Ergodic properties of generalized Lüroth series

by
Jose Barrionuevo (Mobile, Ala.),
Robert M. Burton (Corvallis, Ore.),
Karma Dajani (Utrecht) and Cor Kraaikamp (Delft)

1. Introduction

1.1. Lüroth series. In 1883 J. Lüroth [Lu] introduced and studied the following series expansion, which can be viewed as a generalization of the decimal expansion. Let $x \in(0,1]$. Then
(1) $x=\frac{1}{a_{1}}+\frac{1}{a_{1}\left(a_{1}-1\right) a_{2}}+\ldots+\frac{1}{a_{1}\left(a_{1}-1\right) \ldots a_{n-1}\left(a_{n-1}-1\right) a_{n}}+\ldots$, where $a_{n} \geq 2, n \geq 1$. Lüroth showed, among other things, that each irrational number has a unique infinite expansion (1), and that each rational number has either a finite or a periodic expansion.

Underlying the series expansion (1) is the operator $T_{L}:[0,1] \rightarrow[0,1]$, defined by

$$
\begin{equation*}
T_{L} x:=\left\lfloor\frac{1}{x}\right\rfloor\left(\left\lfloor\frac{1}{x}\right\rfloor+1\right) x-\left\lfloor\frac{1}{x}\right\rfloor, \quad x \neq 0 ; \quad T 0:=0 \tag{2}
\end{equation*}
$$

(see also Figure 1), where $\lfloor\xi\rfloor$ denotes the greatest integer not exceeding ξ. For $x \in[0,1]$ we define $a(x):=\lfloor 1 / x\rfloor+1, x \neq 0 ; a(0):=\infty$ and $a_{n}(x)=$ $a\left(T^{n-1} x\right)$ for $n \geq 1$. From (2) it follows that $T_{L} x=a_{1}\left(a_{1}-1\right) x-\left(a_{1}-1\right)$, and therefore

$$
\begin{aligned}
x & =\frac{1}{a_{1}}+\frac{1}{a_{1}\left(a_{1}-1\right)} T_{L} x \\
& =\frac{1}{a_{1}}+\frac{1}{a_{1}\left(a_{1}-1\right) a_{2}}+\ldots+\frac{T_{L}^{n} x}{a_{1}\left(a_{1}-1\right) \ldots a_{n}\left(a_{n}-1\right)} .
\end{aligned}
$$

Since $a_{n} \geq 2$ and $0 \leq T_{L}^{n} x \leq 1$ one easily sees that the infinite series from (1) converges to x.

Recently S. Kalpazidou, A. and J. Knopfmacher introduced and studied in $\left[\mathrm{K}^{3} 1,2\right]$ the so-called alternating Lüroth series. For each $x \in(0,1]$ one has

$$
\begin{aligned}
& x=\frac{1}{a_{1}-1}-\frac{1}{a_{1}\left(a_{1}-1\right)\left(a_{2}-1\right)}+\ldots \\
& \quad+\frac{(-1)^{n+1}}{a_{1}\left(a_{1}-1\right) \ldots a_{n-1}\left(a_{n-1}-1\right)\left(a_{n}-1\right)}+\ldots,
\end{aligned}
$$

where $a_{n} \geq 2, n \geq 1$. Dynamically the alternating series expansion is generated by the operator $S_{A}:[0,1] \rightarrow[0,1]$ defined by

$$
\begin{equation*}
S_{A} x:=1+\left\lfloor\frac{1}{x}\right\rfloor-\left\lfloor\frac{1}{x}\right\rfloor\left(\left\lfloor\frac{1}{x}\right\rfloor+1\right) x, \quad x \neq 0 \tag{3}
\end{equation*}
$$

and $S_{A} 0:=0$, i.e. $S_{A} x=1-T_{L} x$ (see also Figure 1).

Fig. 1

Lüroth series have been extensively studied; for further reference we mention here papers by H. Jager and C. de Vroedt [JdV], T. Šalát [Sa], and books by J. Galambos [G], O. Perron [Pe] and W. Vervaat [V].

In $[\mathrm{JdV}]$ it was shown that the stochastic variables $a_{1}(x), a_{2}(x), \ldots$ are independent with $\lambda\left(a_{n}=k\right)=1 /(k(k-1))$ for $k \geq 2$, and that T_{L} is
measure preserving with respect to Lebesgue measure $\left(^{1}\right.$) and ergodic $\left({ }^{2}\right)$. Using similar techniques analogous results were obtained in $\left[\mathrm{K}^{3} 1,2\right]$ for the operator S_{A} from (3). In fact, much stronger results can be obtained easily, not only in the case of the (alternating) Lüroth series, but also in a more general setting.
1.2. Generalized Lüroth series. Let $I_{n}=\left(l_{n}, r_{n}\right], n \in \mathcal{D} \subset \mathbb{N}=$ $\{0,1,2, \ldots\}$, be a finite or infinite collection of disjoint intervals of length $L_{n}:=r_{n}-l_{n}$, such that

$$
\begin{equation*}
\sum_{n \in \mathcal{D}} L_{n}=1 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
0<L_{i} \leq L_{j}<1 \quad \text { for all } i, j \in \mathcal{D}, i>j . \tag{5}
\end{equation*}
$$

The set \mathcal{D} is called the digit set. Usually such a digit set is either a finite or infinite set of consecutive positive integers, see also the examples at the end of this section.

Furthermore, let $I_{\infty}:=[0,1] \backslash \bigcup_{n \in \mathcal{D}} I_{n}, L_{\infty}:=0$ and define the maps $T, S:[0,1] \rightarrow[0,1]$ by

$$
\begin{aligned}
& T x:= \begin{cases}\frac{x-l_{n}}{r_{n}-l_{n}}, & x \in I_{n}, n \in \mathcal{D}, \\
0, & x \in I_{\infty},\end{cases} \\
& S x:= \begin{cases}\frac{r_{n}-x}{r_{n}-l_{n}}, & x \in I_{n}, n \in \mathcal{D}, \\
0, & x \in I_{\infty} .\end{cases}
\end{aligned}
$$

Define for $x \in \Omega:=[0,1] \backslash I_{\infty}=\bigcup_{n \in \mathcal{D}} I_{n}$,

$$
\begin{gathered}
s(x):=\frac{1}{r_{n}-l_{n}} \quad \text { and } \quad h(x):=\frac{l_{n}}{r_{n}-l_{n}}, \\
s_{n}=s_{n}(x):= \begin{cases}s\left(T^{n-1} x\right), & T^{n-1} x \notin I_{\infty}, \\
\infty, & T^{n-1} x \in I_{\infty},\end{cases}
\end{gathered}
$$

and

$$
h_{n}=h_{n}(x):= \begin{cases}h\left(T^{n-1} x\right), & T^{n-1} x \notin I_{\infty}, \\ 1, & T^{n-1} x \in I_{\infty} .\end{cases}
$$

For $x \in(0,1)$ such that $T^{n-1} x \notin I_{\infty}$, one has

$$
T x=s(x) x-h(x)=s_{1} x-h_{1} .
$$

${ }^{1}$) That is, $\lambda\left(T_{L}^{-1}(A)\right)=\lambda(A)$ for every Lebesgue measurable set A.
$\left(^{2}\right)$ That is, $\lambda\left(A \triangle T_{L}^{-1} A\right)=0 \Rightarrow \lambda(A) \in\{0,1\}$.

