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1. Introduction

1.1. Lüroth series. In 1883 J. Lüroth [Lu] introduced and studied the
following series expansion, which can be viewed as a generalization of the
decimal expansion. Let x ∈ (0, 1]. Then

(1) x =
1
a1

+
1

a1(a1 − 1)a2
+ . . .+

1
a1(a1 − 1) . . . an−1(an−1 − 1)an

+ . . . ,

where an ≥ 2, n ≥ 1. Lüroth showed, among other things, that each irra-
tional number has a unique infinite expansion (1), and that each rational
number has either a finite or a periodic expansion.

Underlying the series expansion (1) is the operator TL : [0, 1] → [0, 1],
defined by

(2) TLx :=
⌊

1
x

⌋(⌊
1
x

⌋
+ 1
)
x−

⌊
1
x

⌋
, x 6= 0; T0 := 0

(see also Figure 1), where bξc denotes the greatest integer not exceeding ξ.
For x ∈ [0, 1] we define a(x) := b1/xc + 1, x 6= 0; a(0) := ∞ and an(x) =
a(Tn−1x) for n ≥ 1. From (2) it follows that TLx = a1(a1 − 1)x− (a1 − 1),
and therefore

x =
1
a1

+
1

a1(a1 − 1)
TLx

=
1
a1

+
1

a1(a1 − 1)a2
+ . . .+

TnLx

a1(a1 − 1) . . . an(an − 1)
.

Since an ≥ 2 and 0 ≤ TnLx ≤ 1 one easily sees that the infinite series from
(1) converges to x.
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Recently S. Kalpazidou, A. and J. Knopfmacher introduced and studied
in [K31,2] the so-called alternating Lüroth series. For each x ∈ (0, 1] one has

x =
1

a1 − 1
− 1
a1(a1 − 1)(a2 − 1)

+ . . .

+
(−1)n+1

a1(a1 − 1) . . . an−1(an−1 − 1)(an − 1)
+ . . . ,

where an ≥ 2, n ≥ 1. Dynamically the alternating series expansion is gen-
erated by the operator SA : [0, 1]→ [0, 1] defined by

(3) SAx := 1 +
⌊

1
x

⌋
−
⌊

1
x

⌋(⌊
1
x

⌋
+ 1
)
x, x 6= 0,

and SA0 := 0, i.e. SAx = 1− TLx (see also Figure 1).

Fig. 1

Lüroth series have been extensively studied; for further reference we
mention here papers by H. Jager and C. de Vroedt [JdV], T. Šalát [Sa], and
books by J. Galambos [G], O. Perron [Pe] and W. Vervaat [V].

In [JdV] it was shown that the stochastic variables a1(x), a2(x), . . . are
independent with λ(an = k) = 1/(k(k − 1)) for k ≥ 2, and that TL is
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measure preserving with respect to Lebesgue measure (1) and ergodic (2).
Using similar techniques analogous results were obtained in [K31,2] for the
operator SA from (3). In fact, much stronger results can be obtained easily,
not only in the case of the (alternating) Lüroth series, but also in a more
general setting.

1.2. Generalized Lüroth series. Let In = (ln, rn], n ∈ D ⊂ N =
{0, 1, 2, . . .}, be a finite or infinite collection of disjoint intervals of length
Ln := rn − ln, such that

(4)
∑

n∈D
Ln = 1

and

(5) 0 < Li ≤ Lj < 1 for all i, j ∈ D, i > j.

The set D is called the digit set. Usually such a digit set is either a finite or
infinite set of consecutive positive integers, see also the examples at the end
of this section.

Furthermore, let I∞ := [0, 1] \ ⋃n∈DIn, L∞ := 0 and define the maps
T, S : [0, 1]→ [0, 1] by

Tx :=

{ x− ln
rn − ln , x ∈ In, n ∈ D,

0, x ∈ I∞,

Sx :=

{ rn − x
rn − ln , x ∈ In, n ∈ D,

0, x ∈ I∞.

Define for x ∈ Ω := [0, 1] \ I∞ =
⋃
n∈D In,

s(x) :=
1

rn − ln and h(x) :=
ln

rn − ln , in case x ∈ In, n ∈ D,

sn = sn(x) :=
{
s(Tn−1x), Tn−1x 6∈ I∞,
∞, Tn−1x ∈ I∞,

and

hn = hn(x) :=
{
h(Tn−1x), Tn−1x 6∈ I∞,
1, Tn−1x ∈ I∞.

