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1. Introduction. For any set X let |X| denote its cardinality and for
any integer n, larger than one, let w(n) denote the number of distinct prime
factors of n and let P(n) denote the greatest prime factor of n. Denote the
set of positive integers by N. In 1934 Erdds and Turdn [5] proved that there
exists a positive number ¢; such that for any non-empty finite subset A
of N,

(1.1) w( H (a+a’)) > c1log |A|.

a,a’ €A

In 1986, Gylry, Stewart and Tijdeman [12] proved that this result can
be extended to the case when the summands are taken from different sets.
They proved that there is a positive number co such that for any finite
subsets A and B of N with |A| > |B| > 2 we have

(1.2) w( H (a+ b)) > co log |Al.

acA,beB
Moreover, in 1988, Erd8s, Stewart and Tijdeman [4] showed that (1.2) is
not far from best possible. They proved that there is a positive number c3

such that for each integer k, with k > 3, there exist sets of positive integers
A and B with k = |A| > |B| > 2 satisfying

(1.3) w( I1 (a+b))<03(1og|A|)21og10g|A\.
acA,beB
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If A and B are dense subsets of N then estimates (1.1) and (1.2) may be
strengthened. Let € and § be positive real numbers and let N be a positive
integer. Let A and B be subsets of {1,..., N} of cardinality at least dN.
In [3], Erdds, Pomerance, Sarkozy and Stewart proved that there exists a
positive number Ny, which is effectively computable in terms of € and 9,
such that if N exceeds Ny then there exists an integer a from A and an
integer b from B for which

(1.4) w(a+b) > (1 —¢)(logN)/loglog N.

Sérkozy and Stewart [17] were able to show that a lower bound of the same
order of magnitude holds even under a much weaker density condition. Let
6 be a real number with 1/2 < # <1 and let NV be a positive integer. They
proved that there exists a positive number ¢4, which is effectively computable
in terms of 0, such that if A and B are subsets of {1,..., N}, N exceeds ¢4
and

(|4l |B))'/? = N,
then there exists an integer a from A and an integer b from B for which
1 1\”
—10— =] (logN)/loglog N.
6 2
In the same article [17], they estimated the average value of w(a +b). They

showed that if A and B are subsets of {1,...,N} with (|A| - |B|)}/? =
N exp(—(log N)°™1)) then

(1.6) \A|1B| Z Zw(a—l—b) > (1+0(1))loglog N.
acAbeB
For further results of this type we refer to [15], [22] and [23].

In 1992, Sarkozy [16] commenced the study of the multiplicative ana-
logues of the above results, where in place of terms a + b one considers
terms ab + 1. In particular, he proved the multiplicative analogue of (1.4).
Let € and é be positive real numbers and let N be a positive integer. Let
A be a subset of {1,..., N} of cardinality at least 6 N. He proved that there
exists a positive number Np, which is effectively computable in terms of €
and 0, such that if N exceeds Nj then there exist integers a and a’ from A
such that

(1.7) w(aa' +1) > (1 —¢)(log N)/loglog N.

We remark that this is slightly weaker than (1.4) since only the special case
A = B is covered and since while one cannot replace the factor 1 —e in (1.4)
by 1+ ¢ one expects (1.7) to hold with 2 — ¢ in place of 1 — e.

Our goal in this paper is to study the multiplicative analogues of
(1.1)—(1.3), (1.5) and (1.6).

(1.5) w(a+b) >



Prime factors of integers 367

2. Lower bounds. We will prove the following multiplicative analogue
of (1.2).

THEOREM 1. Let A and B be finite subsets of N with |A| > |B| > 2.
Then

w( I (ab+ 1)) > ¢slog |A],
acA,beB
where c5 is an effectively computable positive constant.

Both (1.2) and Theorem 1 are special cases of Theorem 2 below.

THEOREM 2. Let n > 2 be an integer, and let A and B be finite subsets
of N™ with |A| > |B| > 2(n — 1) and with the following properties: the
n-th coordinate of each vector in A is equal to 1 and any n vectors in B U
(0,...,0,1) are linearly independent. Then

(2.1) w( H (arb1 + ...+ anbn)> > cglog | A|
(a1,...,an)€EA
(bl,...,bn)EB

with an effectively computable positive number cg.

Note that (1.2) follows from Theorem 2 by taking n = 2 and b; = 1 for
all (by,b2) in B. Further, for n = 2, Theorem 2 gives Theorem 1 if by = 1
for each (by,b3) in B.