Inductively we find

$$
\begin{align*}
x & =\frac{h_{1}}{s_{1}}+\frac{1}{s_{1}} T x=\frac{h_{1}}{s_{1}}+\frac{1}{s_{1}}\left(\frac{h_{2}}{s_{2}}+\frac{1}{s_{2}} T^{2} x\right)=\ldots \tag{6}\\
& =\frac{h_{1}}{s_{1}}+\frac{h_{2}}{s_{1} s_{2}}+\ldots+\frac{h_{n}}{s_{1} \ldots s_{n}}+\frac{1}{s_{1} \ldots s_{n}} T^{n} x .
\end{align*}
$$

Since $S x=1-T x=-s_{1} x+1+h_{1}$, for $x \in \Omega$, one finds

$$
\begin{equation*}
x=\frac{h_{1}+1}{s_{1}}-\frac{S x}{s_{1}} . \tag{7}
\end{equation*}
$$

Continuing in this way we obtain an alternating series expansion (see also $\left.\left[\mathrm{K}^{3} 1,2\right]\right)$. Figure 1 illustrates the case $\mathcal{D}=\mathbb{N} \backslash\{0,1\}, I_{n}:=(1 / n, 1 /(n-1)]$.

Now let $\varepsilon=(\varepsilon(n))_{n \in \mathcal{D}}$ be an arbitrary, fixed sequence of zeroes and ones. We define the map $T_{\varepsilon}:[0,1] \rightarrow[0,1]$ by

$$
\begin{equation*}
T_{\varepsilon} x:=\varepsilon(x) S x+(1-\varepsilon(x)) T x, \quad x \in[0,1] \tag{8}
\end{equation*}
$$

where

$$
\varepsilon(x):= \begin{cases}\varepsilon(n), & x \in I_{n}, n \in \mathcal{D} \\ 0, & x \in I_{\infty}\end{cases}
$$

Let $\varepsilon_{n}:=\varepsilon\left(T_{\varepsilon}^{n-1} x\right)$,

$$
s_{n}=s_{n}(x):= \begin{cases}s\left(T_{\varepsilon}^{n-1} x\right), & T_{\varepsilon}^{n-1} x \notin I_{\infty} \\ \infty, & T_{\varepsilon}^{n-1} x \in I_{\infty}\end{cases}
$$

and h_{n} defined similarly. By (6) and (7) one finds that

$$
\begin{aligned}
x= & \frac{h_{1}+\varepsilon_{1}}{s_{1}}+\frac{(-1)^{\varepsilon_{1}}}{s_{1}} T_{\varepsilon} x \\
= & \frac{h_{1}+\varepsilon_{1}}{s_{1}}+\frac{(-1)^{\varepsilon_{1}}}{s_{1}}\left(\frac{h_{2}+\varepsilon_{2}}{s_{2}}+\frac{(-1)^{\varepsilon_{2}}}{s_{2}} T_{\varepsilon}^{2} x\right)=\ldots \\
= & \frac{h_{1}+\varepsilon_{1}}{s_{1}}+(-1)^{\varepsilon_{1}} \frac{h_{2}+\varepsilon_{2}}{s_{1} s_{2}}+(-1)^{\varepsilon_{1}+\varepsilon_{2}} \frac{h_{3}+\varepsilon_{3}}{s_{1} s_{2} s_{3}}+\ldots \\
& +(-1)^{\varepsilon_{1}+\ldots+\varepsilon_{n-1}} \frac{h_{n}+\varepsilon_{n}}{s_{1} \ldots s_{n}}+\frac{(-1)^{\varepsilon_{1}+\ldots+\varepsilon_{n}}}{s_{1} \ldots s_{n}} T_{\varepsilon}^{n} x .
\end{aligned}
$$

For each $k \geq 1$ and $1 \leq i \leq k$ one has $s_{i} \geq 1 / L>1$, where $L=\max _{n \in \mathcal{D}} L_{n}$, and $\left|T_{\varepsilon}^{k} x\right| \leq 1$. Thus,

$$
\begin{equation*}
\left|x-\frac{p_{k}}{q_{k}}\right|=\frac{T_{\varepsilon}^{k} x}{s_{1} \ldots s_{k}} \leq L^{k} \rightarrow 0 \quad \text { as } k \rightarrow \infty \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
\frac{p_{k}}{q_{k}}= & \frac{h_{1}+\varepsilon_{1}}{s_{1}}+(-1)^{\varepsilon_{1}} \frac{h_{2}+\varepsilon_{2}}{s_{1} s_{2}}+(-1)^{\varepsilon_{1}+\varepsilon_{2}} \frac{h_{3}+\varepsilon_{3}}{s_{1} s_{2} s_{3}}+\ldots \tag{10}\\
& +(-1)^{\varepsilon_{1}+\ldots+\varepsilon_{k-1}} \frac{h_{k}+\varepsilon_{k}}{s_{1} \ldots s_{k}}
\end{align*}
$$

and $q_{k}=s_{1} \ldots s_{k}$. In general p_{k} and q_{k} need not be relatively prime (see also Section 3.1). Let $\varepsilon_{0}:=0$, then for each $x \in[0,1]$ one has

$$
\begin{equation*}
x=\sum_{n=1}^{\infty}(-1)^{\varepsilon_{0}+\ldots+\varepsilon_{n-1}} \frac{h_{n}+\varepsilon_{n}}{s_{1} \ldots s_{n}} . \tag{*}
\end{equation*}
$$

For each $x \in[0,1]$ we define its sequence of digits $a_{n}=a_{n}(x), n \geq 1$, as follows:

$$
a_{n}=k \Leftrightarrow T_{\varepsilon}^{n-1} x \in I_{k},
$$

for $k \in \mathcal{D} \cup\{\infty\}$. The expansion (*) is called the (I, ε)-generalized Lüroth series $(G L S)$ of x. Notice that for each $x \in[0,1] \backslash I_{\infty}$ one finds a unique expansion (*), and therefore a unique sequence of digits $a_{n}, n \geq 1$. Conversely, each sequence of digits $a_{n}, n \geq 1$, with $a_{n} \in \mathcal{D} \cup\{\infty\}$ and $a_{1} \neq \infty$ defines a unique series expansion (*). We denote (*) by

$$
x=\left[\begin{array}{l}
\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{n}, \ldots \tag{11}\\
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
\end{array}\right] .
$$

Since $\varepsilon_{n}=\varepsilon\left(a_{n}\right), n \geq 1$, we might as well replace (11) by

$$
\begin{equation*}
x=\left[a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right] \tag{12}
\end{equation*}
$$

No new information is obtained using (11) instead of (12). However, we will see in Section 3 that it is sometimes adventageous to use (11) instead of (12).

Finite truncations of the series in $(*)$ yield the sequence p_{n} / q_{n} of (I, ε) GLS convergents of x. We denote p_{n} / q_{n} by

$$
\frac{p_{n}}{q_{n}}=\left[\begin{array}{l}
\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{n} \\
a_{1}, a_{2}, a_{3}, \ldots, a_{n}
\end{array}\right] .
$$

Examples. 1. Let $I_{n}:=(1 / n, 1 /(n-1)], n \geq 2$. In case $\varepsilon_{n}=0$ for $n \geq 2$, one gets the classical Lüroth series, while $\varepsilon_{n}=1$ for $n \geq 2$ yields the alternating Lüroth series.
2. For $n \in \mathbb{N}, n \geq 2$, put $I_{i}=(i / n,(i+1) / n], i=0,1, \ldots, n-1$. In case $\varepsilon(i)=0$ for all i, T_{ε} yields the n-adic expansion. In case $n=2$ and $\varepsilon(0)=0$, $\varepsilon(1)=1, T_{\varepsilon}$ is the tent map.