For x ∈ (0, 1) such that Tn−1x 6∈ I∞, one has

Tx = s(x)x− h(x) = s1x− h1.

(1) That is, λ(T−1
L (A)) = λ(A) for every Lebesgue measurable set A.

(2) That is, λ(AM T−1
L A) = 0⇒ λ(A) ∈ {0, 1}.
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Inductively we find

x =
h1

s1
+

1
s1
Tx =

h1

s1
+

1
s1

(
h2

s2
+

1
s2
T 2x

)
= . . .(6)

=
h1

s1
+

h2

s1s2
+ . . .+

hn
s1 . . . sn

+
1

s1 . . . sn
Tnx.

Since Sx = 1− Tx = −s1x+ 1 + h1, for x ∈ Ω, one finds

(7) x =
h1 + 1
s1

− Sx

s1
.

Continuing in this way we obtain an alternating series expansion (see also
[K31,2]). Figure 1 illustrates the case D = N \ {0, 1}, In := (1/n, 1/(n− 1)].

Now let ε = (ε(n))n∈D be an arbitrary, fixed sequence of zeroes and ones.
We define the map Tε : [0, 1]→ [0, 1] by

(8) Tεx := ε(x)Sx+ (1− ε(x))Tx, x ∈ [0, 1],

where

ε(x) :=
{
ε(n), x ∈ In, n ∈ D,
0, x ∈ I∞.

Let εn := ε(Tn−1
ε x),

sn = sn(x) :=
{
s(Tn−1

ε x), Tn−1
ε x 6∈ I∞,

∞, Tn−1
ε x ∈ I∞,

and hn defined similarly. By (6) and (7) one finds that

x =
h1 + ε1

s1
+

(−1)ε1

s1
Tεx

=
h1 + ε1

s1
+

(−1)ε1

s1

(
h2 + ε2

s2
+

(−1)ε2

s2
T 2
ε x

)
= . . .

=
h1 + ε1

s1
+ (−1)ε1

h2 + ε2

s1s2
+ (−1)ε1+ε2 h3 + ε3

s1s2s3
+ . . .

+ (−1)ε1+...+εn−1
hn + εn
s1 . . . sn

+
(−1)ε1+...+εn

s1 . . . sn
Tnε x.

For each k ≥ 1 and 1 ≤ i ≤ k one has si ≥ 1/L > 1, where L = maxn∈D Ln,
and |T kε x| ≤ 1. Thus,

(9)
∣∣∣∣x−

pk
qk

∣∣∣∣ =
T kε x

s1 . . . sk
≤ Lk → 0 as k →∞,

where
pk
qk

=
h1 + ε1

s1
+ (−1)ε1

h2 + ε2

s1s2
+ (−1)ε1+ε2 h3 + ε3

s1s2s3
+ . . .(10)

+ (−1)ε1+...+εk−1
hk + εk
s1 . . . sk
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and qk = s1 . . . sk. In general pk and qk need not be relatively prime (see
also Section 3.1). Let ε0 := 0, then for each x ∈ [0, 1] one has

(∗) x =
∞∑
n=1

(−1)ε0+...+εn−1
hn + εn
s1 . . . sn

.

For each x ∈ [0, 1] we define its sequence of digits an = an(x), n ≥ 1, as
follows:

an = k ⇔ Tn−1
ε x ∈ Ik,

for k ∈ D ∪ {∞}. The expansion (∗) is called the (I, ε)-generalized Lüroth
series (GLS ) of x. Notice that for each x ∈ [0, 1] \ I∞ one finds a unique ex-
pansion (∗), and therefore a unique sequence of digits an, n ≥ 1. Conversely,
each sequence of digits an, n ≥ 1, with an ∈ D ∪ {∞} and a1 6= ∞ defines
a unique series expansion (∗). We denote (∗) by

(11) x =
[
ε1, ε2, ε3, . . . , εn, . . .
a1, a2, a3, . . . , an, . . .

]
.

Since εn = ε(an), n ≥ 1, we might as well replace (11) by

(12) x = [ a1, a2, a3, . . . , an, . . . ]

No new information is obtained using (11) instead of (12). However, we will
see in Section 3 that it is sometimes adventageous to use (11) instead of
(12).