The next theorem is a slightly modified version of Theorem 2. A vector
a=(ay,...,a,) in N" is called primitive if ay, ..., a, are relatively prime.

THEOREM 3. Let n > 2 be an integer, and let A and B be finite subsets
of N™ with |A| > |B| > 2n—1 and with the following properties: A consists
of primitive vectors and any n vectors in B are linearly independent. Then
the lower estimate (2.1) holds.

In Theorems 2 and 3 all assumptions are necessary. For example, the
vectors a in A must be primitive, since otherwise the left-hand side of (2.1)
may assume the value

w( H (arby + ... —|—anbn)>

(b1,...,bn)EB
for each a = (aq,...,a,) in A. This is the case if A consists of vectors of
the form p™a, m = 1,2, ..., where p is a prime and a is in N". Further, it

is easy to see that the lower bounds 2(n — 1) and 2n — 1, respectively, for
| B| cannot be lowered and that the linear independence of the vectors in B,
respectively in BU (0, ...,0, 1), is necessary.

Since the nth prime can be estimated from below by a constant times
nlogn, Theorem 1 implies the following result.
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COROLLARY 1. Let A and B be finite subsets of N with |A| > |B| > 2.
Then there exist a in A and b in B such that

P(ab+ 1) > c7log | Al loglog |A],
where ¢ is an effectively computable positive constant.

Theorems 2 and 3 have similar consequences. An easy consequence of
Theorem 1 is as follows.

COROLLARY 2. Let A be a finite subset of N with |A| > 2. Then

w aa’ +1)) > cglog|A
IT ¢ g|A,
a,a’€A
a#a’

where cg is an effectively computable positive constant.

We remark that a similar lower bound can be given for the total number
of distinct prime factors of the special numbers of the form aa’+1 with o’ = a
and a in A. For if py, ..., ps are the distinct prime factors of [], . 4(a* 4+ 1),
then all z = a in A satisfy the equation z? + 1 = p{*...p? in positive
integers x and non-negative integers z1,...,2s. Now Theorem 2 of Evertse
[6] gives |A] < 3. 7645 whence

w( H(a2 + 1)) > ¢g log|A|

acA
follows with an effectively computable positive constant cg. We note that
this result has no additive analogue.

By Corollary 2 there exist distinct a,a’ in A with P(aa’ + 1) — oo as
|A| — oo. This suggests the following conjecture.

CONJECTURE. Let a,b and c¢ denote distinct positive integers. If
max(a,b,c) — oo then
P((ab+1)(bc+1)(ca+1)) — oo.
To prove Theorems 2 and 3, we shall need two lemmas. Let
F(x)=F(x1,...,2p) € Z[z1, ..., 2]

be a decomposable form of degree r, that is a homogeneous polynomial
which factorizes into linear forms [y (x),...,[.(x) over a finite extension of
Q. Let R be a subring of Q which is finitely generated over Z, so that
R = Z[ 1 ] with s a non-negative integer and pq,...,ps distinct prime

P1-.-Ps
numbers. C%nsider the decomposable form equation

(2.2) F(x) e R* withx=(z1,...,2,) € R",
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where R* denotes the multiplicative group of units of R. If x is a solution
of (2.2) then so is ex for every € in R*. A set of solutions of the form R*x
is called an R*-coset of solutions.

In [8], Evertse and Gy6ry gave a finiteness criterion for equation (2.2).
In the special case when the splitting field of F' is Q this criterion can be
formulated in the following form. Denote by Ly a maximal subset of pairwise
linearly independent linear forms in {l;,...,[,}. For any system L of linear
forms from Q[z1,...,x,], we denote by V(L) the Q-vector space generated
by the forms of L. Then we have the following lemma.

LEMMA 1. Suppose that the linear factors li,...,l. of F have rational
coefficients. Then the following two statements are equivalent:

(i) The forms in Lo have rank n over Q and for each proper non-empty
subset Ly of Ly there is a linear form in Lo which is contained both in V (Ly)
and in V(Lo\L1);

(ii) The number of R*-cosets of solutions of (2.2) is finite for every
finitely generated subring R of Q.

Proof. This is an immediate consequence of Theorem 2 and the Propo-
sition in [8].

Using a result of Schlickewei [19] on S-unit equations, Gy6ry [10] gave
an upper bound for the number of families of solutions of (2.2). This implies
an upper bound for the number of R*-cosets of solutions of (2.2), provided
that condition (i) in Lemma 1 is fulfilled. Recently Evertse [7] has improved
this latter bound by proving the following result.

