove a congruence of Ankeny-Artin-Chowla type modulo p^{2} for real Abelian fields of a prime degree l and a prime conductor p. The importance of such a congruence can be demonstrated by the following example. Let K be a cubic field. In [5], the following congruence is proved:

$$
\begin{equation*}
h_{K} S_{1} S_{2} \equiv-\frac{3}{4} B_{(p-1) / 3} B_{2(p-1) / 3}(\bmod p) \tag{1}
\end{equation*}
$$

As is well known, $h_{K}<p$ for a cubic field. If $B_{(p-1) / 3} B_{2(p-1) / 3} \equiv 0$ $(\bmod p)$, then $S_{1} S_{2} \equiv 0(\bmod p)$, hence the congruence (1) does not provide any information about h_{K}. Note that such a prime exists, e.g. $p=5479$. We have

$$
B_{(p-1) / 3}=B_{1826} \equiv 0(\bmod 5479) .
$$

In this paper two applications of the main theorem (Theorem 1), for a quadratic and for a cubic field, will be given.

Let l and p be primes such that $p \equiv 1(\bmod l)$ and let $K \subset \mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ with $[K: \mathbb{Q}]=l$. Let a be a primitive root modulo p. As is well known, the conjugates of the unit

[^0]$$
\eta_{a}=N_{\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right) / K}\left(\zeta_{p}^{(1-a) / 2} \frac{1-\zeta_{p}^{a}}{1-\zeta_{p}}\right),
$$
generate the group of cyclotomic units $C(K)$ of K. Consider the unit
$$
\eta_{2}=N_{\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right) / K}\left(\zeta_{p}+\zeta_{p}^{-1}\right) .
$$

It is easy to prove that if 2 is not an l th power modulo p, then the conjugates of the unit η_{2} generate the group $C(K)$. Let $\langle\varepsilon\rangle$ be the group generated by all conjugates of the unit ε.

According to ([3], Lemma 1, p. 69) for a cyclic field K with $[K: \mathbb{Q}]=l$, there is a unit δ such that $\left[U_{K}:\langle\delta\rangle\right]=f$, where $(p, f)=1$.

The following is taken from [5]. According to [8] and [9] (see also [10], p. 284), we have $h_{K}=\left[U_{K}: C(K)\right]$, where $C(K)=\left\langle\eta_{2}\right\rangle$ is the group of cyclotomic units of K. From $\left[U_{K}:\langle\delta\rangle\right]=f$ we have $\eta_{2}^{f} \in\langle\delta\rangle$. Let $\left[\langle\delta\rangle:\left\langle\eta_{2}^{f}\right\rangle\right]=e$. Clearly $\left[\left\langle\eta_{2}\right\rangle:\left\langle\eta_{2}^{f}\right\rangle\right]=f^{l-1}$.

Consider two towers of groups

$$
\left\langle\eta_{2}^{f}\right\rangle \subset\langle\delta\rangle \subset U_{K}, \quad\left\langle\eta_{2}^{f}\right\rangle \subset\left\langle\eta_{2}\right\rangle \subset U_{K} .
$$

This implies ef $=h_{K} f^{l-1}$ and hence $e=h_{K} f^{l-2}$. Let

$$
\eta_{2}^{f}=\delta^{c_{0}} \sigma(\delta)^{c_{1}} \ldots \sigma^{l-2}(\delta)^{c_{l-2}} .
$$

It is easy to prove that

$$
e=N_{\mathbb{Q}\left(\zeta_{l}\right) / \mathbb{Q}}\left(c_{0}+c_{1} \zeta_{l}+\ldots+c_{l-2} \zeta_{l}^{l-2}\right) .
$$

Note that a unit δ for which $f=1$ is called a strong Minkowski unit. As is well known, a strong Minkowski unit exists for a cyclic fields K with $l<23$. The problem of existence of a strong Minkowski unit for cyclic fields of small non-prime degree is solved in [7].

Let a be a fixed primitive root modulo p, let χ be the Dirichlet character of order $n, n \mid p-1, \chi(x)=\zeta_{n}^{\operatorname{ind}_{a} x}$. Let g be such that $g \equiv a^{(p-1) / n}(\bmod p)$ and $g^{n} \equiv 1\left(\bmod p^{p}\right)$. Denote by \mathfrak{p} a prime divisor of $\mathbb{Q}\left(\zeta_{n}\right)$ such that $\mathfrak{p} \mid p$ and $1 / g \equiv \zeta_{n}\left(\bmod \mathfrak{p}^{p}\right)$.

Define the rational numbers $A_{0}(n), A_{1}(n), \ldots, A_{n-1}(n)$ in the following way:

$$
A_{0}(n)=-1 / n,
$$

${ }^{(2)} \tau\left(\chi^{i}\right)^{n} \equiv n^{n} A_{i}(n)^{n}(-p)^{i}\left(\bmod \mathfrak{p}^{2+i}\right), \quad A_{i}(n) \equiv \frac{(p-1) / n}{(i(p-1) / n)!}(\bmod p)$,
where $\tau(\chi)$ is the Gauss sum.
Put $m=(p-1) / 2$, and

$$
\begin{gathered}
G_{j}(X)=A_{0}(m) X^{j}+A_{1}(m) X^{j-1}+\ldots+A_{j}(m) \\
F_{j}(X)=\frac{1}{(p-1)!} X^{j}+\frac{1}{(p+1)!} X^{j-1}+\frac{1}{(p+3)!} X^{j-2}+\ldots+\frac{1}{(p+2 j-1)!} .
\end{gathered}
$$

Define

$$
E_{n}^{*}=\frac{E_{2 n}}{(2 n)!} \quad \text { for } n=1,2,3, \ldots
$$

where $E_{2 n}$ are the Euler numbers, i.e. $E_{0}=1, E_{2}=-1, E_{4}=5, E_{6}=-61$, $E_{8}=1385, E_{10}=-50521, E_{12}=2702765, E_{14}=-199360981, \ldots$

Consider the formal expressions $G_{j}\left(E^{*}\right)$ and $F_{j}\left(E^{*}\right)$, where

$$
\left(E^{*}\right)^{k}=E_{k}^{*} .
$$

Let $\beta_{0}, \beta_{1}, \ldots, \beta_{l-1}$ be the integral basis of the field K formed by the Gauss periods. Let

$$
\delta=x_{0} \beta_{0}+x_{1} \beta_{1}+\ldots+x_{l-1} \beta_{l-1} .
$$

Associate with the unit δ the polynomial $f(X)$ as follows:

$$
f(X)=X^{l-1}+d_{1} X^{l-2}+d_{2} X^{l-3}+\ldots+d_{l-1},
$$

where

$$
d_{i}=-l A_{i}(l) \frac{x_{0}+x_{1} g^{i}+x_{2} g^{2 i}+\ldots+x_{l-1} g^{i(l-1)}}{x_{0}+x_{1}+\ldots+x_{l-1}}
$$

for $i=1, \ldots, l-1$. Put
$S_{j}=S_{j}\left(d_{1}, \ldots, d_{l-1}\right)=$ sum of the j th powers of the roots of $f(X)$ for $j=1, \ldots, 2 l-1$. Hence

$$
S_{1}=-d_{1}, \quad S_{2}=d_{1}^{2}-2 d_{2}, \quad S_{3}=-d_{1}^{3}+3 d_{1} d_{2}-3 d_{3}, \ldots
$$