Finite truncations of the series in (∗) yield the sequence pn/qn of (I, ε)-
GLS convergents of x. We denote pn/qn by

pn
qn

=
[
ε1, ε2, ε3, . . . , εn
a1, a2, a3, . . . , an

]
.

Examples. 1. Let In := (1/n, 1/(n− 1)], n ≥ 2. In case εn = 0 for
n ≥ 2, one gets the classical Lüroth series, while εn = 1 for n ≥ 2 yields the
alternating Lüroth series.

2. For n ∈ N, n ≥ 2, put Ii = (i/n, (i+ 1)/n], i = 0, 1, . . . , n− 1. In case
ε(i) = 0 for all i, Tε yields the n-adic expansion. In case n = 2 and ε(0) = 0,
ε(1) = 1, Tε is the tent map.

See also Sections 3.2 and 3.3 for more intricate examples.

2. Ergodic properties of generalized Lüroth series. Let Ω be as in
Section 1.2, B be the collection of Borel subsets of Ω, and λ be the Lebesgue
measure on (Ω,B). Let (I, ε) be as in the previous section, viz. I = (In)n∈D
satisfies (4) and (5), while ε = (ε(n))n∈D is a sequence of zeroes and ones.
We have the following lemma.

Lemma 1. The stochastic variables a1(x), a2(x), . . . , corresponding to
the (I, ε)-GLS operator Tε from (8) are i.i.d. with respect to the Lebesgue
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measure λ, and

λ(an = k) = Lk for k ∈ D ∪ {∞}.
Furthermore, (In)n∈D is a generating partition.

P r o o f. Define for (k1, . . . , kn) ∈ Dn, n ≥ 1, the so-called fundamental
intervals of order n by

(13) ∆ε
k1...kn := {x ∈ Ω : a1(x) = k1, . . . , an(x) = kn}.

Let pn/qn ∈ Q be defined as in (10) (and recall that the si’s, hi’s and
εi’s are uniquely determined by k1, . . . , kn), then obviously one has

x ∈ ∆ε
k1...kn ⇔ ∃y ∈ [0, 1] such that x =

pn
qn

+
(−1)ε1+...+εn

s1 . . . sn
y.

Thus ∆ε
k1...kn

is an interval with pn/qn as one endpoint, and having length
1/(s1 . . . sn). Therefore,

λ(∆ε
k1...kn) = λ(a1 = k1, . . . , an = kn) =

1
s1 . . . sn

.

Since

si =
1

rki − lki
=

1
Lki

, i = 1, . . . , n,

one finds

λ(∆ε
k1...kn) = λ(a1 = k1, . . . , an = kn) =

n∏

i=1

Lki .

The independence of the an(x)’s and the equality λ(an = k) = Lk for
k ∈ D ∪ {∞} now easily follow from

∑

ki∈D
Lki = 1 for all n ≥ 1 and all 1 ≤ i ≤ n.

That (In)n∈D is a generating partition is immediate from (9).

Theorem 1. The (I, ε)-GLS operator Tε from (8) is measure preserving
with respect to Lebesgue measure and Bernoulli.

P r o o f. For any k1, . . . , kn ∈ D, n ≥ 1,

T−1
ε ∆ε

k1...kn =
⋃

k∈D
∆ε
kk1...kn

is a disjoint union of fundamental intervals of order n+ 1, so that

λ(T−1
ε ∆ε

k1...kn) =
∑

k∈D
λ(∆ε

kk1...kn) = Lk1 . . . Lkn
∑

k∈D
Lk

= Lk1 . . . Lkn = λ(∆ε
k1...kn).

Since the collection {∆ε
k1...kn

: n ≥ 1, ki ∈ D} generates B, it follows
from [W, Theorem 1.1, p. 20] that λ is Tε-invariant. From Lemma 1, viz.
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λ(∆ε
k1...kn) =

n∏

i=1

λ(∆ε
ki),

we conclude that ([0, 1],B, λ, Tε) is a Bernoulli system.

R e m a r k s. 1. The Bernoullicity of the Lüroth operator TL was already
noticed by P. Liardet in [Li].