LEMMA 2. If the finiteness condition (i) of Lemma 1 holds, then equation
(2.2) has at most (2337‘2)”3(5“) R*-cosets of solutions.

The proof depends on Evertse’s improvement of the quantitative sub-
space theorems of Schmidt [21] and Schlickewei [20].

Proof of Theorem 2. It suffices to prove the theorem for the case
when B has cardinality 2(n—1). Put r = 2n—1. Let b; = (b;1, - . ., bin) be the
elements of B fori=1,...,r—1, and put b, = (by1,...,bm) = (0,...,0,1).
Let l;(x) = bjyx1 + ... + bipx, for i = 1,...,7r. Then F(x) = l1(x)...1-(x)
is a decomposable form of degree r with coefficients in Z which factorizes
into linear factors over Q. Denote by p1, ..., ps the distinct prime factors of
the product

H (a1bin + ... + anbin),

(alv"'van)eA
i=1,...,r

and by R the ring Z[pl.‘.p.
a, = 1 for all (a1,...,a,) € A, all the vectors a = (ay,...,a,) in A are

]. Then we have s > 0. Since, by assumption,
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solutions of the decomposable form equation (2.2) and these solutions belong
to distinct R*-cosets.

We use now an idea from the proof of Theorem 3 of [11]. Put Ly =
{l1,...,1,}. By assumption, the forms in Ly have rank n and are pairwise
linearly independent over Q. Consider an arbitrary proper non-empty subset
Ly of Ly. Since r = 2n — 1, at least one of L; and Lo\ Ly has cardinality at
least n. If |[L1]| > n then Ly has rank n. In this case we have Lo\L; C V' (L1)
and so Lo\ Ly is contained both in V(L;) and in V(Lo\L1). If |Lo\L1| > n,
we get in the same way that Ly is contained in V(L) and V(Lo\L;). We
can now apply Lemmas 1 and 2 to equation (2.2). We get

’A’ < (233(2n o 1)2)n3(s+1).
Our result now follows by taking logarithms.

Proof of Theorem 3. Theorem 3 can be proved in a similar way
as Theorem 2 above.

3. An upper bound. In this section we will prove the multiplicative
analogue of (1.3). Erdds, Stewart and Tijdeman [4] proved a result which
includes (1.3) as a special case. Let ¢ > 0. For instance, it follows from
Theorem 1 of [4] that there is a positive number ¢i9 which is effectively
computable in terms of ¢, such that if k£ is an integer larger than c1o and [
is an integer with 2 < < (logk)/loglog k then there exists a set of positive
integers A of cardinality k£ and a set of non-negative integers of cardinality
I such that

(3.1) P(T] [Tta+v) < ((1+a)1°§klog <1°§’“>>l.

acAbeB

In this section we shall prove the following result.

THEOREM 4. Let € be a positive real number and let k and [ be positive
integers with

logloghk \'/?

k>16 and 2<i<(—2 8%
logloglog k

There exists a positive number c11(g), which is effectively computable in

terms of €, such that if k exceeds c11(g) then there are sets of positive integers

A and B with |A| = k and |B| =1 for which
(3.2) P( TT I (ab+ 1)) < (log k)+1+e.
acAbeB

Of course estimate (3.2) also applies with w in place of P. While the
estimate (3.2) is weaker than (3.1) it is worth noting that we have allowed
B to include 0 in the additive case and not in the multiplicative case. In the
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latter case we may certainly add 0 to B and so increase the cardinality of B
by 1 without affecting the upper bound. On the other hand, (3.1) applies
over a wider range for [. Indeed, Erdds, Stewart and Tijdeman were able
to obtain significant improvements on the trivial estimate k + [ for [ in the
range 2 < [ < flogk for any real number € less than 1 (see Theorem 2 of
[4]). We are able to extend the range for [ in the statement of Theorem 4
and bound the largest elements of A and B at the cost of some precision in
our upper bound in (3.2).

THEOREM 5. Let k and | be positive integers with k > 3. There exist
effectively computable positive numbers cio and c13 such that if k exceeds
c12 and

2 <1< c13(logk)/loglog k,
then there are subsets A and B of {1,...,k3} with |A| =k and |B| =1 for
which
(3.3) P( IBIGCE 1)) < (log k).
a€AbeB

One reason that the upper bounds (3.2) and (3.3) are not as sharp as
(3.1) is that we must replace Lemma 1 of [4] by Lemma 4 below.