Define the numbers $T_{1}, \ldots, T_{2 l-1}$ as follows:
$T_{i}=-\frac{1}{(i(p-1) / l)!} 2^{i(p-1) / l-1}\left(2^{i(p-1) / l}-1\right) B_{i(p-1) / l}-i \frac{p-1}{4 l} G_{i(p-1) /(2 l)}\left(E^{*}\right)$ for $i=1, \ldots, l-1$, and

$$
T_{l}=\frac{1-q_{2}}{2}, \quad \text { where } \quad q_{2}=\frac{2^{p-1}-1}{p}
$$

$$
T_{l+i}=-\frac{1}{(p-1+i(p-1) / l)!} 2^{p-1+i(p-1) / l-1}\left(2^{p-1+i(p-1) / l}-1\right)
$$

$$
\times B_{(p-1+i(p-1) / l)}
$$

$$
+\left(\frac{p-1}{2}+i \frac{p-1}{2 l}\right) F_{i(p-1) /(2 l)}\left(E^{*}\right)
$$

for $i=1, \ldots, l-1$.
Define

$$
\alpha_{i}=c_{0}+c_{1} g^{i}+c_{2} g^{2 i}+\ldots+c_{l-2} g^{(l-2) i}
$$

for $i=1, \ldots, 2 l-1$.

Let $X_{1}, \ldots, X_{2 l-1} \in \mathbb{Q}$ and let

$$
g(X)=X^{2 l-1}+Y_{1} X^{2 l-2}+\ldots+Y_{2 l-1}
$$

be a polynomial such that

$$
X_{j}=\text { sum of the } j \text { th powers of the roots of } g(X) \text {. }
$$

Define the mapping $\Phi: \mathbb{Q}^{2 l-1} \rightarrow \mathbb{Q}^{l}$ as follows:

$$
\Phi\left(X_{1}, \ldots, X_{2 l-1}\right)=\left(1-p Y_{l}, Y_{1}-p Y_{l+1}, \ldots, Y_{l-1}-p Y_{2 l-1}\right) .
$$

Now the main theorem of this paper be formulated.
Theorem 1. Let l and p be primes with $p \equiv 1(\bmod l)$ and let $K \subset$ $\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ with $[K: \mathbb{Q}]=l$. Suppose that 2 is not an l-th power modulo p. Let δ be a unit of K such that $\left[U_{K}:\langle\delta\rangle\right]=f,(f, p)=1$. Let $\eta_{2}^{f}=\delta^{c_{0}} \sigma(\delta)^{c_{1}} \ldots \sigma^{l-2}(\delta)^{c_{l-2}}$ and $\alpha_{i}=c_{0}+c_{1} g^{i}+\ldots+c_{l-2} g^{(l-2) i}$ for $i=1, \ldots, 2 l-1$. The following congruence holds:

$$
\begin{align*}
& \varepsilon\left(\frac{x_{0}+x_{1}+\ldots+x_{l-1}}{-l}\right)^{\alpha_{l}} \Phi\left(\alpha_{1} S_{1}, \ldots, \alpha_{2 l-1} S_{2 l-1}\right) \tag{3}\\
& \quad \equiv(2+2 p)^{f(p-1) /(2 l)} \Phi\left(f T_{1}, \ldots, f T_{2 l-1}\right)\left(\bmod p^{2}\right),
\end{align*}
$$

where $\varepsilon= \pm 1$.
Remark. The class number h_{K} appears in the preceding congruence implicitly, via the congruence

$$
h_{K} f^{l-2} \equiv \alpha_{1} \ldots \alpha_{l-1}\left(\bmod p^{2}\right) .
$$

This congruence can be proved in the following way:
We have the congruence $1 / g \equiv \zeta_{l}\left(\bmod \mathfrak{p}^{p}\right)$ and hence

$$
\sigma_{-1}\left(c_{0}+c_{1} \zeta_{l}^{i}+\ldots+c_{l-2} \zeta_{l}^{(l-2) i}\right) \equiv \alpha_{i}\left(\bmod \mathfrak{p}^{p}\right)
$$

this yields
$h_{K} f^{l-2}=e=N_{\mathbb{Q}\left(\zeta_{l}\right) / \mathbb{Q}}\left(c_{0}+c_{1} \zeta_{l}+\ldots+c_{l-2} \zeta_{l}^{l-2}\right) \equiv \alpha_{1} \ldots \alpha_{l-1}\left(\bmod p^{2}\right)$.
The congruence (3) gives l congruences (one in each component). If

$$
B_{(p-1) / l} B_{2(p-1) / l} \ldots B_{(l-1)(p-1) / l} \not \equiv 0(\bmod p),
$$

then from the congruence (3), the numbers $\alpha_{1}, \ldots, \alpha_{l-1}$ modulo p^{2} can be calculated. Using the congruence

$$
h_{K} f^{l-2} \equiv \alpha_{1} \ldots \alpha_{l-1}\left(\bmod p^{2}\right),
$$

also h_{K} can be calculated modulo p^{2}. If

$$
B_{(p-1) / l} B_{2(p-1) / l} \ldots B_{(l-1)(p-1) / l} \equiv 0(\bmod p),
$$

then the numbers $\alpha_{1}, \ldots, \alpha_{l-1}$ and hence also h_{K} can be calculated at most modulo p.

Before proving Theorem 1, we show its applications to quadratic and cubic fields.

The quadratic case $K=\mathbb{Q}(\sqrt{p}), p \equiv 5(\bmod 8)$. Let

$$
\delta=x_{0} \beta_{0}+x_{1} \beta_{1}=x_{0} \frac{-1+\sqrt{p}}{2}+x_{1} \frac{-1-\sqrt{p}}{2}>1
$$

be a fundamental unit of $\mathbb{Q}(\sqrt{p})$. Then

$$
d_{1}=-2 A_{1}(2) \frac{x_{0}-x_{1}}{x_{0}+x_{1}}
$$

Hence
$S_{1}=2 A_{1}(2) \frac{x_{0}-x_{1}}{x_{0}+x_{1}}, \quad S_{2}=4 A_{1}(2)^{2} \frac{\left(x_{0}-x_{1}\right)^{2}}{\left(x_{0}+x_{1}\right)^{2}}, \quad S_{3}=8 A_{1}(2)^{3} \frac{\left(x_{0}-x_{1}\right)^{3}}{\left(x_{0}+x_{1}\right)^{3}}$.
For $A_{1}(2)$ we have

$$
\tau(\chi)^{2} \equiv 4 A_{1}(2)^{2}(-p)\left(\bmod \mathfrak{p}^{3}\right), \quad A_{1}(2) \equiv \frac{(p-1) / 2}{((p-1) / 2)!}(\bmod p)
$$

Hence

$$
A_{1}(2)^{2} \equiv-\frac{1}{4}\left(\bmod p^{2}\right), \quad A_{1}(2) \equiv \frac{(p-1) / 2}{((p-1) / 2)!}(\bmod p)
$$

Therefore

$$
S_{1}=2 A_{1}(2) \frac{x_{0}-x_{1}}{x_{0}+x_{1}}, \quad S_{2}=-\frac{\left(x_{0}-x_{1}\right)^{2}}{\left(x_{0}+x_{1}\right)^{2}}, \quad S_{3}=-2 A_{1}(2) \frac{\left(x_{0}-x_{1}\right)^{3}}{\left(x_{0}+x_{1}\right)^{3}}
$$