See also Sections 3.2 and 3.3 for more intricate examples.
2. Ergodic properties of generalized Lüroth series. Let Ω be as in Section 1.2, \mathcal{B} be the collection of Borel subsets of Ω, and λ be the Lebesgue measure on (Ω, \mathcal{B}). Let (I, ε) be as in the previous section, viz. $I=\left(I_{n}\right)_{n \in \mathcal{D}}$ satisfies (4) and (5), while $\varepsilon=(\varepsilon(n))_{n \in \mathcal{D}}$ is a sequence of zeroes and ones. We have the following lemma.

Lemma 1. The stochastic variables $a_{1}(x), a_{2}(x), \ldots$, corresponding to the $(I, \varepsilon)-G L S$ operator T_{ε} from (8) are i.i.d. with respect to the Lebesgue
measure λ, and

$$
\lambda\left(a_{n}=k\right)=L_{k} \quad \text { for } k \in \mathcal{D} \cup\{\infty\}
$$

Furthermore, $\left(I_{n}\right)_{n \in \mathcal{D}}$ is a generating partition.
Proof. Define for $\left(k_{1}, \ldots, k_{n}\right) \in \mathcal{D}^{n}, n \geq 1$, the so-called fundamental intervals of order n by

$$
\begin{equation*}
\Delta_{k_{1} \ldots k_{n}}^{\varepsilon}:=\left\{x \in \Omega: a_{1}(x)=k_{1}, \ldots, a_{n}(x)=k_{n}\right\} . \tag{13}
\end{equation*}
$$

Let $p_{n} / q_{n} \in \mathbb{Q}$ be defined as in (10) (and recall that the s_{i} 's, h_{i} 's and ε_{i} 's are uniquely determined by k_{1}, \ldots, k_{n}), then obviously one has

$$
x \in \Delta_{k_{1} \ldots k_{n}}^{\varepsilon} \Leftrightarrow \exists y \in[0,1] \text { such that } x=\frac{p_{n}}{q_{n}}+\frac{(-1)^{\varepsilon_{1}+\ldots+\varepsilon_{n}}}{s_{1} \ldots s_{n}} y
$$

Thus $\Delta_{k_{1} \ldots k_{n}}^{\varepsilon}$ is an interval with p_{n} / q_{n} as one endpoint, and having length $1 /\left(s_{1} \ldots s_{n}\right)$. Therefore,

$$
\lambda\left(\Delta_{k_{1} \ldots k_{n}}^{\varepsilon}\right)=\lambda\left(a_{1}=k_{1}, \ldots, a_{n}=k_{n}\right)=\frac{1}{s_{1} \ldots s_{n}}
$$

Since

$$
s_{i}=\frac{1}{r_{k_{i}}-l_{k_{i}}}=\frac{1}{L_{k_{i}}}, \quad i=1, \ldots, n
$$

one finds

$$
\lambda\left(\Delta_{k_{1} \ldots k_{n}}^{\varepsilon}\right)=\lambda\left(a_{1}=k_{1}, \ldots, a_{n}=k_{n}\right)=\prod_{i=1}^{n} L_{k_{i}}
$$

The independence of the $a_{n}(x)$'s and the equality $\lambda\left(a_{n}=k\right)=L_{k}$ for $k \in \mathcal{D} \cup\{\infty\}$ now easily follow from

$$
\sum_{k_{i} \in \mathcal{D}} L_{k_{i}}=1 \quad \text { for all } n \geq 1 \text { and all } 1 \leq i \leq n
$$

That $\left(I_{n}\right)_{n \in \mathcal{D}}$ is a generating partition is immediate from (9).
Theorem 1. The $(I, \varepsilon)-G L S$ operator T_{ε} from (8) is measure preserving with respect to Lebesgue measure and Bernoulli.

Proof. For any $k_{1}, \ldots, k_{n} \in \mathcal{D}, n \geq 1$,

$$
T_{\varepsilon}^{-1} \Delta_{k_{1} \ldots k_{n}}^{\varepsilon}=\bigcup_{k \in \mathcal{D}} \Delta_{k k_{1} \ldots k_{n}}^{\varepsilon}
$$

is a disjoint union of fundamental intervals of order $n+1$, so that

$$
\begin{aligned}
\lambda\left(T_{\varepsilon}^{-1} \Delta_{k_{1} \ldots k_{n}}^{\varepsilon}\right) & =\sum_{k \in \mathcal{D}} \lambda\left(\Delta_{k k_{1} \ldots k_{n}}^{\varepsilon}\right)=L_{k_{1}} \ldots L_{k_{n}} \sum_{k \in \mathcal{D}} L_{k} \\
& =L_{k_{1}} \ldots L_{k_{n}}=\lambda\left(\Delta_{k_{1} \ldots k_{n}}^{\varepsilon}\right)
\end{aligned}
$$

Since the collection $\left\{\Delta_{k_{1} \ldots k_{n}}^{\varepsilon}: n \geq 1, k_{i} \in \mathcal{D}\right\}$ generates \mathcal{B}, it follows from [W, Theorem 1.1, p. 20] that λ is T_{ε}-invariant. From Lemma 1, viz.

$$
\lambda\left(\Delta_{k_{1} \ldots k_{n}}^{\varepsilon}\right)=\prod_{i=1}^{n} \lambda\left(\Delta_{k_{i}}^{\varepsilon}\right),
$$

we conclude that $\left([0,1], \mathcal{B}, \lambda, T_{\varepsilon}\right)$ is a Bernoulli system.
Remarks. 1. The Bernoullicity of the Lüroth operator T_{L} was already noticed by P. Liardet in [Li].
2. From the fact that T_{ε} is Bernoulli, and therefore ergodic, one can draw a great number of easy consequences, using Birkhoff's Ergodic Theorem. See also [JdV] and $\left[\mathrm{K}^{3} 2\right]$. We mention here some results:

For almost every x the sequence $\left(T_{\varepsilon}^{n} x\right)_{n=0}^{\infty}$ is uniformly distributed over [0,1$]$. Furthermore,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} T_{\varepsilon}^{k} x=\frac{1}{2}, \quad \lim _{n \rightarrow \infty}\left(\prod_{k=0}^{n-1} T_{\varepsilon}^{k} x\right)^{1 / n}=\frac{1}{e} \text { a.e. }
$$

and

$$
\lim _{n \rightarrow \infty}\left(a_{1} \ldots a_{n}\right)^{1 / n}=e^{c} \quad \text { a.e. },
$$

where $c=\sum_{k \in \mathcal{D}} L_{k} \log k\left({ }^{3}\right)$.
Define the map $\mathcal{T}_{\varepsilon}:[0,1] \times[0,1] \rightarrow[0,1] \times[0,1]$ by

$$
\begin{equation*}
\mathcal{T}_{\varepsilon}(x, y):=\left(T_{\varepsilon}(x), \frac{h(x)+\varepsilon(x)}{s(x)}+\frac{(-1)^{\varepsilon(x)}}{s(x)} y\right) . \tag{14}
\end{equation*}
$$