2. From the fact that Tε is Bernoulli, and therefore ergodic, one can draw
a great number of easy consequences, using Birkhoff’s Ergodic Theorem. See
also [JdV] and [K32]. We mention here some results:

For almost every x the sequence (Tnε x)∞n=0 is uniformly distributed over
[0, 1]. Furthermore,

lim
n→∞

1
n

n−1∑

k=0

T kε x =
1
2
, lim

n→∞

( n−1∏

k=0

T kε x
)1/n

=
1
e

a.e.

and

lim
n→∞

(a1 . . . an)1/n = ec a.e.,

where c =
∑
k∈D Lk log k (3).

Define the map Tε : [0, 1]× [0, 1]→ [0, 1]× [0, 1] by

(14) Tε(x, y) :=
(
Tε(x),

h(x) + ε(x)
s(x)

+
(−1)ε(x)

s(x)
y

)
.

Notice that for

x =
[
ε1, ε2, ε3, . . . , εn, . . .
a1, a2, a3, . . . , an, . . .

]

one has

Tε(x, 0) =
([

ε2, ε3, . . . , εn, . . .
a2, a3, . . . , an, . . .

]
,

[
ε1

a1

])
,

where [
ε1

a1

]
= (−1)ε0

h1 + s1

s1
=
h1 + s1

s1
.

Now

T 2
ε (x, 0) =

([
ε3, ε4, . . . , εn, . . .
a3, a4, . . . , an, . . .

]
,

[
ε2, ε1

a2, a1

])
,

where[
ε2, ε1

a2, a1

]
= (−1)ε0

h2 + ε2

s2
+ (−1)ε0+ε2 h1 + ε1

s1s2
=
h2 + ε2

s2
+ (−1)ε2

h1 + ε1

s1s2
.

(3) In case 0 ∈ D we put ec := 0.
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Putting T nε (x, 0) =: (Tn, Vn), n ≥ 0, where

Tn = Tnε x =
[
εn+1, εn+2, . . .
an+1, an+2, . . .

]
, n ≥ 0,

and

Vn =
[
εn, εn−1, . . . , ε1

an, an−1, . . . , a1

]
, n ≥ 1, V0 := 0,

we see inductively that

Vn+1 =
hn+1 + εn+1

sn+1
+

(−1)εn+1

sn+1
Vn.

As in the case of the continued fraction we will call Tn = Tnε x the future
of x at time n, while Vn = Vn(x) is the past of x at time n (see also [K]).
We have the following theorem.

Theorem 2. The system ([0, 1]× [0, 1], B × B, λ× λ, Tε) is the natural
extension of ([0, 1], B, λ, Tε). Furthermore, ([0, 1]× [0, 1], B×B, λ×λ, Tε)
is Bernoulli.

P r o o f. For any two vectors (k1, . . . , kn) ∈ Dn, (l1, . . . , lm) ∈ Dm one
has

∆ε
k1...kn ×∆ε

l1...lm = T mε (∆ε
lm...l1k1...kn × [0, 1]).

Since {∆ε
k1...kn

× ∆ε
l1...lm

: ki, lj ∈ D, 1 ≤ i ≤ n, 1 ≤ j ≤ m, n,m ≥ 1}
generates B × B, it follows that

∨

m≥0

T mε (B × [0, 1]) = B × B.

Now, for any ∆ε
k1...kn

×∆ε
l1...lm

one has

T −1
ε (∆ε

k1...kn ×∆ε
l1...lm) = ∆ε

l1k1...kn ×∆ε
l2...lm .

Thus,

λ× λ(T −1
ε (∆ε

k1...kn ×∆ε
l1...lm)) = λ(∆ε

l1k1...kn)λ(∆ε
l2...lm)

= λ(∆ε
k1...kn)λ(∆ε

l1...lm)

= λ× λ(∆ε
k1...kn ×∆ε

l1...lm).

Since cylinders of the form ∆ε
k1...kn

× ∆ε
l1...lm

generate the σ-algebra
B × B, it follows that Tε is measure preserving with respect to Lebesgue
measure. Thus, Tε is the natural extension of Tε (see [R] for details). Since
Tε is Bernoulli it is an exercise to show that Tε is Bernoulli (see also [B]).