LEMMA 3. Let N, L,t and l be positive integers with

(3.4) 4L < t.
Let S be a set of N elements and let A1, ..., As be subsets of S with at least
N/L elements. Then there exist distinct integers iy, ...,%; such that

|A;, N...NA;| > N/(4L)

Proof. Let ay,...,anx be the elements of A and put
M = max |A“ﬂﬂA”\
1< <...<i; <t
and
7 = Z |A;, M. N Al
1< <. <y <t
We have
t
(3.5) 7 < M<l> < Mt /1.

Further, on putting N; = [{i: 1 <i<t, aj € A;}| for j=1,..., N, we see
that

(3.6) Z= > > 1

1<in<...<i; <t 1<j<N
aj €A N...NA;,
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N N
N
=2 2 =2\
; A A ; l
=1 1<i1<...<y1 <t 71=1
ajEAilﬂ...ﬁAil

We shall now estimate ZN_ (Nj ) from below. To this end we note that

=1
N
Sh-Y Y-y Y 1—ZIAI
j=1 J=1 1<¢<t i=1 1<j<N
a;€A; aj€EA;
hence that
N
(3.7) > N; > Nt/L.
j=1
Put

J=1{j:1<j<N, N; >t/2L)}.
We have, by (3.7),

t Nt
(3.8) YN, = ZN— > N >ZN °F 2 9L

jeJ 1<j<N
Jg€J

Further, by (3.4), for all j in J,
(3‘9) <]\l[]) — Nj(Nj _1)'é" (Nj _l+1) > (le‘/Q)l‘

Since, for any positive real numbers x1, ..., Ty,

in > (in>l/ul—1’
i=1 i=1
we have, from (3.8) and (3.9),
N; 1 (Ne\' .., N
(3.10) Z<Z>ZM<2L>N + — G T
jeJ
Our result now follows from (3.5), (3.6) and (3.10).

LEMMA 4. Let N, L and [ be positive integers with | < L < N and let X
and Y be non-empty sets of positive integers such that

(3.11) 4L < |X),

and for each x in X there are at least N/L integers j with 1 < j < N for
which jx is in'Y. Then there is a subset A of {1,..., N} and a subset B of
X with

(3.12) |B|=1 and |A|> N/(4L)",
for which A-B CY.
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Proof. We apply Lemma 3 with S ={1,..., N}, t = |X|, X = {z1,...
oo,xpand A; = {j 1 <j < Nand jr; € Y} for i = 1,...,t. Note
that |A;| > N/L for i = 1,...,t. Then there exist distinct integers i1, ...,
such that |[A;, N...N A;| > N/4L). Put A = A;; N...NA; and B =

{zi,,..., x5 }. Our result now follows.
LEMMA 5. Let M be an integer, N a positive integer and apry1,--.,Ar+N
complex numbers. For each character x put
M+N
T(x)= Y anx(n).
n=M+1
Then for any Q@ > 1, we have
M+N
S ST TP S @ +7N) Y Janl,
q<Q wla) x (mod q) n=M+1

where Z; (mod q) denotes a sum over all primitive characters modulo q.
Proof. This character version of the large sieve is due to Gallagher [9].

LEMMA 6. Let R be a positive integer, J a subset of {1,...,R} and Q a
real number with Q) > 1. For each prime p, denote the number of solutions
of the congruence

rr’ =1 (mod p),

with v and v’ in J, by F(J,p) and denote the number of the integers in J
divisible by p by G(J,p). Then

S n|FOp) - S GUP < @+ aRl)

p<Q

Proof. Let xo denote the principal character modulo p. We have

FUp =Y 3 5 Y )

reJr'eJ x (mod p)

- Y ()

x (modp) re&J

() 2 (Zw)

reJ X#xo (modp) reJ
pir

:pil((uy—G(J,p))QJr > (ZX“))Q)

X (modp) 7r€J
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whence

P = (- G

x (modp) r€J
By Lemma 5, it follows that

(/,p) —T(IJ\ G(J,p))?| < (Q* +mR)|J|.

p<Q '

Let ¥ (x,y) be the number of positive integers not exceeding x which are
free of prime divisors larger than y.

LEMMA 7. Let x be a positive integer and u a real number with u > 3.
There exists an effectively computable constant c14 such that

log1
1/1(3:,:1:1/“) > xexp ( —u<logu+loglogu -1 +Cl4(olgg0gu)>)
ogu

Proof. See Theorem 3.1 of Canfield, Erdés and Pomerance [1].

For any positive integer n let 7(n) denote the number of positive divisors
of n.