Let

$$
\frac{x_{0}+x_{1}}{-2}+\frac{x_{0}-x_{1}}{2} \sqrt{p}=T+U \sqrt{p}>1
$$

It can be proved that $\left|\eta_{2}\right|=\left|N_{\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right) / \mathbb{Q}(\sqrt{p})}\left(\zeta_{p}+\zeta_{p}^{-1}\right)\right|<1$, hence it is necessary to start from the unit $T-U \sqrt{p}$. We have

$$
S_{1}=2 A_{1}(2) \frac{U}{T}, \quad S_{2}=-\frac{U^{2}}{T^{2}}, \quad S_{3}=-2 A_{1}(2) \frac{U^{3}}{T^{3}}
$$

For the numbers T_{1}, T_{2}, T_{3} we have

$$
\begin{aligned}
T_{1}= & -\frac{1}{((p-1) / 2)!} 2^{(p-1) / 2-1}\left(2^{(p-1) / 2}-1\right) B_{(p-1) / 2}-\frac{p-1}{8} G_{(p-1) / 4}\left(E^{*}\right) \\
T_{2}= & \frac{1}{2}\left(1-q_{2}\right), \\
T_{3}= & -\frac{1}{(3(p-1) / 2)!} 2^{3(p-1) / 2-1}\left(2^{3(p-1) / 2}-1\right) B_{3(p-1) / 2} \\
& +(3(p-1) / 4) F_{(p-1) / 4}\left(E^{*}\right) .
\end{aligned}
$$

It is easy to see that

$$
\Phi\left(X_{1}, X_{2}, X_{3}\right)=\left(1-p \frac{X_{1}^{2}-X_{2}}{2},-X_{1}-p\left(-\frac{1}{6} X_{1}^{3}+\frac{1}{2} X_{1} X_{2}-\frac{1}{3} X_{3}\right)\right) .
$$

Hence
$\varepsilon\left(\frac{x_{0}+x_{1}}{-2}\right)^{\alpha_{2}} \Phi\left(\alpha_{1} S_{1}, \alpha_{2} S_{2}, \alpha_{3} S_{3}\right) \equiv(2+2 p)^{(p-1) / 4} \Phi\left(T_{1}, T_{2}, T_{3}\right)\left(\bmod p^{2}\right)$.
Since $\left(x_{0}+x_{1}\right) /(-2)=T$ and $\alpha_{1}=\alpha_{2}=\alpha_{3}=h$, we get

$$
\varepsilon T^{h} \Phi\left(h S_{1}, h S_{2}, h S_{3}\right) \equiv(2+2 p)^{(p-1) / 4} \Phi\left(T_{1}, T_{2}, T_{3}\right)\left(\bmod p^{2}\right),
$$

where $\varepsilon= \pm 1$. It can be proved that $\varepsilon=(-1)^{1+r}$, where r is the number of quadratic residues modulo p in the interval ($p / 4, p / 2$).

The cubic case. Let p be a prime such that $p \equiv 1(\bmod 3), p \neq a^{2}+27 b^{2}$ and let

$$
\delta=x_{0} \beta_{0}+x_{1} \beta_{1}+x_{2} \beta_{2} .
$$

Then

$$
d_{1}=-3 A_{1}(3) \frac{x_{0}+x_{1} g+x_{2} g^{2}}{x_{0}+x_{1}+x_{2}}, \quad d_{2}=-3 A_{2}(3) \frac{x_{0}+x_{1} g^{2}+x_{2} g}{x_{0}+x_{1}+x_{2}} .
$$

For the numbers $A_{1}(3), A_{2}(3)$ we have

$$
\begin{aligned}
& \tau(\chi)^{3} \equiv 27 A_{1}(3)^{3}(-p)\left(\bmod \mathfrak{p}^{3}\right), \quad A_{1}(3) \equiv \frac{(p-1) / 3}{((p-1) / 3)!}(\bmod p), \\
& \tau\left(\chi^{2}\right)^{3} \equiv 27 A_{2}(3)^{3}(-p)^{2}\left(\bmod \mathfrak{p}^{4}\right), \quad A_{2}(3) \equiv \frac{(p-1) / 3}{(2(p-1) / 3)!}(\bmod p) .
\end{aligned}
$$

As is well known, $\tau(\chi)^{3}=p J(\chi, \chi)$, where $J(\chi, \chi)$ is the Jacobi sum.
Let $J(\chi, \chi)=a+b \zeta_{3}, a \equiv-1, b \equiv 0(\bmod 3)$ and $p=a^{2}-a b+b^{2}$.
Hence

$$
-\left(a+b \frac{1}{g}\right) \equiv 27 A_{1}(3)^{3}\left(\bmod p^{2}\right), \quad A_{1}(3) \equiv \frac{(p-1) / 3}{((p-1) / 3)!}(\bmod p) .
$$

The number $A_{2}(3)$ is determined by the congruence

$$
-1 \equiv 27^{2} A_{1}(3)^{3} A_{2}(3)^{3}\left(\bmod p^{2}\right), \quad A_{2}(3) \equiv \frac{(p-1) / 3}{(2(p-1) / 3)!}(\bmod p) .
$$

For the numbers T_{1}, \ldots, T_{5} we have
$T_{i}=-\frac{1}{(i(p-1) / 3)!} 2^{i(p-1) / 3-1}\left(2^{i(p-1) / 3}-1\right) B_{i(p-1) / 3}-i \frac{p-1}{12} G_{i(p-1) / 6}\left(E^{*}\right)$
for $i=1,2$, and

$$
T_{3}=\frac{1}{2}\left(1-q_{2}\right),
$$

$$
\begin{aligned}
T_{3+i}= & -\frac{1}{(p-1+i(p-1) / 3)!} 2^{p-1+i(p-1) / 3-1}\left(2^{p-1+i(p-1) / 3}-1\right) \\
& \times B_{(p-1+i(p-1) / 3)} \\
& +\left(\frac{p-1}{2}+i \frac{p-1}{6}\right) F_{i(p-1) / 6}\left(E^{*}\right)
\end{aligned}
$$

for $i=1,2$.
It is easy to prove that for $\Phi\left(X_{1}, \ldots, X_{5}\right)$ we have

$$
\begin{aligned}
\Phi\left(X_{1}, \ldots,\right. & \left.X_{5}\right) \\
= & \left(1-p\left(-\frac{1}{6} X_{1}^{3}+\frac{1}{2} X_{1} X_{2}-\frac{1}{3} X_{3}\right)\right. \\
& -X_{1}-p\left(\frac{1}{24} X_{1}^{4}+\frac{1}{3} X_{1} X_{3}+\frac{1}{8} X_{2}^{2}-\frac{1}{4} X_{1}^{2} X_{2}-\frac{1}{4} X_{4}\right) \\
& \frac{1}{2}\left(X_{1}^{2}-X_{2}\right)-p\left(-\frac{1}{120} X_{1}^{5}+\frac{1}{4} X_{1} X_{4}+\frac{1}{6} X_{2} X_{3}\right. \\
& \left.\left.+\frac{1}{12} X_{1}^{3} X_{2}-\frac{1}{6} X_{1}^{2} X_{3}-\frac{1}{8} X_{1} X_{2}^{2}-\frac{1}{5} X_{5}\right)\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\pm\left(\frac{-1}{3}\right)^{\alpha_{3}}\left(x_{0}+x_{1}+x_{2}\right)^{\alpha_{3}} & \Phi\left(\alpha_{1} S_{1}, \ldots, \alpha_{5} S_{5}\right) \\
& \equiv(2+2 p)^{(p-1) / 6} \Phi\left(T_{1}, \ldots, T_{5}\right)\left(\bmod p^{2}\right)
\end{aligned}
$$