Corollary 1. For almost all x the two-dimensional sequence

(15) T nε (x, 0) = (Tn, Vn), n ≥ 0,

is uniformly distributed over [0, 1]× [0, 1].
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P r o o f. Denote by A that subset of [0, 1] for which the sequence
(Tn, Vn)∞n=0 is not uniformly distributed over [0, 1] × [0, 1]. It follows from
Lemma 1 and the definition of Tε that for all x, y, y∗ ∈ [0, 1] one has

|T nε (x, y)− T nε (x, y∗)| < Ln, n ≥ 0,

and we see that (T nε (x, y)− T nε (x, y∗))∞n=0 is a null-sequence. Hence, if A :=
A× [0, 1], then for every pair (x, y) ∈ A the sequence T nε (x, y), n ≥ 0, is not
uniformly distributed over [0, 1]× [0, 1]. Now, if A had, as a subset of [0, 1],
positive Lebesgue measure, so would A as a subset of [0, 1]× [0, 1]. However,
this is impossible in view of Theorem 2.

The partition ξ = {Ik × [0, 1]}k∈D is a generator for Tε, which implies
that the entropy h(Tε) of Tε equals h(Tε, ξ) (see also [W], p. 96). There-
fore,

h(Tε) = −
∑

k∈D
Lk logLk.

Now let (Ik)k∈D and (I∗k)k∈D be two partitions of [0, 1] satisfying (4) and
(5), and suppose that Lk = L∗k for k ∈ D. Furthermore, let ε = (εk)k∈D and
ε∗ = (ε∗k)k∈D be two arbitrary sequences of zeroes and ones. It follows at
once from Ornstein’s Isomorphism Theorem (see [W], p. 105) and Theorem
2 that Tε and Tε∗ are metrically isomorphic. We conclude this section with
the following theorem, which gives a concrete isomorphism.

Theorem 3. Let (Ik)k∈D and (I∗k)k∈D be two partitions of [0, 1], sat-
isfying (4) and (5). Suppose that Lk = L∗k for k ∈ D. Furthermore, let
ε = (εk)k∈D and ε∗ = (ε∗k)k∈D be two sequences of zeroes and ones. Let Tε
and Tε∗ be defined as in (8). Finally , define Ψ : [0, 1]× [0, 1]→ [0, 1]× [0, 1]
by

Ψ

([
ε1, ε2, . . .
a1, a2, . . .

]
,

[
ε0, ε−1, . . .
a0, a−1, . . .

])

:=
([

ε∗(a1), ε∗(a2), . . .
a1, a2, . . .

]
,

[
ε∗(a0), ε∗(a−1), . . .
a0, a−1, . . .

])
.

Then Ψ is a measure preserving isomorphism.

P r o o f. Since almost every x ∈ [0, 1] has unique (I, ε)-, (I∗, ε∗)-GLS
expansions, it follows that Ψ is injective. Now, for any cylinder ∆ε∗

k1...kn
×

∆ε∗
l1...lm

,

∆ε
k1...kn ×∆ε

l1...lm = Ψ−1(∆ε∗
k1...kn ×∆ε∗

l1...lm)

and
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(λ× λ)(∆ε∗
k1...kn ×∆ε∗

l1...lm) = L∗k1
. . . L∗knL

∗
l1 . . . L

∗
lm

= Lk1 . . . LknLl1 . . . Llm

= (λ× λ)(∆ε
k1...kn ×∆ε

l1...lm)

= (λ× λ)Ψ−1(∆ε∗
k1...kn ×∆ε∗

l1...lm).

This shows that Ψ is measurable and measure preserving.
Finally, let (x, y) ∈ [0, 1]× [0, 1] with

x =
[
ε1, ε2, . . .
a1, a2, . . .

]
, y =

[
ε0, ε−1, . . .
a0, a−1, . . .

]
.

Then

ΨTε(x, y) =
([

ε∗(a2), ε∗(a3), . . .
a2, a3, . . .

]
,

[
ε∗(a1), ε∗(a0), ε∗(a−1), . . .
a1, a0, a−1, . . .

])

= Tε∗Ψ(x, y),

therefore Ψ is a measure preserving isomorphism.