Notice that for

$$
x=\left[\begin{array}{l}
\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{n}, \ldots \\
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
\end{array}\right]
$$

one has

$$
\mathcal{T}_{\varepsilon}(x, 0)=\left(\left[\begin{array}{l}
\varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{n}, \ldots \\
a_{2}, a_{3}, \ldots, a_{n}, \ldots
\end{array}\right],\left[\begin{array}{c}
\varepsilon_{1} \\
a_{1}
\end{array}\right]\right),
$$

where

$$
\left[\begin{array}{l}
\varepsilon_{1} \\
a_{1}
\end{array}\right]=(-1)^{\varepsilon_{0}} \frac{h_{1}+s_{1}}{s_{1}}=\frac{h_{1}+s_{1}}{s_{1}} .
$$

Now

$$
\mathcal{T}_{\varepsilon}^{2}(x, 0)=\left(\left[\begin{array}{l}
\varepsilon_{3}, \varepsilon_{4}, \ldots, \varepsilon_{n}, \ldots \\
a_{3}, a_{4}, \ldots, a_{n}, \ldots
\end{array}\right],\left[\begin{array}{l}
\varepsilon_{2}, \varepsilon_{1} \\
a_{2}, a_{1}
\end{array}\right]\right)
$$

where

$$
\left[\begin{array}{l}
\varepsilon_{2}, \varepsilon_{1} \\
a_{2}, a_{1}
\end{array}\right]=(-1)^{\varepsilon_{0}} \frac{h_{2}+\varepsilon_{2}}{s_{2}}+(-1)^{\varepsilon_{0}+\varepsilon_{2}} \frac{h_{1}+\varepsilon_{1}}{s_{1} s_{2}}=\frac{h_{2}+\varepsilon_{2}}{s_{2}}+(-1)^{\varepsilon_{2}} \frac{h_{1}+\varepsilon_{1}}{s_{1} s_{2}} .
$$

[^0]Putting $\mathcal{T}_{\varepsilon}^{n}(x, 0)=:\left(T_{n}, V_{n}\right), n \geq 0$, where

$$
T_{n}=T_{\varepsilon}^{n} x=\left[\begin{array}{l}
\varepsilon_{n+1}, \varepsilon_{n+2}, \ldots \\
a_{n+1}, a_{n+2}, \ldots
\end{array}\right], \quad n \geq 0
$$

and

$$
V_{n}=\left[\begin{array}{l}
\varepsilon_{n}, \varepsilon_{n-1}, \ldots, \varepsilon_{1} \\
a_{n}, a_{n-1}, \ldots, a_{1}
\end{array}\right], \quad n \geq 1, \quad V_{0}:=0
$$

we see inductively that

$$
V_{n+1}=\frac{h_{n+1}+\varepsilon_{n+1}}{s_{n+1}}+\frac{(-1)^{\varepsilon_{n+1}}}{s_{n+1}} V_{n} .
$$

As in the case of the continued fraction we will call $T_{n}=T_{\varepsilon}^{n} x$ the future of x at time n, while $V_{n}=V_{n}(x)$ is the past of x at time n (see also $[\mathrm{K}]$). We have the following theorem.

Theorem 2. The system $\left([0,1] \times[0,1], \mathcal{B} \times \mathcal{B}, \lambda \times \lambda, \mathcal{T}_{\varepsilon}\right)$ is the natural extension of $\left([0,1], \mathcal{B}, \lambda, T_{\varepsilon}\right)$. Furthermore, $\left([0,1] \times[0,1], \mathcal{B} \times \mathcal{B}, \lambda \times \lambda, \mathcal{T}_{\varepsilon}\right)$ is Bernoulli.

Proof. For any two vectors $\left(k_{1}, \ldots, k_{n}\right) \in \mathcal{D}^{n},\left(l_{1}, \ldots, l_{m}\right) \in \mathcal{D}^{m}$ one has

$$
\Delta_{k_{1} \ldots k_{n}}^{\varepsilon} \times \Delta_{l_{1} \ldots l_{m}}^{\varepsilon}=\mathcal{T}_{\varepsilon}^{m}\left(\Delta_{l_{m} \ldots l_{1} k_{1} \ldots k_{n}}^{\varepsilon} \times[0,1]\right) .
$$

Since $\left\{\Delta_{k_{1} \ldots k_{n}}^{\varepsilon} \times \Delta_{l_{1} \ldots l_{m}}^{\varepsilon}: k_{i}, l_{j} \in \mathcal{D}, 1 \leq i \leq n, 1 \leq j \leq m, n, m \geq 1\right\}$ generates $\mathcal{B} \times \mathcal{B}$, it follows that

$$
\bigvee_{m \geq 0} \mathcal{T}_{\varepsilon}^{m}(\mathcal{B} \times[0,1])=\mathcal{B} \times \mathcal{B}
$$

Now, for any $\Delta_{k_{1} \ldots k_{n}}^{\varepsilon} \times \Delta_{l_{1} \ldots l_{m}}^{\varepsilon}$ one has

$$
\mathcal{T}_{\varepsilon}^{-1}\left(\Delta_{k_{1} \ldots k_{n}}^{\varepsilon} \times \Delta_{l_{1} \ldots l_{m}}^{\varepsilon}\right)=\Delta_{l_{1} k_{1} \ldots k_{n}}^{\varepsilon} \times \Delta_{l_{2} \ldots l_{m}}^{\varepsilon}
$$

Thus,

$$
\begin{aligned}
\lambda \times \lambda\left(\mathcal{T}_{\varepsilon}^{-1}\left(\Delta_{k_{1} \ldots k_{n}}^{\varepsilon} \times \Delta_{l_{1} \ldots l_{m}}^{\varepsilon}\right)\right) & =\lambda\left(\Delta_{l_{1} k_{1} \ldots k_{n}}^{\varepsilon}\right) \lambda\left(\Delta_{l_{2} \ldots l_{m}}^{\varepsilon}\right) \\
& =\lambda\left(\Delta_{k_{1} \ldots k_{n}}^{\varepsilon}\right) \lambda\left(\Delta_{l_{1} \ldots l_{m}}^{\varepsilon}\right) \\
& =\lambda \times \lambda\left(\Delta_{k_{1} \ldots k_{n}}^{\varepsilon} \times \Delta_{l_{1} \ldots l_{m}}^{\varepsilon}\right) .
\end{aligned}
$$

Since cylinders of the form $\Delta_{k_{1} \ldots k_{n}}^{\varepsilon} \times \Delta_{l_{1} \ldots l_{m}}^{\varepsilon}$ generate the σ-algebra $\mathcal{B} \times \mathcal{B}$, it follows that $\mathcal{T}_{\varepsilon}$ is measure preserving with respect to Lebesgue measure. Thus, $\mathcal{T}_{\varepsilon}$ is the natural extension of T_{ε} (see $[\mathrm{R}]$ for details). Since T_{ε} is Bernoulli it is an exercise to show that $\mathcal{T}_{\varepsilon}$ is Bernoulli (see also [B]).

Corollary 1. For almost all x the two-dimensional sequence

$$
\begin{equation*}
\mathcal{T}_{\varepsilon}^{n}(x, 0)=\left(T_{n}, V_{n}\right), \quad n \geq 0, \tag{15}
\end{equation*}
$$

is uniformly distributed over $[0,1] \times[0,1]$.