LEMMA 8. There is an effectively computable number c15 such that if N

is a positive integer larger than c15 and A is a subset of {1,..., N} then the
set A’ ={a:a € A and 7(a) < (4Nlog N)/|A|} satisfies
(3.13) |A'] > |Al/2.

Proof. There is an effectively computable number Ny such that for
N > Ny,

(3.14) > r(a g: ) < 2Nlog N

a€cA n=1

(see, for instance, Theorem 320 of [13]). On the other hand, we have

dor@)= > r@= > (4NlogN)/|A]

acA ac(A\A') ac(A\A')
S0
(3.15) > 7r(a) > 2Nlog N(2 — 2| A'| /| A)).

acA

It follows from (3.14) and (3.15) that 2 — 2|A’|/|A] < 1 and this implies
(3.13).

Proof of Theorem 4. We may assume, without loss of generality,
that 0 < e < 1. Let C1, (5, ... denote positive numbers which are effectively
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computable in terms of €. Let IV be a positive integer larger than 30 and let
I be a positive integer with

(3.16) 2 <1< ((loglog N)/logloglog N)/2.

For any real number x let [z] denote the greatest integer less than or
equal to z. Put R = [NUHD/CD] Q = 2NY! and y = (log R)"1+2. Let J
denote the set of positive integers n with n < R and P(n) <y. Put

log R
(I+1+¢€)loglogR’
and notice that for N > C; we have u > 3, hence, by Lemma 7,
log1
(3.17) |J| > ¢(R,y) > Rexp (—u(log u—i—loglogu—l—i—cM( olg ogu>>>.

ogu

Thus, for N > Cs,
T > RI-V/(1+e) — R/ 1)+e/ (1) (14142)

whence
(3.18) ’J’ > N1/2Ns/(3l(l+1))

for N > (.

Let F be the set of integers of the form rr’ — 1 with r,7" in J. Define
F(J,p) to be the number of pairs (r,r") with rr’ — 1 divisible by p and let
G(J,p) be the number of integers in J divisible by p.

Let E be the set of primes p with /2 < p < @ for which

(3.19) F(J,p) > I/ (2Q),

and let £ be the other primes in this range. Observe that for N > Cy,
y < Q/2, so G(J,p) = 0 whenever p exceeds Q/2. Thus for p € E we have

J2 TP
727
p—1 Q

1
2 — — 2=
(3.20) — (171~ G(.p)
From Lemma 6, we deduce that
2_»
pEE

Since for p in E we have, by (3.18) and (3.19),

<(Q*+nR)|J|.

F(9.p) = =5 (] = G(.p)?

P = = G| > 1P/ 20)

it follows that
(3.21) |E| - |J]?/4 < (Q*+7R)|J],
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hence that |E| < 32max(N?/'/|J|, R/|J|) . Thus, by (3.18),

= NY2N=¢/20 for | =2

FE| < ’

”—{Nww for I 22,
for N > C5. However, for N > Cg, there are at least Q/(3log @) primes p
with Q/2 < p < Q. Further, for N > C7, |E| < Q/(6log @), whence

(3.22) |E| > @Q/(6log Q).
For each prime p in E there are more than |J|?/(2Q) pairs (r,7") with
r and r’ in R for which p divides r’ — 1. Put D = max,<r 7(n). By, for
instance, Theorem 317 of [13],
D < exp(log N/ loglog N)

for N > (5. Moreover, if an integer n can be represented in the form rr’
with 7 and 7/ in R then it can be represented in at most D? ways in this
form. Thus, for each prime p in E there are at least |.J|?/(2D?Q) distinct
integers f with f = rr’ — 1 and for which p divides f. Let j = f/p and
notice that

1<j < R*/(Q/2) <N.
For N > Cy, we have

[71?/(2D*Q) > N/L,

where
(323) I = iNl/lfa/(le(H»l))‘

We may now apply Lemma 4 with X = F and Y = F. We remark that
condition (3.11) applies for N > Cyg by virtue of (3.22) and (3.23). We find
that there is a subset A; of {1,..., N} and a subset B of E with |B| =1
and

‘Al‘ > N/(4l)l _ ]\75/(4(l+1))7
for which A; - B is contained in F.
Let k£ be an integer larger than 15 and let [ be an integer with

1/2
2<< loglogh .
— 7 \logloglogk

Choose N so that
k= [Ns/(4(l+1))].