3. Applications and examples

3.1. Approximation coefficients and their distribution. As before let I =
(In)n∈D be a partition of [0,1] which satisfies (4) and (5), and let ε =
(ε(n))n∈D be a sequence of zeroes and ones. Putting qk = s1 . . . sk, it follows
from (9) and Corollary 1 that for a.e. x the approximation coefficients θn,
n ≥ 0, defined by

θε,n = θε,n(x) := qn

∣∣∣∣x−
pn
qn

∣∣∣∣, n ≥ 0,

have the same distribution as Tnε x, n ≥ 0. Viz., for a.e. x the sequence
(θε,n)n is uniformly distributed on [0,1].

In fact, for many partitions (In)n∈D more information on the distribution
of the θn’s can be obtained by a more careful definition of qn. As an example
we will treat here the case of the classical Lüroth series, and all other GLS
expansions with the same partition (In)n∈D (see also the examples at the
end of Section 1.2).

In this case

sn = s(Tn−1
ε x) =

1
1

an−1 − 1
an

= an(an − 1), hn = an − 1,

and
hn + εn
s1 . . . sn

=
an − 1 + εn

a1(a1 − 1)a2(a2 − 1) . . . an(an − 1)
=

1
a1(a1 − 1) . . . (an − εn)

.

Therefore it is more appropriate to put

q1 = a1−ε1, qn = a1(a1−1)a2(a2−1) . . . an−1(an−1−1)(an−εn), n ≥ 2,
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and we see

(16) θn(x) =
an − εn

an(an − 1)
Tnε x, n ≥ 1.

We have the following theorem.

Theorem 4. Let (In)n∈D be the Lüroth partition, that is, In := (1/n,
1/(n − 1)] for n ≥ 2, and let ε(n) ∈ {0, 1} for n ≥ 2. Then for a.e. x and
for every z ∈ (0, 1] the limit

lim
N→∞

1
N

#{1 ≤ j ≤ N : θj(x) < z}
exists and equals Fε(z), where

Fε(z) :=
b1/zc+1−ε(b1/zc+1)∑

k=2

z

k − ε(k)
+

1
b1/zc+ 1− ε(b1/zc+ 1)

,

0 < z ≤ 1.

P r o o f. Let z ∈ (0, 1]. From (15) and (16) it follows that

(17) θn < z ⇔ (Tn, Vn) ∈ Ξ(z) =
∞⋃

k=2

Ξk(z),

where

Ξk(z) :=
([

0,
k(k − 1)
k − ε(k)

z

]
∩ [0, 1]

)
×∆k, k ≥ 2.

For k ≥ 2 we have the following two cases (of which the first one might be
void).

(A) 2 ≤ k ≤ b1/zc+ 1− ε(b1/zc+ 1). In this case

Ξk(z) =
[
0,
k(k − 1)
k − ε(k)

z

]
×∆k.

(B) k > b1/zc+ 1− ε(b1/zc+ 1). In this case Ξk(z) = [0, 1]×∆k.

From (A) and (B) one finds, that

(λ× λ)(Ξ(z))

=
b1/zc+1−ε(b1/zc+1)∑

k=2

(λ× λ)
([

0,
k(k − 1)
k − ε(k)

z

]
×∆k

)

+
1

b1/zc+ 1− ε(b1/zc+ 1)

=
b1/zc+1−ε(b1/zc+1)∑

k=2

z

k − ε(k)
+

1
b1/zc+ 1− ε(b1/zc+ 1)

.

The theorem at once follows from Corollary 1.
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R e m a r k s . 1. Although the map x→ (1/x) mod 1 generating the con-
tinued fraction is not piecewise linear, which leads to complications in esti-
mations, a similar result as in Theorem 4 was obtained for continued frac-
tions (see also [BJW]).

2. If ε(n) = 0, n ≥ 2 (the classical Lüroth case) (4), the distribution
function Fε reduces to

FL(z) =
b1/zc+1∑

k=2

z

k
+

1
b1/zc+ 1

, 0 < z ≤ 1.

Furthermore

FA(z) =
b1/zc∑

k=2

z

k − 1
+

1
b1/zc , 0 < z ≤ 1;

see also Figure 2. Notice that FA ≤ Fε ≤ FL.

Fig. 2

We have the following corollary.

(4) From now on the classical (resp. the alternating) Lüroth case will be indicated by
a subscript L (resp. A).
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Corollary 2. Let (In)n∈D be the Lüroth partition and let ε(n) ∈ {0, 1}
for n ≥ 2. Then there exists a constant Mε such that for a.e. x,

lim
N→∞

1
N

N∑

i=1

θε,i = Mε.