Proof. Denote by A that subset of $[0,1]$ for which the sequence $\left(T_{n}, V_{n}\right)_{n=0}^{\infty}$ is not uniformly distributed over $[0,1] \times[0,1]$. It follows from Lemma 1 and the definition of $\mathcal{T}_{\varepsilon}$ that for all $x, y, y^{*} \in[0,1]$ one has

$$
\left|\mathcal{T}_{\varepsilon}^{n}(x, y)-\mathcal{T}_{\varepsilon}^{n}\left(x, y^{*}\right)\right|<L^{n}, \quad n \geq 0
$$

and we see that $\left(\mathcal{T}_{\varepsilon}^{n}(x, y)-\mathcal{T}_{\varepsilon}^{n}\left(x, y^{*}\right)\right)_{n=0}^{\infty}$ is a null-sequence. Hence, if $\mathcal{A}:=$ $\mathrm{A} \times[0,1]$, then for every pair $(x, y) \in \mathcal{A}$ the sequence $\mathcal{T}_{\varepsilon}^{n}(x, y), n \geq 0$, is not uniformly distributed over $[0,1] \times[0,1]$. Now, if A had, as a subset of $[0,1]$, positive Lebesgue measure, so would \mathcal{A} as a subset of $[0,1] \times[0,1]$. However, this is impossible in view of Theorem 2.

The partition $\xi=\left\{I_{k} \times[0,1]\right\}_{k \in \mathcal{D}}$ is a generator for $\mathcal{T}_{\varepsilon}$, which implies that the entropy $h\left(\mathcal{T}_{\varepsilon}\right)$ of $\mathcal{T}_{\varepsilon}$ equals $h\left(\mathcal{T}_{\varepsilon}, \xi\right)$ (see also [W], p. 96). Therefore,

$$
h\left(\mathcal{T}_{\varepsilon}\right)=-\sum_{k \in \mathcal{D}} L_{k} \log L_{k}
$$

Now let $\left(I_{k}\right)_{k \in \mathcal{D}}$ and $\left(I_{k}^{*}\right)_{k \in \mathcal{D}}$ be two partitions of $[0,1]$ satisfying (4) and (5), and suppose that $L_{k}=L_{k}^{*}$ for $k \in \mathcal{D}$. Furthermore, let $\varepsilon=\left(\varepsilon_{k}\right)_{k \in \mathcal{D}}$ and $\varepsilon^{*}=\left(\varepsilon_{k}^{*}\right)_{k \in \mathcal{D}}$ be two arbitrary sequences of zeroes and ones. It follows at once from Ornstein's Isomorphism Theorem (see [W], p. 105) and Theorem 2 that $\mathcal{T}_{\varepsilon}$ and $\mathcal{T}_{\varepsilon^{*}}$ are metrically isomorphic. We conclude this section with the following theorem, which gives a concrete isomorphism.

TheOrem 3. Let $\left(I_{k}\right)_{k \in \mathcal{D}}$ and $\left(I_{k}^{*}\right)_{k \in \mathcal{D}}$ be two partitions of $[0,1]$, satisfying (4) and (5). Suppose that $L_{k}=L_{k}^{*}$ for $k \in \mathcal{D}$. Furthermore, let $\varepsilon=\left(\varepsilon_{k}\right)_{k \in \mathcal{D}}$ and $\varepsilon^{*}=\left(\varepsilon_{k}^{*}\right)_{k \in \mathcal{D}}$ be two sequences of zeroes and ones. Let $\mathcal{T}_{\varepsilon}$ and $\mathcal{T}_{\varepsilon^{*}}$ be defined as in (8). Finally, define $\Psi:[0,1] \times[0,1] \rightarrow[0,1] \times[0,1]$ by

$$
\begin{aligned}
\Psi\left(\left[\begin{array}{ll}
\varepsilon_{1}, \varepsilon_{2}, \ldots \\
a_{1}, a_{2}, \ldots
\end{array}\right]\right. & \left.,\left[\begin{array}{cc}
\varepsilon_{0}, \varepsilon_{-1}, \ldots \\
a_{0}, a_{-1}, \ldots
\end{array}\right]\right) \\
& :=\left(\left[\begin{array}{ccc}
\varepsilon^{*}\left(a_{1}\right), \varepsilon^{*}\left(a_{2}\right), \ldots \\
a_{1}, & a_{2}, & \ldots
\end{array}\right],\left[\begin{array}{cc}
\varepsilon^{*}\left(a_{0}\right), \varepsilon^{*}\left(a_{-1}\right), \ldots \\
a_{0}, & a_{-1},
\end{array} \ldots\right) .\right.
\end{aligned}
$$

Then Ψ is a measure preserving isomorphism.
Proof. Since almost every $x \in[0,1]$ has unique $(I, \varepsilon)-,\left(I^{*}, \varepsilon^{*}\right)$-GLS expansions, it follows that Ψ is injective. Now, for any cylinder $\Delta_{k_{1} \ldots k_{n}}^{\varepsilon^{*}} \times$ $\Delta_{l_{1} \ldots l_{m}}^{\varepsilon^{*}}$,

$$
\Delta_{k_{1} \ldots k_{n}}^{\varepsilon} \times \Delta_{l_{1} \ldots l_{m}}^{\varepsilon}=\Psi^{-1}\left(\Delta_{k_{1} \ldots k_{n}}^{\varepsilon^{*}} \times \Delta_{l_{1} \ldots l_{m}}^{\varepsilon^{*}}\right)
$$

and

$$
\begin{aligned}
(\lambda \times \lambda)\left(\Delta_{k_{1} \ldots k_{n}}^{\varepsilon^{*}} \times \Delta_{l_{1} \ldots l_{m}}^{\varepsilon_{m}^{*}}\right) & =L_{k_{1}}^{*} \ldots L_{k_{n}}^{*} L_{l_{1}}^{*} \ldots L_{l_{m}}^{*} \\
& =L_{k_{1}} \ldots L_{k_{n}} L_{l_{1}} \ldots L_{l_{m}} \\
& =(\lambda \times \lambda)\left(\Delta_{k_{1} \ldots k_{n}}^{\varepsilon} \times \Delta_{l_{1} \ldots l_{m}}^{\varepsilon}\right) \\
& =(\lambda \times \lambda) \Psi^{-1}\left(\Delta_{k_{1} \ldots k_{n}}^{\varepsilon^{*}} \times \Delta_{l_{1} \ldots l_{m}}^{\varepsilon^{*}}\right) .
\end{aligned}
$$

This shows that Ψ is measurable and measure preserving.
Finally, let $(x, y) \in[0,1] \times[0,1]$ with

$$
x=\left[\begin{array}{c}
\varepsilon_{1}, \varepsilon_{2}, \ldots \\
a_{1}, a_{2}, \ldots
\end{array}\right], \quad y=\left[\begin{array}{c}
\varepsilon_{0}, \varepsilon_{-1}, \ldots \\
a_{0}, a_{-1}, \ldots
\end{array}\right] .
$$

Then

$$
\begin{aligned}
\Psi \mathcal{T}_{\varepsilon}(x, y) & =\left(\left[\begin{array}{ccc}
\varepsilon^{*}\left(a_{2}\right), & \varepsilon^{*}\left(a_{3}\right), & \ldots \\
a_{2}, & a_{3}, & \ldots
\end{array}\right],\left[\begin{array}{ccc}
\varepsilon^{*}\left(a_{1}\right), & \varepsilon^{*}\left(a_{0}\right), & \varepsilon^{*}\left(a_{-1}\right), \\
a_{1}, & a_{0}, & a_{-1}, \\
\ldots
\end{array}\right]\right) \\
& =\mathcal{T}_{\varepsilon^{*}} \Psi(x, y),
\end{aligned}
$$

therefore Ψ is a measure preserving isomorphism.