Proof of Theorem 1. Let $g_{1}(X), \ldots, g_{r}(X)$ be polynomials such that $g_{i}(X) \not \equiv 0(\bmod X)$. Let

$$
g(X) \equiv g_{1}(X)^{b_{1}} \ldots g_{r}(X)^{b_{r}}\left(\bmod X^{M}\right)
$$

Let s_{j} be the homomorphism defined in [4]. We have

$$
s_{j}(g(X))=b_{1} s_{j}\left(g_{1}(X)\right)+b_{2} s_{j}\left(g_{2}(X)\right)+\ldots+b_{r} s_{j}\left(g_{r}(X)\right)
$$

for $j=1, \ldots, M-1$. Define

$$
X_{j}=b_{1} s_{j}\left(g_{1}(X)\right)+b_{2} s_{j}\left(g_{2}(X)\right)+\ldots+b_{r} s_{j}\left(g_{r}(X)\right)
$$

for $j=1, \ldots, M-1$. Let

$$
g(X) \equiv C_{0}+C_{1} X+C_{2} X^{2}+\ldots+C_{M-1} X^{M-1}\left(\bmod X^{M}\right)
$$

Consider the reciprocal polynomial

$$
F(X)=X^{M-1}+\frac{C_{1}}{C_{0}} X^{M-2}+\ldots+\frac{C_{M-1}}{C_{0}}
$$

By the definition of the homomorphism s_{j} (see [4]) we have

$$
X_{j}=\text { sum of the } j \text { th powers of the roots of } F(X) \text {. }
$$

The numbers $C_{1} / C_{0}, C_{2} / C_{0}, \ldots, C_{M-1} / C_{0}$ can be calculated by the Newton recurrence formula.

According to [2] and [4] we have:
Proposition 1. There is a number $\pi \in \mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right), \pi \mid p$ such that
(i) $N_{\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right) / \mathbb{Q}}(\pi)=(-1)^{m} p$,
(ii) $\sigma(\pi) \equiv g \pi\left(\bmod \pi^{2 m+1}\right), g \equiv a^{2 p}\left(\bmod p^{2}\right)$,
(iii) $\zeta_{p}+\zeta_{p}^{-1} \equiv \sum_{i=0}^{2 m} a_{i} \pi^{i}\left(\bmod \pi^{2 m+1}\right)$, where $0 \leq a_{i}<p$ and $a_{i} \equiv$ $(2 /(2 i)!)(\bmod p)$ for $i=1, \ldots, m$.

The numbers a_{m+i} for $i=1, \ldots, m$, are defined by

$$
a_{m+1}=2 \frac{p-1-p(p+1) B_{p-1}}{p} .
$$

If 2 is a primitive root modulo p then the coefficients $a_{m+2}, a_{m+3}, \ldots, a_{2 m}$ are given by the recurrence formula

$$
a_{m+1+s} \equiv \frac{1}{4^{s+1}-4}\left(\frac{4^{p(s+1)} a_{s+1}-b_{s+1}}{p}+b_{m+s+1}\right)(\bmod p)
$$

where b_{s+1} and b_{m+1+s} are the coefficients of X^{s+1} and X^{m+1+s}, respectively, in the polynomial

$$
\left(2+\frac{2}{2!} X+\ldots+\frac{2}{(p-1)!} X^{m}+a_{m+1} X^{m+1}+\ldots+a_{m+s} X^{m+s}\right)^{2}
$$

Proposition 2. Let $K \subset \mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ with $[K: \mathbb{Q}]=n$. There is a number $\pi \in K$ with $\pi \mid p$ such that
(i) $N_{K / \mathbb{Q}}(\pi)=(-1)^{n} p$,
(ii) $\sigma(\pi) \equiv g \pi\left(\bmod \pi^{n+1}\right), g \equiv a^{p(p-1) / n}\left(\bmod p^{2}\right)$,
(iii) $\beta_{0} \equiv \sum_{i=0}^{2 n} a_{i}^{*} \pi^{i}\left(\bmod \pi^{2 n+1}\right)$, where $0 \leq a_{i}^{*}<p$ and where $a_{i}^{*} \equiv((p-1) / n) /(i(p-1) / n)!(\bmod p)$ for $i=1, \ldots, n$.

From now on we will use the following transformation. Let

$$
\gamma \equiv c_{0}+c_{1} \pi+c_{2} \pi^{2}+\ldots+c_{2 l-1} \pi^{2 l-1}\left(\bmod \pi^{2 l}\right)
$$

From $\pi^{l} \equiv-p\left(\bmod \pi^{2 l}\right)$ we have

$$
\gamma \equiv\left(c_{0}-p c_{l}\right)+\left(c_{1}-p c_{l+1}\right) \pi+\ldots+\left(c_{l-1}-p c_{2 l-1}\right) \pi^{l-1}\left(\bmod \pi^{2 l}\right) .
$$

Lemma 1. Let $\alpha, \beta \in K$ with $\alpha \beta \not \equiv 0(\bmod \pi)$. Let

$$
\begin{aligned}
& \alpha \equiv e_{0}+e_{1} \pi+\ldots+e_{l-1} \pi^{l-1}\left(\bmod \pi^{2 l}\right) \\
& \beta \equiv b_{0}+b_{1} \pi+\ldots+b_{l-1} \pi^{l-1}\left(\bmod \pi^{2 l}\right) .
\end{aligned}
$$

Relate to the conjugation $\sigma^{i}(\alpha)$ the polynomial

$$
f_{i}(X)=e_{0}+e_{1} g^{i} X+e_{2} g^{2 i} X^{2}+\ldots+e_{l-1} g^{i(l-1)} X^{l-1}
$$

Let

$$
\begin{aligned}
F(X) & \equiv f_{0}(X)^{c_{0}} f_{1}(X)^{c_{1}} \ldots f_{l-2}(X)^{c_{l-2}} \\
& \equiv d_{0}+d_{1} X+\ldots+d_{2 l-1} X^{2 l-1}\left(\bmod X^{2 l}\right)
\end{aligned}
$$

Define $X_{i}=s_{i}(F(X))$. Then

$$
\alpha^{c_{0}} \sigma(\alpha)^{c_{1}} \ldots \sigma^{l-2}(\alpha)^{c_{l-2}} \equiv \beta\left(\bmod p^{2}\right)
$$

if and only if

$$
d_{0} \Phi\left(X_{1}, \ldots, X_{2 l-2}\right) \equiv\left(b_{0}, b_{1}, \ldots, b_{l-1}\right)\left(\bmod p^{2}\right)
$$

Proof. Clearly

$$
\alpha^{c_{0}} \sigma(\alpha)^{c_{1}} \ldots \sigma^{l-2}(\alpha)^{c_{l-2}} \equiv d_{0}+d_{1} \pi+\ldots+d_{2 l-1} \pi^{2 l-1}\left(\bmod \pi^{2 l}\right)
$$

The coefficients $d_{1} / d_{0}, d_{2} / d_{0}, \ldots, d_{2 l-1} / d_{0}$ can be expressed using the numbers $X_{1}, \ldots, X_{2 l-1}$ by the Newton recurrence formula. Clearly

$$
\begin{aligned}
& d_{0}+d_{1} \pi+\ldots+d_{2 l-1} \pi^{2 l-1} \\
& \quad \equiv\left(d_{0}-p d_{l}\right)+\left(d_{1}-p d_{l+1}\right) \pi+\ldots+\left(d_{l-1}-p d_{2 l-1}\right) \pi^{l-1}\left(\bmod \pi^{2 l}\right)
\end{aligned}
$$