Moreover , Mε can be calculated explicitly , and MA ≤ Mε ≤ ML, where
MA = 1− 1

2ζ(2) = 0.177533 . . . and ML = 1
2 (ζ(2)− 1) = 0.322467 . . .

P r o o f. By definition Mε is the first moment of Fε and thus Mε =∫ 1
0 (1− Fε(x)) dx.

R e m a r k s . 1. From Corollary 2 it follows that among all (I, ε)-GLS
expansions with I the Lüroth partition the alternating Lüroth series has the
best approximation properties.

2. The presentation of Corollary 2 suggests that by choosing ε =
(ε(n))n≥2 appropriately, each value in the interval [MA,ML] = [0.177533 . . . ,
0.322467 . . .] might be attained. This is certainly incorrect, as the following
example shows. Let ε = (ε(n))n≥2 be given by ε(2) = 1 and ε(n) = 0 for
n ≥ 3, and let ε∗ = (ε∗(n))n≥2 be given by ε∗(2) = 0 and ε∗(n) = 1 for
n ≥ 3. A simple calculation yields that Mε = ML − 1/8 = 0.197467 . . . and
Mε∗ = MA + 1/8 = 0.302533 . . . ; we thus see that Mε < Mε∗ and from this
one can easily deduce that there does not exist a sequence ε[ = (ε[(n))n≥2

of zeroes and ones for which Mε[ ∈ [Mε,Mε∗ ]. Some further investigations
even suggest that the set

Υ := {Mε : ε(n) ∈ {0, 1} for n ≥ 2}
is a Cantor set.

3.2. Jump transformations. Let Tε be a (I, ε)-GLS operator with digit
set D, and let a ∈ D. For x ∈ Ω, put

na = na(x) := min
n≥1
{an(x) : an(x) = a}

(and na =∞ in case an(x) 6= a for all n ≥ 1). Define the jump transforma-
tion Ja : Ω → Ω by

(18) Jax :=
{
Tnaε x, na ∈ N,
0, na =∞.

Jump transformations were first studied by H. Jager [J] for the particular
case that Tεx = 10x (mod 1). Jager showed that such jump transformations
are stronly mixing. Here, in the more general setting, we have a stronger
result.

Theorem 5. Let Tε be an (I, ε)-GLS operator with digit set D. For each
a ∈ D the corresponding jump transformation Ja, as defined in (18), is an
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(I∗, ε∗)-GLS operator , with

I∗ = {∆a1...an : n ≥ 1, an = a and ai 6= a for 1 ≤ i ≤ n− 1}
and for each ∆a1...an ∈ I∗ the corresponding value of ε is given by

ε∗(∆a1...an) = ε(a1) + . . .+ ε(an) (mod 2).

3.3. β-expansions and pseudo golden mean numbers. For an irrational
number β > 1 the β-transformation Tβ : [0, 1]→ [0, 1] is defined by

Tβx = βx (mod 1)

(see also [FS] for further references). Clearly, β-transformations do not be-
long to the class of GLS-transformations. However, in some cases there exists
an intimate relation between both types of transformations, as the following
example shows.

Let β > 1 be the positive root of the polynomial Xm−Xm−1−. . .−X−1,
where (5) m ≥ 2. Due to C. Frougny and B. Solomyak [FS] we know that
such β’s are Pisot numbers and that the β-expansion d(1, β) is finite, and
equals

1 =
1
β

+
1
β2 + . . .+

1
βm

.

Notice that T iβ1 = β−1 + . . . + β−(m−i), 0 ≤ i ≤ m − 1, and T iβ1 = 0 for
i ≥ m. Furthermore, let

X :=
m−1⋃

k=0

(Tm−kβ 1, Tm−k−1
β 1]× [0, T kβ 1]

(see also Figure 3 for m = 4), and define Tβ : X → X by

Tβ(x, y) :=
(
Tβx,

1
β

(bβxc+ y)
)
.