3. Applications and examples

3.1. Approximation coefficients and their distribution. As before let $I=$ $\left(I_{n}\right)_{n \in \mathcal{D}}$ be a partition of $[0,1]$ which satisfies (4) and (5), and let $\varepsilon=$ $(\varepsilon(n))_{n \in \mathcal{D}}$ be a sequence of zeroes and ones. Putting $q_{k}=s_{1} \ldots s_{k}$, it follows from (9) and Corollary 1 that for a.e. x the approximation coefficients θ_{n}, $n \geq 0$, defined by

$$
\theta_{\varepsilon, n}=\theta_{\varepsilon, n}(x):=q_{n}\left|x-\frac{p_{n}}{q_{n}}\right|, \quad n \geq 0
$$

have the same distribution as $T_{\varepsilon}^{n} x, n \geq 0$. Viz., for a.e. x the sequence $\left(\theta_{\varepsilon, n}\right)_{n}$ is uniformly distributed on [0,1].

In fact, for many partitions $\left(I_{n}\right)_{n \in \mathcal{D}}$ more information on the distribution of the θ_{n} 's can be obtained by a more careful definition of q_{n}. As an example we will treat here the case of the classical Lüroth series, and all other GLS expansions with the same partition $\left(I_{n}\right)_{n \in \mathcal{D}}$ (see also the examples at the end of Section 1.2).

In this case

$$
s_{n}=s\left(T_{\varepsilon}^{n-1} x\right)=\frac{1}{\frac{1}{a_{n}-1}-\frac{1}{a_{n}}}=a_{n}\left(a_{n}-1\right), \quad h_{n}=a_{n}-1,
$$

and

$$
\frac{h_{n}+\varepsilon_{n}}{s_{1} \ldots s_{n}}=\frac{a_{n}-1+\varepsilon_{n}}{a_{1}\left(a_{1}-1\right) a_{2}\left(a_{2}-1\right) \ldots a_{n}\left(a_{n}-1\right)}=\frac{1}{a_{1}\left(a_{1}-1\right) \ldots\left(a_{n}-\varepsilon_{n}\right)} .
$$

Therefore it is more appropriate to put
$q_{1}=a_{1}-\varepsilon_{1}, \quad q_{n}=a_{1}\left(a_{1}-1\right) a_{2}\left(a_{2}-1\right) \ldots a_{n-1}\left(a_{n-1}-1\right)\left(a_{n}-\varepsilon_{n}\right), \quad n \geq 2$,
and we see

$$
\begin{equation*}
\theta_{n}(x)=\frac{a_{n}-\varepsilon_{n}}{a_{n}\left(a_{n}-1\right)} T_{\varepsilon}^{n} x, \quad n \geq 1 \tag{16}
\end{equation*}
$$

We have the following theorem.
ThEOREM 4. Let $\left(I_{n}\right)_{n \in \mathcal{D}}$ be the Lüroth partition, that is, $I_{n}:=(1 / n$, $1 /(n-1)]$ for $n \geq 2$, and let $\varepsilon(n) \in\{0,1\}$ for $n \geq 2$. Then for a.e. x and for every $z \in(0,1]$ the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{1 \leq j \leq N: \theta_{j}(x)<z\right\}
$$

exists and equals $F_{\varepsilon}(z)$, where

$$
F_{\varepsilon}(z):=\sum_{k=2}^{\lfloor 1 / z\rfloor+1-\varepsilon(\lfloor 1 / z\rfloor+1)} \frac{z}{k-\varepsilon(k)}+\frac{1}{\lfloor 1 / z\rfloor+1-\varepsilon(\lfloor 1 / z\rfloor+1)}
$$

$$
0<z \leq 1
$$

Proof. Let $z \in(0,1]$. From (15) and (16) it follows that

$$
\begin{equation*}
\theta_{n}<z \Leftrightarrow\left(T_{n}, V_{n}\right) \in \Xi(z)=\bigcup_{k=2}^{\infty} \Xi_{k}(z) \tag{17}
\end{equation*}
$$

where

$$
\Xi_{k}(z):=\left(\left[0, \frac{k(k-1)}{k-\varepsilon(k)} z\right] \cap[0,1]\right) \times \Delta_{k}, \quad k \geq 2
$$

For $k \geq 2$ we have the following two cases (of which the first one might be void).
(A) $2 \leq k \leq\lfloor 1 / z\rfloor+1-\varepsilon(\lfloor 1 / z\rfloor+1)$. In this case

$$
\Xi_{k}(z)=\left[0, \frac{k(k-1)}{k-\varepsilon(k)} z\right] \times \Delta_{k}
$$

(B) $k>\lfloor 1 / z\rfloor+1-\varepsilon(\lfloor 1 / z\rfloor+1)$. In this case $\Xi_{k}(z)=[0,1] \times \Delta_{k}$.

From (A) and (B) one finds, that
$(\lambda \times \lambda)(\Xi(z))$

$$
\begin{aligned}
= & \sum_{k=2}^{\lfloor 1 / z\rfloor+1-\varepsilon(\lfloor 1 / z\rfloor+1)}(\lambda \times \lambda)\left(\left[0, \frac{k(k-1)}{k-\varepsilon(k)} z\right] \times \Delta_{k}\right) \\
& +\frac{1}{\lfloor 1 / z\rfloor+1-\varepsilon(\lfloor 1 / z\rfloor+1)} \\
= & \sum_{k=2}^{\lfloor 1 / z\rfloor+1-\varepsilon(\lfloor 1 / z\rfloor+1)} \frac{z}{k-\varepsilon(k)}+\frac{1}{\lfloor 1 / z\rfloor+1-\varepsilon(\lfloor 1 / z\rfloor+1)} .
\end{aligned}
$$

The theorem at once follows from Corollary 1.

Remarks. 1. Although the map $x \rightarrow(1 / x) \bmod 1$ generating the continued fraction is not piecewise linear, which leads to complications in estimations, a similar result as in Theorem 4 was obtained for continued fractions (see also [BJW]).
2. If $\varepsilon(n)=0, n \geq 2$ (the classical Lüroth case) $\left({ }^{4}\right)$, the distribution function F_{ε} reduces to

$$
F_{\mathrm{L}}(z)=\sum_{k=2}^{\lfloor 1 / z\rfloor+1} \frac{z}{k}+\frac{1}{\lfloor 1 / z\rfloor+1}, \quad 0<z \leq 1
$$

Furthermore

$$
F_{\mathrm{A}}(z)=\sum_{k=2}^{\lfloor 1 / z\rfloor} \frac{z}{k-1}+\frac{1}{\lfloor 1 / z\rfloor}, \quad 0<z \leq 1
$$

see also Figure 2. Notice that $F_{\mathrm{A}} \leq F_{\varepsilon} \leq F_{\mathrm{L}}$.

Fig. 2

We have the following corollary.
${ }^{\left({ }^{4}\right)}$ From now on the classical (resp. the alternating) Lüroth case will be indicated by a subscript L (resp. A).