Since k < N, (3.16) holds and provided that k exceeds Ci1, we may find A,
and B as above. Let A be a subset of Ay with |A| = k. Notice that

(e/(5(l+1)))log N < logk
for N > (15 and that
log R < ((I4+1)/(2))log N.
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Thus, for k£ > Ci3, we have
y < ((5(1+1)%/(2el)) log k) 1+ < (log k) H1+2e,

Since P(ab + 1) is at most y whenever a is in A and b is in B, our result
follows.

Proof of Theorem 5. Our proof of Theorem 5 is a modification
of the proof of Theorem 4. Let Cy,Cs,... denote effectively computable
positive numbers. Let k£ be a positive integer, 6 be a positive real number
and [ be an integer with

(3.24) 2 <1< (8logk)/loglogk.
Put N = k%, Q = 2N'/? and R = [N3/4]. Let
(3.25) y = (log R)*/3

and put

u = (14log R)/(3lloglog R).
Let J’ denote the set of positive integers n with n < R and P(n) <y. If
6 < C7 we have u > 3 and so (3.17) holds with J’ in place of J. Further if
0 < Cy we have
—1 + c14((loglogu)/logu) < 0,
and so, for k > C3,
|J| > 2N GB/H(=3/(14D),

We may now apply Lemma 7 to find a subset J of J' with |J| > |J'|/2,
hence for which

(3.26) |J| > NG/40=3/04)

and for which D, the maximum of 7(n) for n in J, satisfies
D < 4Rlog R/|J'|.

Thus, for £ > Cy,

(3.27) D < 2N/ jog N,

We now define F, E and E, as in the proof of Theorem 4. We again
apply Lemma 6 to deduce that (3.21) holds. Consequently, for & > C5, we
find that |E| < 20N/|J|, and, from (3.26), we see that |E| < Q/(6logQ),
whence (3.22) holds.

Therefore, as in the proof of Theorem 4, we find that there are at least
|J|?/(2D*Q) distinct integers f with f = 7/ —1,7 and r’ in J, and for which
p divides f. Let j = f/p and notice that 1 < j < N. Further, we have

[J2/(2D%Q) = N/(16N**/ %) (log N)?).
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Thus, for 6 < Cg and k > C7, we have
[J[?/(2D*Q) > N/L,
where

(3.28) L= 3iN2/GD,

4
We may now apply Lemma 4 with X = F and Y = F. For 0§ < C,
(3.11) holds by virtue of (3.24) and (3.28). We find that there is a subset
Aq of {1,...,N} and a subset B of E with |B| =1 and
|41] > N/()) = N3,

for which A; - B is contained in F. We now let A be a subset of A; with
|A| = k. Take § = § min(C}, C2, Cs, Cs). Then for k > Cy, (3.24) holds and

P( H H(ab+ 1)) < <Zlogk‘) e < (log k)™,

acAbeEB
as required.

4. Terms with many prime factors. In this section we shall establish
the multiplicative analogue of (1.5). For the proof we shall require the
following result which was derived with the aid of the large sieve inequality.

LEMMA 9. Let N be a positive integer and let A and B be non-empty
subsets of {1,...,N}. Let a and 3 be real numbers with o > 1. Let T be
the set of primes p which satisfy < p < (log N)* and let S be a subset
of T consisting of all but at most 2log N elements of T. There is a real
number cig, which is effectively computable in terms of a and B, such that
if N exceeds c1g and

(’A’ . |BD1/2 > N(1+1/a)/2/10
then there is a prime p from S and elements a from A and b from B such
that p divides ab+ 1.
Proof. This is Lemma 3 of [18].

We shall use Lemma 9 to prove the next result.

THEOREM 6. Let 6 be a real number with 1/2 < 0 < 1 and let N be
a positive integer. There exists a positive number ci7, which is effectively
computable in terms of 6, such that if A and B are subsets of {1,..., N}
with N greater than c17 and
(4.1) (|A]-[B)"? = N,
then there exists an integer a from A and an integer b from B for which

(4.2) w(ab+1) > £(6 —1/2)?log N/ loglog N.
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Proof. Our proof is very similar to the proof of Theorem 1 of [17]. We
have repeated parts of that argument here for the convenience of the reader.
Let 6, = (60 +1/2)/2 and define G and v by

G = (log N)l/(201_1),

and

1 log N
4.3 =|-(0-1/2———| +1
respectively.