From the definition of the mapping Φ it follows that

$$
\left(d_{0}-p d_{l}, d_{1}-p d_{l+1}, \ldots, d_{l-1}-p d_{2 l-1}\right) \equiv d_{0} \Phi\left(X_{1}, X_{2}, \ldots, X_{2 l-1}\right)\left(\bmod p^{2}\right)
$$

Lemma 1 is proved.
Proposition 2 gives

$$
\beta_{0} \equiv-1 / l+\left(a_{1}^{*}-p a_{l+1}^{*}\right) \pi+\ldots+\left(a_{l-1}^{*}-p a_{2 l-1}^{*}\right) \pi^{l-1}\left(\bmod \pi^{2 l}\right)
$$

where $0 \leq a_{i}^{*}<p$ and $a_{i}^{*} \equiv((p-1) / n) /(i(p-1) / n)$! $(\bmod p)$ for $i=$ $1, \ldots, l-1$. According to [4] we have

$$
a_{i}^{*}-p a_{l+i}^{*} \equiv A_{i}(l)\left(\bmod p^{2}\right)
$$

Let $\delta=x_{0} \beta_{0}+x_{1} \beta_{1}+\ldots+x_{l-1} \beta_{l-1}$. Then

$$
\begin{aligned}
\delta \equiv & -\frac{1}{l}\left(x_{0}+x_{1}+\ldots+x_{l-1}\right) \\
& +\sum_{i=1}^{l-1} A_{i}(l)\left(x_{0}+x_{1} g^{i}+x_{2} g^{2 i}+\ldots+x_{l-1} g^{i(l-1)}\right) \pi^{i}\left(\bmod \pi^{2 l}\right)
\end{aligned}
$$

Let

$$
\delta^{c_{0}} \sigma(\delta)^{c_{1}} \ldots \sigma^{l-2}(\delta)^{c_{l-2}}=\eta_{2}^{f}
$$

Then X_{j} corresponding to the product on the left-hand side is equal to

$$
c_{0} s_{j}(\delta)+c_{1} g^{j} s_{j}(\delta)+\ldots+c_{l-2} g^{j(l-2)} s_{j}(\delta)=\alpha_{j} S_{j}
$$

for $j=1, \ldots, 2 l-1$. Hence the number corresponding to the left-hand side is

$$
\left(\frac{x_{0}+x_{1}+\ldots+x_{l-1}}{-l}\right)^{\alpha_{l}} \Phi\left(\alpha_{1} S_{1}, \ldots, \alpha_{2 l-1} S_{2 l-1}\right) .
$$

Now we prove that the right-hand side is equal to

$$
(2+2 p)^{f(p-1) / l} \Phi\left(f T_{1}, \ldots, f T_{2 l-1}\right)
$$

By Proposition 1 we have

$$
\zeta_{p}+\zeta_{p}^{-1} \equiv \sum_{i=0}^{2 m} a_{i} \pi^{i}\left(\bmod \pi^{2 m+1}\right)
$$

where $0 \leq a_{i}<p$ and $a_{i} \equiv(2 /(2 i)!)(\bmod p)$ for $i=1, \ldots, m$, and hence

$$
\zeta_{p}+\zeta_{p}^{-1} \equiv A_{0}(m)+A_{1}(m) \pi+\ldots+A_{m-1}(m) \pi^{m-1}\left(\bmod \pi^{2 m}\right)
$$

Consider the polynomial

$$
g(X)=A_{0}(m) X^{m-1}+A_{1}(m) X^{m-2}+\ldots+A_{m-1}(m)
$$

Now we shall calculate the numbers

$$
s_{i}=\text { sum of the } i \text { th powers of the roots of } g(X)
$$

for $i=1, \ldots, 2 m-1$ modulo p^{2}. It is easy to see that for $i>m-1$ it is enough to determine s_{i} modulo p. Let W_{1}, W_{2}, \ldots be a linearly recurrent sequence modulo p of order $m-1$ defined by

$$
W_{i}=\frac{-1}{(2 i)!} 2^{2 i-1}\left(2^{2 i}-1\right) B_{2 i} \quad \text { for } i=1, \ldots, m-1
$$

For $i>m-1$ we have

$$
W_{i}=-\left(\frac{1}{2!} W_{i-1}+\frac{1}{4!} W_{i-2}+\ldots+\frac{1}{(2 m-2)!} W_{i-m+1}\right)
$$

Lemma 2. The following congruence holds:

$$
s_{n+1} \equiv \frac{-1}{(2 n+2)!} 2^{2 n+1}\left(2^{2 n+2}-1\right) B_{2 n+2}-\frac{n+1}{2} G_{n+1}\left(E^{*}\right)\left(\bmod p^{2}\right)
$$

for $n+1<m$.
Proof. It is easy to see that $A_{0}(m) \equiv 2+2 p\left(\bmod p^{2}\right)$. Clearly

$$
(2+2 p) \frac{1-p}{2} \equiv 1\left(\bmod p^{2}\right)
$$

Consider the polynomial

$$
g^{*}(X)=X^{m-1}+C_{1} X^{m-2}+\ldots+C_{m-1}
$$

where

$$
C_{i} \equiv \frac{1-p}{2} A_{i}(m)\left(\bmod p^{2}\right) .
$$

Obviously s_{n} is equal to the sum of the nth powers of the roots of $g^{*}(X)$. Write

$$
C_{1}=c_{1}+b_{1} p, \quad C_{2}=c_{2}+b_{2} p, \ldots, C_{m-1}=c_{m-1}+b_{m-1} p
$$

It is known that there exists a polynomial $f_{n}\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
s_{n}=f_{n}\left(c_{1}+b_{1} p, \ldots, c_{n}+b_{n} p\right) .
$$

Write $s_{n}=r_{n}+t_{n} p$. Clearly $r_{1}+t_{1} p=-\left(c_{1}+b_{1} p\right)$. Put $t_{1}=-b_{1}$.
According to the Newton recurrent formula we have

$$
r_{2}+t_{2} p+\left(c_{1}+b_{1} p\right)\left(r_{1}+t_{1} p\right)+2\left(c_{2}+p b_{2}\right)=0 .
$$

The last equation can be rewritten in the form

$$
r_{2}+c_{1} r_{1}+2 c_{2}+p\left(t_{2}+c_{1} t_{1}+r_{1} b_{1}+2 b_{2}\right)=0 .
$$

Define $F_{2}=r_{1} b_{1}+2 b_{2}$. Hence $r_{2}+c_{1} r_{1}+2 c_{2}+p\left(t_{2}+c_{1} t_{1}+F_{2}\right)=0$. Put $t_{2}=-\left(c_{1} t_{1}+F_{2}\right)$.