Corollary 2. Let $\left(I_{n}\right)_{n \in \mathcal{D}}$ be the Lüroth partition and let $\varepsilon(n) \in\{0,1\}$ for $n \geq 2$. Then there exists a constant M_{ε} such that for a.e. x,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \theta_{\varepsilon, i}=M_{\varepsilon} .
$$

Moreover, M_{ε} can be calculated explicitly, and $M_{\mathrm{A}} \leq M_{\varepsilon} \leq M_{\mathrm{L}}$, where $M_{\mathrm{A}}=1-\frac{1}{2} \zeta(2)=0.177533 \ldots$ and $M_{\mathrm{L}}=\frac{1}{2}(\zeta(2)-1)=0.322467 \ldots$

Proof. By definition M_{ε} is the first moment of F_{ε} and thus $M_{\varepsilon}=$ $\int_{0}^{1}\left(1-F_{\varepsilon}(x)\right) d x$.

Remarks. 1. From Corollary 2 it follows that among all (I, ε)-GLS expansions with I the Lüroth partition the alternating Lüroth series has the best approximation properties.
2. The presentation of Corollary 2 suggests that by choosing $\varepsilon=$ $(\varepsilon(n))_{n \geq 2}$ appropriately, each value in the interval $\left[M_{\mathrm{A}}, M_{\mathrm{L}}\right]=[0.177533 \ldots$, $0.322467 \ldots$... might be attained. This is certainly incorrect, as the following example shows. Let $\varepsilon=(\varepsilon(n))_{n \geq 2}$ be given by $\varepsilon(2)=1$ and $\varepsilon(n)=0$ for $n \geq 3$, and let $\varepsilon^{*}=\left(\varepsilon^{*}(n)\right)_{n \geq 2}$ be given by $\varepsilon^{*}(2)=0$ and $\varepsilon^{*}(n)=1$ for $n \geq 3$. A simple calculation yields that $M_{\varepsilon}=M_{\mathrm{L}}-1 / 8=0.197467 \ldots$ and $M_{\varepsilon^{*}}=M_{\mathrm{A}}+1 / 8=0.302533 \ldots$; we thus see that $M_{\varepsilon}<M_{\varepsilon^{*}}$ and from this one can easily deduce that there does not exist a sequence $\varepsilon^{b}=\left(\varepsilon^{b}(n)\right)_{n \geq 2}$ of zeroes and ones for which $M_{\varepsilon^{b}} \in\left[M_{\varepsilon}, M_{\varepsilon^{*}}\right]$. Some further investigations even suggest that the set

$$
\Upsilon:=\left\{M_{\varepsilon}: \varepsilon(n) \in\{0,1\} \text { for } n \geq 2\right\}
$$

is a Cantor set.
3.2. Jump transformations. Let T_{ε} be a (I, ε)-GLS operator with digit set \mathcal{D}, and let $a \in \mathcal{D}$. For $x \in \Omega$, put

$$
n_{a}=n_{a}(x):=\min _{n \geq 1}\left\{a_{n}(x): a_{n}(x)=a\right\}
$$

(and $n_{a}=\infty$ in case $a_{n}(x) \neq a$ for all $n \geq 1$). Define the jump transformation $J_{a}: \Omega \rightarrow \Omega$ by

$$
J_{a} x:= \begin{cases}T_{\varepsilon}^{n_{a}} x, & n_{a} \in \mathbb{N}, \tag{18}\\ 0, & n_{a}=\infty\end{cases}
$$

Jump transformations were first studied by H. Jager [J] for the particular case that $T_{\varepsilon} x=10 x(\bmod 1)$. Jager showed that such jump transformations are stronly mixing. Here, in the more general setting, we have a stronger result.

Theorem 5. Let T_{ε} be an (I, ε)-GLS operator with digit set \mathcal{D}. For each $a \in \mathcal{D}$ the corresponding jump transformation J_{a}, as defined in (18), is an

$$
\begin{aligned}
& \left(I^{*}, \varepsilon^{*}\right)-G L S \text { operator, with } \\
& \qquad I^{*}=\left\{\Delta_{a_{1} \ldots a_{n}}: n \geq 1, a_{n}=a \text { and } a_{i} \neq a \text { for } 1 \leq i \leq n-1\right\}
\end{aligned}
$$

and for each $\Delta_{a_{1} \ldots a_{n}} \in I^{*}$ the corresponding value of ε is given by

$$
\varepsilon^{*}\left(\Delta_{a_{1} \ldots a_{n}}\right)=\varepsilon\left(a_{1}\right)+\ldots+\varepsilon\left(a_{n}\right)(\bmod 2) .
$$

3.3. β-expansions and pseudo golden mean numbers. For an irrational number $\beta>1$ the β-transformation $T_{\beta}:[0,1] \rightarrow[0,1]$ is defined by

$$
T_{\beta} x=\beta x(\bmod 1)
$$

(see also [FS] for further references). Clearly, β-transformations do not belong to the class of GLS-transformations. However, in some cases there exists an intimate relation between both types of transformations, as the following example shows.

Let $\beta>1$ be the positive root of the polynomial $X^{m}-X^{m-1}-\ldots-X-1$, where $\left({ }^{5}\right) m \geq 2$. Due to C. Frougny and B. Solomyak [FS] we know that such β 's are Pisot numbers and that the β-expansion $d(1, \beta)$ is finite, and equals

$$
1=\frac{1}{\beta}+\frac{1}{\beta^{2}}+\ldots+\frac{1}{\beta^{m}} .
$$

Notice that $T_{\beta}^{i} 1=\beta^{-1}+\ldots+\beta^{-(m-i)}, 0 \leq i \leq m-1$, and $T_{\beta}^{i} 1=0$ for $i \geq m$. Furthermore, let

$$
X:=\bigcup_{k=0}^{m-1}\left(T_{\beta}^{m-k} 1, T_{\beta}^{m-k-1} 1\right] \times\left[0, T_{\beta}^{k} 1\right]
$$

(see also Figure 3 for $m=4$), and define $\mathcal{T}_{\beta}: X \rightarrow X$ by

$$
\mathcal{T}_{\beta}(x, y):=\left(T_{\beta} x, \frac{1}{\beta}(\lfloor\beta x\rfloor+y)\right) .
$$

Let $Y:=[0,1] \times[0,1 / \beta]$ and $\mathcal{W}: Y \rightarrow Y$ the corresponding induced transformation under \mathcal{T}_{β}, that is

$$
\mathcal{W}(x, y)=\mathcal{T}_{\beta}^{n(x, y)}(x, y),
$$

where $n(x, y)=\min \left\{s>0: \mathcal{T}_{\beta}^{s}(x, y) \in Y\right\}$. Clearly one has

$$
\mathcal{W}(x, y)=\mathcal{T}_{\beta}^{k+1}(x, y),
$$

where $k=k(x) \in\{0,1, \ldots, m-1\}$ is such that $x \in\left(T_{\beta}^{m-k} 1, T_{\beta}^{m-k-1} 1\right]$. Notice that \mathcal{W} maps rectangles to rectangles; see also Figure 3.

Finally, let T_{ε} be the (I, ε)-GLS operator with partition I given by $\left(T_{\beta}^{m-i} 1, T_{\beta}^{m-i-1} 1\right], 0 \leq i \leq m-1$ (see also Figure 3), and $\varepsilon(n)=0$ for

[^1]

Fig. 3
each digit n. Notice that for $x \in\left(T_{\beta}^{m-i} 1, T_{\beta}^{m-(i+1)} 1\right], 0 \leq i \leq m-1$, one has

$$
\begin{equation*}
T_{\varepsilon} x=T_{\beta}^{i+1} x \tag{19}
\end{equation*}
$$

We have the following lemma.
Lemma 2. Let $\Psi:[0,1] \times[0,1] \rightarrow Y$ be defined by $\Psi(x, y):=(x, y / \beta)$. Then Ψ is a measurable bijection which satisfies $\Psi \circ \mathcal{T}_{\varepsilon}=\mathcal{W} \circ \Psi$.