Put Ag = A, By = B and Wy = (). We shall construct inductively sets
Ay,..., Ay, B1,..., B, and Wy, ..., W, with the following properties. First,
W; is a set of i primes ¢ satisfying 10 < ¢ < G, A; € A;_1 and B; C B; 4
for : = 1,...,v. Secondly, every element of the set A;B; + 1 is divisible by

each prime in W; for ¢ = 1,...,v. Finally,
(4.4) |A;| > |A]/G* and |B;| > |B|/G*
for i =1,...,v. Note that this suffices to prove our result since A, and B,

are both non-empty and on taking a from A, and b from B, we find that
ab + 1 is divisible by the v primes from W, and so (4.2) follows from (4.3).

Suppose that ¢ is an integer with 0 < i < v and that A;, B; and W;
have been constructed with the above properties. We shall now show how
to construct A;y1, B;y1 and W;y1. First, for each prime p with 10 < p < G
let a1,...,a;) be representatives for those residue classes modulo p which
are occupied by fewer than |A4;|/p® terms of A;. For each prime p with
10 < p < G we remove from A; those terms of A; which are congruent to

one of ay,...,a;;) modulo p. We are left with a subset A} of A; with
' 1 | Al
45 Al > (A1 - i(p) >4 l(1=-5 =) > &
as zia(i- ¥ D)= X )2
10<p<G 10<p

and such that for each prime p with 10 < p < G and each &’ in A}, the
number of terms of A; which are congruent to a’ modulo p is at least | 4;|/p3.
Similarly, we produce a subset Bj of B; with

(4.6) |Bil = |Bi|/10

and such that for each prime p with 10 < p < G and each residue class
modulo p which contains an element of B] the number of terms of B; in the
residue class is at least | B;|/p.

The number of terms in W; is ¢ which is less than v and, by (4.3), is at
most log N. Further by (4.4), we find that

(4.7) (|4l - |Bi)'/? = (|A] - |B]) /2G5 > N
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Therefore, by (4.5)—(4.7),
(|43 - |B{)'/? = N* /10,
We now apply Lemma 9 with A = A, B= B/, 3 =10, =1/(6 —1/2) and

)

S the set of primes p with 10 < p < @ for which p is not in W;. We find
that provided that N exceeds a number which is effectively computable in
terms of 6, there is a prime ¢;11 in S, an element a’ in A and an element
b in B such that g; 1 divides a'b’ + 1. We put

Aii1={acA;j:a=d (mod ¢y1)},

Bi—i—l = {b €eB;,:b= v (mod qH_l)},
and

Wig1 = W U{gi+1}-

By our construction every element of A;11B;+1+1 is divisible by each prime
in W;11. Further, we have, by (4.4),

|A;] S | A; S | Al

|Aiv1| >

T @ G
and
B
|Biv1l 2 55y

as required. Our result now follows.

5. Terms with few prime factors. Let NV and [ be positive integers
with [ < log N. Pomerance, Sarkozy and Stewart [14] proved that there
exists an effectively computable positive number Cig such that if N exceeds
(45 then there exist subsets A and B of {1,..., N} with |B| =[ and

N
[(log N)¥’

such that every element of A + B is prime. We shall prove the following
result.

Al >

THEOREM 7. Let N and l be positive integers with
log N
~ 2loglog N~

For N sufficiently large, there exists a set B of | prime numbers from

{1,...,[(log N)3]} and a subset A of {1,..., N} with
N
(8log NV’

such that ab+ 1 is a prime whenever a is from A and b is from B.

(5.1)

| A >
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The proof depends on the Siegel-Walfisz theorem for primes in arithmeti-
cal progressions and as a consequence is ineffective in nature. In particular,
we are not able to replace the requirement that N be sufficiently large with
the requirement that N be larger than an effectively computable positive
number.

Let € be a positive real number. It follows from Theorem 6 that if A and
B are subsets of {1,..., N} with |A] - |B| > N'*¢ then

(5.2) max w(ab+ 1) — oo
a€A,beB

as N — oo. Taking [ = 2 in the statement of Theorem 7 we see that there
are subsets A and B of {1,..., N} with |B| =2 and

N
Al > ———
41 2 64(log N)?
for which
(5.3) aeril%)éBw(ab +1)=1.

Thus if we measure the size of A and B in terms of the geometric mean of
the cardinalities of A and B, we have determined, up to a factor of £, when
(5.2) holds. On the other hand, if we measure the size of A and B in terms
of the minimum of |A| and | B|, a different situation applies. Certainly, (5.2)
holds if

(5.4) min(|A|, |B|) > N1/2+¢

by Theorem 6. Further, by Theorem 7 we see that there are subsets A and
Bof {1,...,N} with
log N
. in(|Al,|B|) > | —=——
(5.5 min| A1 [B]) > [ 555
for which (5.3) holds. There is a large gap between (5.4) and (5.5). We
suspect that (5.5) is closer to the truth.