Further we have

$$
r_{3}+t_{3} p+\left(c_{1}+b_{1} p\right)\left(r_{2}+t_{2} p\right)+\left(c_{2}+b_{2} p\right)\left(r_{1}+t_{1} p\right)+3\left(c_{3}+b_{3} p\right)=0,
$$

hence

$$
r_{3}+c_{1} r_{2}+c_{2} r_{1}+3 c_{3}+p\left(t_{3}+c_{1} t_{2}+c_{2} t_{1}+b_{1} r_{2}+b_{2} r_{1}+3 b_{3}\right)=0 .
$$

Define $F_{3}=b_{1} r_{2}+b_{2} r_{1}+3 b_{3}$. Then we put

$$
\begin{aligned}
t_{3}= & t_{1}\left(c_{1}^{2}-c_{2}\right)+c_{1} F_{2}-F_{3}, \\
t_{4}= & t_{1}\left(-c_{1}^{3}+2 c_{1} c_{2}-c_{3}\right)-\left(c_{1}^{2}-c_{2}\right) F_{2}+c_{1} F_{3}-F_{4}, \\
t_{5}= & t_{1}\left(c_{1}^{4}-3 c_{1}^{2} c_{2}+2 c_{1} c_{3}+c_{2}^{2}-c_{4}\right)-\left(-c_{1}^{3}+2 c_{1} c_{2}-c_{3}\right) F_{2} \\
& -\left(c_{1}^{2}-c_{2}\right) F_{3}+c_{1} F_{4}-F_{5} .
\end{aligned}
$$

Consider the numbers

$$
K_{2}=-c_{1}, \quad K_{4}=c_{1}^{2}-c_{2}, \quad K_{6}=-c_{1}^{3}+2 c_{1} c_{2}-c_{3}, \ldots
$$

The numbers $c_{1}, c_{2}, c_{3}, \ldots$ are equal to $1 / 2!, 1 / 4!, 1 / 6!, \ldots$ modulo p. Define

$$
K_{2 n}=K_{2 n}^{*} /(2 n)!.
$$

Then

$$
\frac{K_{2 n}^{*}}{(2 n)!}+\frac{1}{(2)!} \cdot \frac{K_{2 n-2}^{*}}{(2 n-2)!}+\ldots+\frac{1}{(2 n-2)!} \cdot \frac{K_{2}^{*}}{2!}+\frac{1}{(2 n)!}=0,
$$

hence

$$
\frac{1}{(2 n)!}\left(K_{2 n}^{*}+\binom{2 n}{2} K_{2 n-2}^{*}+\ldots+1\right)=0
$$

and therefore $K_{2 n}^{*}=E_{2 n}$, the Euler number. Using induction by n we put

$$
\begin{equation*}
t_{n+1}=t_{1} \frac{E_{2 n}}{(2 n)!}-F_{2} \frac{E_{2 n-2}}{(2 n-2)!}-\ldots-F_{n+1} \tag{4}
\end{equation*}
$$

where
$F_{2}=b_{1} r_{1}+2 b_{2}, \quad F_{3}=b_{1} r_{2}+b_{2} r_{1}+3 b_{3}, \quad F_{4}=b_{1} r_{3}+b_{2} r_{2}+b_{3} r_{1}+4 b_{4}, \ldots$
Since $t_{1}=-b_{1}$, we have

$$
\begin{aligned}
t_{n+1}= & -b_{1} \frac{E_{2 n}}{(2 n)!}-\frac{E_{2 n-2}}{(2 n-2)!}\left(b_{1} r_{1}+2 b_{2}\right) \\
& -\ldots-\left(b_{1} r_{n}+b_{2} r_{n-1}+\ldots+(n+1) b_{n+1}\right)
\end{aligned}
$$

In the last equation we first cancel the brackets by multiplication and then make new brackets by factoring out b_{1}, \ldots, b_{n+1}. The summand obtained by factoring out b_{1} is

$$
\begin{equation*}
b_{1}\left(\frac{E_{2 n}}{(2 n)!}+r_{1} \frac{E_{2 n-2}}{(2 n-2)!}+\ldots+r_{n}\right) \tag{5}
\end{equation*}
$$

According to [4, Lemma 3],

$$
r_{i} \equiv-\frac{1}{(2 i)!} 2^{2 i-1}\left(2^{2 i}-1\right) B_{2 i}(\bmod p)
$$

By substitution into (5) we get the sum

$$
\begin{aligned}
\frac{E_{2 n}}{(2 n)!}-\frac{E_{2 n-2}}{(2 n-2)!} \cdot \frac{1}{2!} 2\left(2^{2}-1\right) B_{2}- & \frac{E_{2 n-4}}{(2 n-4)!} \cdot \frac{1}{4!} 2^{3}\left(2^{4}-1\right) B_{4} \\
& -\ldots-\frac{1}{(2 n)!} 2^{2 n-1}\left(2^{2 n}-1\right) B_{2 n}
\end{aligned}
$$

The following identity holds:

$$
\begin{align*}
\frac{E_{2 n}}{(2 n)!}-\frac{E_{2 n-2}}{(2 n-2)!} & \cdot \frac{1}{2!} 2\left(2^{2}-1\right) B_{2}-\frac{E_{2 n-4}}{(2 n-4)!} \cdot \frac{1}{4!} 2^{3}\left(2^{4}-1\right) B_{4} \tag{6}\\
& -\ldots-\frac{1}{(2 n)!} 2^{2 n-1}\left(2^{2 n}-1\right) B_{2 n}=(n+1) \frac{E_{2 n}}{(2 n)!}
\end{align*}
$$

This identity can be proved in the following way. For the functions $\sec x$ and $\tan x$, we have

$$
\begin{aligned}
& \sec x=1-\frac{E_{2}}{2!} x^{2}+\frac{E_{4}}{4!} x^{4}-\frac{E_{6}}{6!} x^{6}+\ldots, \\
& \tan x=2^{2}\left(2^{2}-1\right) B_{2} \frac{x}{2!}-2^{4}\left(2^{4}-1\right) B_{4} \frac{x^{3}}{4!}+\ldots
\end{aligned}
$$

Then
$\tan x \cdot \sec x=\frac{2^{2}\left(2^{2}-1\right)}{2!} B_{2} x-\left(\frac{E_{2} B_{2} 2^{2}\left(2^{2}-1\right)}{2!2!}+\frac{2^{4}\left(2^{4}-1\right) B_{4}}{4!}\right) x^{3}+\ldots$
The identity (6) follows from the equation

$$
\frac{d(\sec x)}{d x}=\tan x \cdot \sec x
$$

Using the identity (6), by induction ($n+1 \rightarrow 1$) we have

$$
\begin{equation*}
t_{n+1}=-(n+1)\left(b_{1} \frac{E_{2 n}}{(2 n)!}+b_{2} \frac{E_{2 n-2}}{(2 n-2)!}+\ldots+b_{n+1}\right) . \tag{7}
\end{equation*}
$$

The numbers a_{1}, \ldots, a_{m-1} from Proposition 1 are

$$
a_{i} \equiv \frac{2}{(2 i)!}(\bmod p), \quad 0<a_{i}<p
$$

Define the numbers D_{i} as follows:

$$
\frac{1-p}{2} a_{i}+p D_{i} \equiv \frac{1}{(2 i)!}\left(\bmod p^{2}\right), \quad 0 \leq D_{i}<p
$$

hence

$$
D_{i} \equiv \frac{1}{p}\left(\frac{1}{(2 i)!}-\frac{1-p}{2} a_{i}\right)(\bmod p)
$$

Let v_{n+1} be the sum of the $(n+1)$ th powers of the roots of the polynomial

$$
X^{m-1}+\frac{1-p}{2} a_{1} X^{m-2}+\ldots+\frac{1-p}{2} a_{m-1}
$$

According to [4, Lemma 3], the sum of the $(n+1)$ th powers of the roots of the polynomial

$$
X^{m-1}+\frac{1}{2!} X^{m-2}+\frac{1}{4!} X^{m-3}+\ldots+\frac{1}{(2 m-2)!},
$$

is equal to

$$
\frac{-1}{(2 n+2)!} 2^{2 n+1}\left(2^{2 n+2}-1\right) B_{2 n+2}
$$

Hence

$$
\begin{aligned}
v_{n+1}= & \frac{-1}{(2 n+2)!} 2^{2 n+1}\left(2^{2 n+2}-1\right) B_{2 n+2} \\
& +p(n+1)\left(D_{1} \frac{E_{2 n}}{(2 n)!}+D_{2} \frac{E_{2 n-2}}{(2 n-2)!}+\ldots+D_{n+1}\right) .
\end{aligned}
$$