Proof. For $(x, y) \in[0,1] \times[0,1]$ let $i=i(x) \in\{0,1, \ldots, m-1\}$ be such that $x \in\left(T_{\beta}^{m-i} 1, T_{\beta}^{m-(i+1)} 1\right]$. From (14) it then follows that

$$
\mathcal{T}_{\varepsilon}(x, y)=\left(T_{\varepsilon} x, T_{\beta}^{m-i} 1+\frac{y}{\beta^{i+1}}\right]
$$

and therefore

$$
\begin{equation*}
\Psi\left(\mathcal{T}_{\varepsilon}(x, y)\right)=\left(T_{\varepsilon} x, \frac{1}{\beta} T_{\beta}^{m-i} 1+\frac{y}{\beta^{i+2}}\right] \tag{20}
\end{equation*}
$$

From (19), (20) and the definitions of \mathcal{W} and Ψ it now follows that $\mathcal{W}(\Psi(x, y))=\Psi\left(\mathcal{T}_{\varepsilon}(x, y)\right)$ for $i=0$ and in case $i \neq 0$ one has

$$
\begin{aligned}
\mathcal{W}(\Psi(x, y)) & =\mathcal{W}\left(x, \frac{y}{\beta}\right)=\mathcal{T}_{\beta}^{i+1}\left(x, \frac{y}{\beta}\right) \\
& =(T_{\beta}^{i+1} x, \frac{1}{\beta}(0+(\underbrace{\left.\frac{1}{\beta}\left(1+\ldots \frac{1}{\beta}\left(1+\frac{1}{\beta}\left(1+\frac{y}{\beta}\right)\right) \ldots\right)\right)}_{i \text { times }} \\
& =\left(T_{\varepsilon} x, \frac{1}{\beta^{2}}+\ldots+\frac{1}{\beta^{i+1}}+\frac{y}{\beta^{i+2}}\right)=\Psi\left(\mathcal{T}_{\varepsilon}(x, y)\right) .
\end{aligned}
$$

Let ϱ be the measure on Y defined by

$$
\varrho(A):=(\lambda \times \lambda)\left(\Psi^{-1}(A)\right) \quad \text { for each Borel set } A \subset Y .
$$

It follows from Lemma 2 and the fact that $\lambda \times \lambda$ is an invariant measure for $\mathcal{T}_{\varepsilon}$ that ϱ is invariant with respect to \mathcal{W}, and $\varrho=\beta(\lambda \times \lambda)$. Lemma 2 now at once yields the following proposition.

Proposition. The dynamical systems $\left([0,1] \times[0,1], \lambda \times \lambda, \mathcal{T}_{\varepsilon}\right)$ and $(Y, \varrho, \mathcal{W})$ are isomorphic.

Using standard techniques (see [CFS], p. 21) one obtains the measure μ on X which is invariant with respect to \mathcal{T}_{β}, viz.

$$
\mu(A)=\frac{\beta}{\frac{1}{\beta}+\frac{2}{\beta^{2}}+\ldots+\frac{m}{\beta^{m}}}(\lambda \times \lambda)(A)
$$

for each Borel set $A \subset X$. One also easily shows that ($X, \mu, \mathcal{T}_{\beta}$) forms the natural extension of $\left([0,1], \nu, T_{\beta}\right)$, where ν is the invariant measure with respect to $T_{\beta}[\mathrm{So}]$. Projecting μ on the first coordinate of X yields ν; one finds that ν has density $h(x)$, where

$$
h(x)=\frac{1}{\frac{1}{\beta}+\frac{2}{\beta}+\ldots+\frac{m}{\beta^{m}}} \sum_{x<T_{\beta}^{i} 1} \frac{1}{\beta^{i}},
$$

as given by W. Parry [Pa].
Acknowledgements. We want to thank the referee for several helpful suggestions concerning the presentation of this paper.

References

[B] J. R. Brown, Ergodic Theory and Topological Dynamics, Academic Press, New York, 1976.
[BJW] W. Bosma, H. Jager and F. Wiedijk, Some metrical observations on the approximation by continued fractions, Indag. Math. 45 (1983), 281-299.
[CFS] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Grundlehren Math. Wiss. 245, Springer, New York, 1982.
[FS] C. Frougny and B. Solomyak, Finite beta-expansions, Ergodic Theory Dynamical Systems 12 (1992), 713-723.
[G] J. Galambos, Representations of Real Numbers by Infinite Series, Lecture Notes in Math. 502, Springer, Berlin, 1982.
[J] H. Jager, On decimal expansions, Zahlentheorie, Berichte aus dem Mathematische Forschungsinstitut Oberwolfach 5 (1971), 67-75.
[JdV] H. Jager and C. de Vroedt, Lüroth series and their ergodic properties, Indag. Math. 31 (1968), 31-42.
$\left[K^{3} 1\right]$ S. Kalpazidou, A. Knopfmacher and J. Knopfmacher, Lüroth-type alternating series representations for real numbers, Acta Arith. 55 (1990), 311-322.
$\left[\mathrm{K}^{3} 2\right]-,-$, , Metric properties of alternating Lüroth series, Portugal. Math. 48 (1991), 319-325.
[K] C. Kraaikamp, A new class of continued fraction expansions, Acta Arith. 57 (1991), 1-39.
[Li] P. Liardet, MR: 93m:11077.
[Lu] J. Lüroth, Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe, Math. Ann. 21 (1883), 411-423.
[Pa] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416.
[Pe] O. Perron, Irrationalzahlen, de Gruyter, Berlin, 1960.
[R] V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960) (in Russian); English translation: Amer. Math. Soc. Transl. Ser. 2, 39 (1969), 1-36.
[Sa] T. Šalát, Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen, Czech. Math. J. 18 (1968), 489-522.
[So] B. Solomyak, Personal communication with C. Kraaikamp, Seattle, July 9, 1991.
[V] W. Vervaat, Success Epochs in Bernoulli Trails with Applications in Number Theory, Math. Centre Tracts 42, Amsterdam, 1972.
[W] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, New York, 1982.

Mathematics Department
University of South Alabama
Mobile, Alabama 36688
U.S.A.

E-mail: jose@mathstat.usouthal.edu
Universiteit Utrecht
Department of Mathematics
Budapestlaan 6
P.O. Box 80.000

3508TA Utrecht, the Netherlands
E-mail: Dajani@math.ruu.nl

Department of Mathematics
University of Oregon Corvallis, Oregon 97331
U.S.A.

E-mail: burton@math.orst.edu
Technische Universiteit Delft
TWI (SSOR)
Mekelweg 4
2628 CD Delft, the Netherlands
E-mail: C.Kraaikamp@twi.tudelft.nl

Received on 29.12.1994
and in revised form on 1.8.1995

[^0]: $\left.{ }^{(3}\right)$ In case $0 \in \mathcal{D}$ we put $e^{c}:=0$.

[^1]: $\left.{ }^{5}\right)$ For $m=2$ one has $\beta=(\sqrt{5}+1) / 2$, which is the golden mean. For $m \geq 3$ we call these β 's pseudo golden mean numbers.