Proof of Theorem 7. Let X denote the set of prime numbers less
than (log N)2. By the prime number theorem we have

3
X| > (log N)
4loglog N

for N sufficiently large. Let Y denote the set of integers of the form p — 1,
where p is a prime. By the Siegel-Walfisz theorem (see for example [2],
p. 133) if ¢ is in X then the number of integers j with 1 < 7 < N for which
qj isin 'Y, or equivalently for which gj+1 is prime, is (1+o0(1)) (q_f)i]}’og]\, and
so for N sufficiently large exceeds N/L, where L = 2[log N]. We may now
apply Lemma 4 with [ satisfying (5.1). Then (3.11) holds for N sufficiently
large and our result follows directly.
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6. The average value of w(ab + 1). Finally, we shall prove the
multiplicative analogue of (1.6).

THEOREM 8. There exists an effectively computable positive number cig
such that if T and N are positive integers with T < N2 and A and B are
non-empty subsets of {1,..., N} then

1
1A[-1B]| > Y. 1-(loglogN —loglog 3T)‘
T<p a€A,beB, plab+1

O\ Tmin(JA[,[B]) )

Taking 7" = [N/min(|A],|B])] in Theorem 8 we obtain the following
result.

COROLLARY 3. There exists an effectively computable positive number
c20 such that if N is a positive integer and A and B are non-empty subsets

of {1,...,N} then

TP ORI M

p>N/ min(|A|,|B|) a€A, beB, plab+1

— (loglog N — loglog(3N/min(|Al,|B|)))| < c20-

Therefore

1
Al B Z Zw(ab +1) > (14 o0(1))loglog N,
a€A beB

provided that A and B are subsets of {1,..., N} with
min(|Al, |B|) = Nexp(—(log]\])a(l))'

Proof of Theorem 8. The proof will be similar to the proof of
Theorem 3 of [17]. However, while in [17] the crucial tool in the proof is the
standard analytical form of the large sieve, here, due to the multiplicative
structure of the numbers studied, we employ Lemma 5. Let Ci,C5,...
denote effectively computable positive numbers.

Put R = [(N? + 1)'/4]. We have

DD DD SRR ED DD DEND DRI

a€A bEB T<p, plab+1 a€A beEB T<p<R,plab+1

o P3P VDR P ep ot EE AL

a€A beB R<p<NZ2+1,plab+1 acA beB
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We define, for each character x,

Fix)=> x(), Gx)=>_ x(b).
acA beB
Then

YYo=y Y kY Y

acA beB T<p<R,plab+1 T<p§Rp x (mod p) acA beB

DL (D DD DIEEID DR S 50)

T<p<R pta,a€A pth,beB X#Xo (mod p)
whence

)SDIIND SRS D

a€A beB T<p<R,plab+1 r<p<r P

S (D OID TS DD DIERIND DRIV RICTHY))

T<p<R pla,a€A beEB ac€A p|b,beB x#xo (mod p)

S (X e+ Y (FP+IG0P)

T<p<R pln,n<N X#xo (mod p)

<2(4+18) 3 S+ Y 3 (PGP +IG0P).

T<p<R T<p<R #(p X#xo (mod p)

IN

Further, we have

1
Z 1—(loglogR—loglog3T)‘ < Ch.
T<p<R?Y

Thus it follows that

(6.2) ‘ZZ 3 1—yA|-|B|(1oglogR—1oglog3T)(

a€A beB T<p<R,plab+1

N
< 01‘A| . |B| —|—sz(|/1| + |B’)

Y Y (PP +IGHP)

T<p<R PP X#xo (mod p)

p
S(n):Z@ Z |F(X)|2-
p<n x#Xo (mod p)
Then, by Lemma 5, for n < R we have

S(n) < (n? + 7N)|A| < 6N|A.

Put
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Thus we obtain by partial summation that

63 S —— 3 PP

T<p<R #(p) X#Xxo (mod p)

& 11 S(T)  S(R)
N ZS(”)<nn+1>T+1+R+1

n R+l T+1’

d 11 6N|A|  6N|A
n n+1

and similarly,

(6.4) Y jewrs YL

1
’|A|.|B,Z > 1—(1Og10gR—loglog3T)’

T<p a€A,beB, plab+1
< <1+N<1 ¥ 1))
c3 =\t s
T\[A]  |B|

whence the result follows.
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