Therefore

$$
\begin{align*}
s_{n+1}= & \frac{-1}{(2 n+2)!} 2^{2 n+1}\left(2^{2 n+2}-1\right) B_{2 n+2} \tag{8}\\
& +p(n+1)\left(D_{1} \frac{E_{2 n}}{(2 n)!}+D_{2} \frac{E_{2 n-2}}{(2 n-2)!}+\ldots+D_{n+1}\right) \\
& -p(n+1)\left(b_{1} \frac{E_{2 n}}{(2 n)!}+b_{2} \frac{E_{2 n-2}}{(2 n-2)!}+\ldots+b_{n+1}\right) .
\end{align*}
$$

Since

$$
D_{i} \equiv \frac{1}{p}\left(\frac{1}{(2 i)!}-\frac{1-p}{2} a_{i}\right),
$$

from (8) we get
(9) $s_{n+1}=\frac{-1}{(2 n+2)!} 2^{2 n+1}\left(2^{2 n+2}-1\right) B_{2 n+2}-\frac{(n+1) E_{2 n+2}}{(2 n+2)!}$

$$
\begin{aligned}
& +(n+1) \frac{p-1}{2}\left(a_{1} \frac{E_{2 n}}{(2 n)!}+a_{2} \frac{E_{2 n-2}}{(2 n-2)!}+\ldots+a_{n+1}\right) \\
& +p \frac{n+1}{2}\left(a_{m+1} \frac{E_{2 n}}{(2 n)!}+a_{m+2} \frac{E_{2 n-2}}{(2 n-2)!}+\ldots+a_{m+n+1}\right)
\end{aligned}
$$

where $a_{1}, \ldots, a_{m}, a_{m+1}, a_{m+2}, \ldots$ are the numbers from Proposition 1. Since $A_{i}(m)=a_{i}-p a_{m+i}$, from the equality (9) we get

$$
s_{n+1}=\frac{-1}{(2 n+2)!} 2^{2 n+1}\left(2^{2 n+2}-1\right) B_{2 n+2}-\frac{n+1}{2} G_{n+1}\left(E^{*}\right)
$$

Lemma 3. The following congruence holds:

$$
\begin{aligned}
W_{m+j} \equiv & -\frac{1}{(p-1+2 j)!} 2^{p-1+2 j-1}\left(2^{p-1+2 j}-1\right) B_{p-1+2 j} \\
& +(m+j) F_{j}\left(E^{*}\right)(\bmod p)
\end{aligned}
$$

for $j=1, \ldots, m-1$.
Proof. Let $n>2 p-3$. Consider the polynomial

$$
h(X)=X^{n}+\frac{1}{2!} X^{n-1}+\frac{1}{4!} X^{n-2}+\ldots+\frac{1}{(2 n)!}
$$

Let W_{i}^{*} be the sum of the i th powers of the roots of $h(X)$. By [4, Lemma 3],

$$
W_{i}^{*}=-\frac{1}{(2 i)!} 2^{2 i-1}\left(2^{2 i}-1\right) B_{2 i}
$$

The characteristic polynomial of the sequence W_{i} is

$$
X^{m-1}+\frac{1}{2!} X^{m-2}+\frac{1}{4!} X^{m-3}+\ldots+\frac{1}{(2 m-2)!}
$$

Hence W_{i} is the sum of the i th powers of the roots of this polynomial.
Let

$$
c_{1}=\frac{1}{2!}, \quad c_{2}=\frac{1}{4!}, \ldots
$$

Obviously

$$
\begin{aligned}
W_{m} & =W_{m}^{*}+m c_{m} \\
W_{m+1} & =W_{m+1}^{*}+c_{m} W_{1}+(m+1) c_{m+1}-c_{1} m c_{m}
\end{aligned}
$$

We can write

$$
G_{m}=m c_{m}, \quad G_{m+1}=(m+1) c_{m+1}-c_{1} G_{m}
$$

By induction we can prove that

$$
\begin{align*}
W_{m+j}= & W_{m+j}^{*}+c_{m} W_{j}+\left(c_{m+1}+c_{m} E_{1}^{*}\right) W_{j-1} \tag{10}\\
& +\left(c_{m+2}+c_{m+1} E_{1}^{*}+c_{m} E_{2}^{*}\right) W_{j-2}+\ldots \\
& +\left(c_{m+j-1}+c_{m+j-2} E_{1}^{*}+\ldots+c_{m} E_{j-1}^{*}\right) W_{1}+G_{m+j}
\end{align*}
$$

Now we rewrite the right side of (10). We cancel the brackets by multiplication and make new brackets by factoring out c_{m}, c_{m+1}, \ldots
E.g., the summand obtained by factoring out c_{m} is

$$
c_{m}\left(W_{j}+E_{1}^{*} W_{j-1}+E_{2}^{*} W_{j-2}+\ldots+E_{j-1}^{*} W_{1}\right)
$$

From (6) we get

$$
c_{m}\left(W_{j}+E_{1}^{*} W_{j-1}+E_{2}^{*} W_{j-2}+\ldots+E_{j-1}^{*} W_{1}\right)=c_{m} j E_{j}^{*}
$$

By repeating this procedure with each summand we have
(11) W_{m+j}

$$
=W_{m+j}^{*}+j c_{m} E_{j}^{*}+(j-1) c_{m+1} E_{j-1}^{*}+\ldots+c_{m+j-1} E_{1}^{*}+G_{m+j}
$$

By induction it is easy to prove

$$
\begin{equation*}
G_{m+j}=(m+1) c_{m+j}+(m+j-1) c_{m+j-1} E_{1}^{*}+\ldots+m c_{m} E_{j}^{*} \tag{12}
\end{equation*}
$$

Substituting (12) into (11) we get

$$
W_{m+j}=W_{m+j}^{*}+(m+j)\left(c_{m+j}+c_{m+j-1} E_{1}^{*}+\ldots+c_{m} E_{j}^{*}\right)
$$

Since $\eta_{2}=N_{\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right) / K}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ we have

$$
\eta_{2}^{f} \equiv r_{0}+\sum_{i=1}^{l-1} r_{i(p-1) /(2 l)} \pi^{i(p-1) /(2 l)}\left(\bmod \pi^{2 m}\right)
$$

where $r_{0}=(2+2 p)^{f(p-1) /(2 l)}$. From Lemmas $1-3$ we deduce that the righthand side is equal to

$$
(2+2 p)^{f(p-1) /(2 l)} \Phi\left(f T_{1}, \ldots, f T_{2 l-1}\right)
$$

It remains to prove that $T_{l}=\left(1-q_{2}\right) / 2$. From the proof of Lemma 3 we have

$$
T_{l} \equiv \frac{-1}{(p-1)!} 2^{p-2}\left(2^{p-1}-1\right) B_{p-1}+\frac{p-1}{2} \cdot \frac{1}{(p-1)!}
$$

hence

$$
T_{l} \equiv \frac{-1}{(p-1)!} 2^{p-2} \frac{2^{p-1}-1}{p} p B_{p-1}+\frac{p-1}{2} \cdot \frac{1}{(p-1)!}
$$

From $p B_{p-1} \equiv-1(\bmod p)$ the required congruence follows. Theorem 1 is proved.