Let Y := [0, 1]× [0, 1/β] and W : Y → Y the corresponding induced trans-
formation under Tβ , that is

W(x, y) = T n(x,y)
β (x, y),

where n(x, y) = min{s > 0 : T sβ (x, y) ∈ Y }. Clearly one has

W(x, y) = T k+1
β (x, y),

where k = k(x) ∈ {0, 1, . . . ,m − 1} is such that x ∈ (Tm−kβ 1, Tm−k−1
β 1].

Notice that W maps rectangles to rectangles; see also Figure 3.
Finally, let Tε be the (I, ε)-GLS operator with partition I given by

(Tm−iβ 1, Tm−i−1
β 1], 0 ≤ i ≤ m − 1 (see also Figure 3), and ε(n) = 0 for

(5) For m = 2 one has β = (
√

5 + 1)/2, which is the golden mean. For m ≥ 3 we call
these β’s pseudo golden mean numbers.
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Fig. 3

each digit n. Notice that for x ∈ (Tm−iβ 1, Tm−(i+1)
β 1], 0 ≤ i ≤ m − 1, one

has

(19) Tεx = T i+1
β x.

We have the following lemma.

Lemma 2. Let Ψ : [0, 1] × [0, 1] → Y be defined by Ψ(x, y) := (x, y/β).
Then Ψ is a measurable bijection which satisfies Ψ ◦ Tε =W ◦ Ψ.

P r o o f. For (x, y) ∈ [0, 1]× [0, 1] let i = i(x) ∈ {0, 1, . . . ,m− 1} be such
that x ∈ (Tm−iβ 1, Tm−(i+1)

β 1]. From (14) it then follows that

Tε(x, y) =
(
Tεx, T

m−i
β 1 +

y

βi+1

]

and therefore

(20) Ψ(Tε(x, y)) =
(
Tεx,

1
β
Tm−iβ 1 +

y

βi+2

]
.

From (19), (20) and the definitions of W and Ψ it now follows that
W(Ψ(x, y)) = Ψ(Tε(x, y)) for i = 0 and in case i 6= 0 one has
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W(Ψ(x, y)) =W
(
x,
y

β

)
= T i+1

β

(
x,
y

β

)

=
(
T i+1
β x,

1
β

(
0 +

(
1
β

(
1 + . . .

1
β

(
1 +

1
β

(
1

︸ ︷︷ ︸
i times

+
y

β

))
. . .

))

=
(
Tεx,

1
β2 + . . .+

1
βi+1 +

y

βi+2

)
= Ψ(Tε(x, y)).

Let % be the measure on Y defined by

%(A) := (λ× λ)(Ψ−1(A)) for each Borel set A ⊂ Y.
It follows from Lemma 2 and the fact that λ×λ is an invariant measure for
Tε that % is invariant with respect to W, and % = β(λ × λ). Lemma 2 now
at once yields the following proposition.

Proposition. The dynamical systems ([0, 1] × [0, 1], λ × λ, Tε) and
(Y, %,W) are isomorphic.

Using standard techniques (see [CFS], p. 21) one obtains the measure µ
on X which is invariant with respect to Tβ , viz.

µ(A) =
β

1
β

+
2
β2 + . . .+

m

βm

(λ× λ)(A)

for each Borel set A ⊂ X. One also easily shows that (X,µ, Tβ) forms the
natural extension of ([0, 1], ν, Tβ), where ν is the invariant measure with
respect to Tβ [So]. Projecting µ on the first coordinate of X yields ν; one
finds that ν has density h(x), where

h(x) =
1

1
β

+
2
β

+ . . .+
m

βm

∑

x<T i
β

1

1
βi
,

as given by W. Parry [Pa].

Acknowledgements. We want to thank the referee for several helpful
suggestions concerning the presentation of this paper.

References

[B] J. R. Brown, Ergodic Theory and Topological Dynamics, Academic Press, New
York, 1976.

[BJW] W. Bosma, H. Jager and F. Wiedi jk, Some metrical observations on the
approximation by continued fractions, Indag. Math. 45 (1983), 281–299.

[CFS] I. P. Cornfe ld, S. V. Fomin and Ya. G. S ina i, Ergodic Theory , Grundlehren
Math. Wiss. 245, Springer, New York, 1982.
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(1991), 319–325.

[K] C. Kraa ikamp, A new class of continued fraction expansions, Acta Arith. 57
(1991), 1–39.

[Li] P. Liardet, MR: 93m:11077.
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