Example $1\left(p=13, l=3, K \subset \mathbb{Q}\left(\zeta_{13}+\zeta_{13}^{-1}\right),[K: \mathbb{Q}]=3\right)$. By Proposition 1 we have

$$
\begin{aligned}
\zeta_{13}+\zeta_{13}^{-1} \equiv & 2+\pi+12 \pi^{2}+3 \pi^{3}+4 \pi^{4}+9 \pi^{5}+11 \pi^{6}+2 \pi^{7} \\
& +12 \pi^{8}+8 \pi^{9}+10 \pi^{10}+4 \pi^{11}\left(\bmod \pi^{12}\right),
\end{aligned}
$$

hence

$$
\begin{aligned}
\zeta_{13}+\zeta_{13}^{-1} & \equiv A_{0}(m)+A_{1}(m) \pi+\ldots+A_{5}(m) \pi^{5} \\
& \equiv 28+144 \pi+25 \pi^{2}+68 \pi^{3}+43 \pi^{4}+126 \pi^{5}\left(\bmod \pi^{12}\right)
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
\eta_{2}= & N_{\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right) / K}\left(\zeta_{p}+\zeta_{p}^{-1}\right) \\
\equiv & \left(28+144 \pi+25 \pi^{2}+68 \pi^{3}+43 \pi^{4}+126 \pi^{5}\right) \\
& \times\left(28-144 \pi+25 \pi^{2}-68 \pi^{3}+43 \pi^{4}-126 \pi^{5}\right) \\
\equiv & 56+86 \pi^{2}+50 \pi^{4}\left(\bmod \pi^{12}\right) .
\end{aligned}
$$

The number $\beta_{0}=\zeta_{13}+\zeta_{13}^{5}+\zeta_{13}^{8}+\zeta_{13}^{12}$ is the Gauss period. By Proposition 2 we have

$$
\beta_{0} \equiv-\frac{1}{3}+A_{1}(3) \pi+A_{2}(3) \pi^{2}\left(\bmod \pi^{6}\right)
$$

(π is a prime divisor of the field $K,[K: \mathbb{Q}]=3, \pi \mid p)$. For $A_{1}(3), A_{2}(3)$ we have

$$
\begin{aligned}
\tau(\chi)^{3} \equiv 27 A_{1}(3)^{3}(-13)\left(\bmod \mathfrak{p}^{3}\right), & A_{1}(3) \equiv \frac{4}{4!}(\bmod 13), \\
-1 \equiv 27^{2} A_{1}(3)^{3} A_{2}(3)^{3}(\bmod 169), & A_{2}(3) \equiv \frac{4}{8!}(\bmod 13) .
\end{aligned}
$$

The number g satisfies $g \equiv 2^{4 \cdot 13} \equiv 146(\bmod 169)$, and

$$
\tau(\chi)^{3}=p J(\chi, \chi), \quad J(\chi, \chi)=-4-3 \zeta_{3} .
$$

Hence $A_{1}(3) \equiv 4 / 4!\equiv 11(\bmod 13)$. Thus

$$
-\left(-4-3 \frac{1}{146}\right) \equiv 27(11+13 k)^{3}(\bmod 169) .
$$

It follows that $A_{1}(3)=50, A_{2}(3)=86$.
The fundamental unit of the field K is $\delta=\beta_{2}$. Hence

$$
d_{1}=-3 \cdot 50 \cdot 146^{2} \equiv 80(\bmod 169), \quad d_{2}=-3 \cdot 86 \cdot 146 \equiv 19(\bmod 169) .
$$

Therefore

$$
S_{1}=-80, \quad S_{2}=109, \quad S_{3}=2, \quad S_{4}=5, \quad S_{5}=4 .
$$

A calculation gives

$$
T_{1}=154, \quad T_{2}=109, \quad T_{3}=12, \quad T_{4}=12, \quad T_{5}=4
$$

Clearly $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=\alpha_{5}=1$, hence the relevant congruence is

$$
\begin{aligned}
\pm\left(-\frac{1}{3}\right)^{\alpha_{3}} \Phi(-80,109,2,5,4) & \equiv 28^{2} \Phi(154,109,12,12,4) \\
& \equiv(56,86,50)(\bmod 169)
\end{aligned}
$$

Example 2. We have

$$
\begin{aligned}
\zeta_{37}+\zeta_{37}^{-1} \equiv & 2+\pi+34 \pi^{2}+11 \pi^{3}+22 \pi^{4}+6 \pi^{5}+32 \pi^{6}+14 \pi^{7} \\
& +9 \pi^{8}+12 \pi^{9}+16 \pi^{10}+5 \pi^{11}+23 \pi^{12}+24 \pi^{13} \\
& +20 \pi^{14}+3 \pi^{15}+26 \pi^{16}+33 \pi^{17}+35 \pi^{18}+25 \pi^{19} \\
& +29 \pi^{20}+11 \pi^{21}+10 \pi^{22}+10 \pi^{23}+11 \pi^{24}+8 \pi^{25} \\
& +8 \pi^{26}+19 \pi^{27}+20 \pi^{28}+19 \pi^{29}+8 \pi^{30}+36 \pi^{31} \\
& +12 \pi^{32}+18 \pi^{33}+31 \pi^{34}+35 \pi^{35}+3 \pi^{36}\left(\bmod \pi^{37}\right)
\end{aligned}
$$

Therefore $A_{0}(m)=76, A_{1}(m)=445, A_{2}(m)=330, A_{3}(m)=973$, $A_{4}(m)=1021, A_{5}(m)=1005, A_{6}(m)=994, A_{7}(m)=1087, A_{8}(m)=1082$, $A_{9}(m)=678, A_{10}(m)=645, A_{11}(m)=671, A_{12}(m)=1096, A_{13}(m)=61$, $A_{14}(m)=945, A_{15}(m)=706, A_{16}(m)=248, A_{17}(m)=107$.

References

[1] K. Q. Feng, The Ankeny-Artin-Chowla formula for cubic cyclic number fields, J. China Univ. Sci. Tech. 12 (1982), 20-27.
[2] S. Jakubec, The congruence for Gauss period, J. Number Theory 48 (1994), 36-45.
[3] -, On divisibility of class number of real Abelian fields of prime conductor, Abh. Math. Sem. Univ. Hamburg 63 (1993), 67-86.
[4] -, On Vandiver's conjecture, ibid. 64 (1994), 105-124.
[5] -, Congruence of Ankeny-Artin-Chowla type for cyclic fields of prime degree l, Math. Proc. Cambridge Philos. Soc., to appear.
[6] A. A. Kiselev and I. Sh. Slavutski1̆, The transformation of Dirichlet's formulas and the arithmetical computation of the class number of quadratic fields, in: Proc. Fourth All-Union Math. Congr. (Leningrad 1961), Vol. II, Nauka, Leningrad, 1964, 105-112 (in Russian).
[7] F. Marko, On the existence of p-units and Minkowski units in totally real cyclic fields, Abh. Math. Sem. Univ. Hamburg, to appear.
[8] R. Schertz, Über die analytische Klassenzahlformel für reelle abelsche Zahlkörper, J. Reine Angew. Math. 307/308 (1979), 424-430.
[9] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234.
[10] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, in: Séminaire de Théorie des Nombres, Paris 1979-80, M.-J. Bertin (ed.), Progr. Math. 12, Birkhäuser, 1981, 277-286.

Matematický ústav SAV
Štefánikova 49
81473 Bratislava, Slovakia

Received on 16.11.1994
and in revised form on 12.7.1995

[^0]: 1991 Mathematics Subject Classification: Primary 11R29.

