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the Birch–Swinnerton-Dyer conjecture

by

Keqin Feng (Hefei)

1. Introduction. The aim of this paper is twofold. One is to present
more non-congruent numbers n with arbitrarily many prime factors. An-
other is to verify the (even part of) the Birch–Swinnerton-Dyer conjecture
on the elliptic curve

En : y2 = x3 − n2x

for several series of integer n.

Congruent numbers. A positive integer n is called a congruent number

(CN) if n is the area of a rational right triangle. Otherwise n is called a
non-congruent number (non-CN). It is well known that n is non-CN iff the
rank of the rational point group En(Q) is zero (see Koblitz [4], for instance).
From now on we assume without loss of generality that n is square-free. The
congruent number problem is very old and was discussed by Arab scholars
in the tenth century. By the author’s (incomplete) knowledge, the following
CN and non-CN have been determined (p, q and r denote distinct prime
numbers, pi means a prime number congruent to i modulo 8).

For CN:

• n = 2p3 (Heegner (1952), Birch (1968)),

• n = p5, p7 (Stephens, 1975),

• n = puqv ≡ 5, 6, 7 (mod 8), 0 ≤ u, v ≤ 1 (B. Gross, 1985),

• n = 2p3p5, 2p5p7

• n = 2p1p7,
(

p1

p7

)
= −1

• n = 2p1p3,
(

p1

p3

)
= −1





(Monsky, 1990),

where
(

p
q

)
is the Legendre symbol.
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For non-CN:

• n = p3, p3q3, 2p5, 2p5q5 (Genocchi, 1855),

• n = p1, p1 = a2 + 4b2,
(

a+2b
p1

)
= −1

• n = 2p, p ≡ 9 (mod 16)

}
(Bastien, 1913).

Lagrange [5] (1974) presented many non-CN n with at most three odd
prime factors by using the 2-descent method to prove rankEn(Q) = 0. Some
of them are:

• n = p1p3,
(

p1

p3

)
= −1,

• n = 2p1p5,
(

p1

p5

)
= −1,

• n = p1p3q1, with the condition (∗) (see below),

• n = 2p1p5q1, with the condition (∗).

Condition (∗). n can be written as n = pqr or 2pqr such that
(

p
q

)
=(

p
r

)
= −1.

A well-known conjecture made by Alter, Curtz and Kubota [1] says that
n is CN if n ≡ 5, 6, 7 (mod 8). Several particular cases of this conjecture
has been verified (see the above-mentioned n). Moreover, the whole ACK
conjecture can be derived from the BSD conjecture on the elliptic curve En.

Birch and Swinnerton-Dyer conjecture. Let LEn
(s) be the L-function of

the elliptic curve En. The BSD conjecture says that:

(BSD1) rankEn(Q) = ords=1 LEn
(s).

(BSD2) If LEn
(1) 6= 0, then

(1.1) LEn
(1)/A = |X(En)|,

where X(En) is the Tate–Shafarevich group of En, and A is a certain non-
zero number which we do not want to describe exactly. K. Rubin ([8], [9])
proved that if LEn

(1) 6= 0, then the group X(En) is finite and the odd parts
of both sides of (1.1) are equal.

It is well known that LEn
(1) = 0 for n ≡ 5, 6, 7 (mod 8). Therefore the

Alter–Curtz–Kubota conjecture can be derived from the BSD conjecture
(BSD1). A remarkable step was made by Tunnell [12] in 1983 who presented
an elementary formula for LEn

(1)/A by using modular forms with weight
3/2. For n odd, let

(1.2) a(n) =
1

2

∑

x2+y2+2z2=n
2|y

ζ(x + iy) (i =
√
−1),
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where ζ is the character of (Z[i]/(4(1 + i)))× such that

ζ(α) =

{
1 for α = 1, 7, 3 + 2i, 1 + 2i,
−1 for α = 3, 5, 7 + 2i, 5 + 2i.

For 2 ‖n, let

(1.3) b(n/2) =
1

2

∑

x2+2y2+z2=n/2
2|z

ζ ′(x +
√
−2 y),

where ζ ′ is the character of (Z[
√
−2]/(4))× such that

ζ ′(α) = ζ ′(−α), ζ ′(1) = 1, ζ ′(1 + 2
√
−2) = ζ ′(3 + 2

√
−2) = −1.

Let w(n) be the number of distinct prime factors of n. For the left-hand
side of (1.1), Tunnell [12] proved that

(1.4) LEn
(1)/A =

{
(a(n)/2w(n))2 if 2 ∤ n,
(b(n/2)/2w(n/2))2 if 2 ‖n.

We are now ready to explain the title and philosophy of this paper. The
sums (1.2) and (1.3) extend over the solutions of x2 + y2 +2z2 = n (or n/2)
with 2 | y. We have a one-to-one correspondence between the solutions of
x2 + y2 + 2z2 = n and X2 + Y 2 + Z2 = 2n (with 2 |Z) as follows:

(1.5) (X,Y,Z) = (x + y, x − y, 2z), (x, y, z) =
(

X+Y
2

, X−Y
2

, Z
2

)
.

A well-known Gauss result says that the number of solutions of X2 + Y 2 +
Z2 = 2n (with 2 |Z) is 4h(−2n), where h(−2n) is the class number of
Q(

√
−2n). Since Rubin proved that the odd parts of both sides of (1.1) are

equal provided a(n) 6= 0 or b(n/2) 6= 0, we need to determine the Sylow

2-subgroup C
(2)
K of the class group CK for K = Q(

√
−2n). Gauss’ genus

theory says that

2-rankCK = w(2n) − 1 = w(n).

For each n we can define a graph G(n). Rédei and Reichardt ([6], [7])
essentially proved that 2w(n) ‖h(−2n) iff G(n) is an odd graph (for the
definition of G(n) and odd graph see Section 2). It turns out that for a
series of n we can show by the 2-descent method that rankEn(Q) = 0 and
the order of X(En) is odd provided the graph G(n) is odd (see Section 3).
Therefore we present a series of non-congruent numbers n with arbitrarily
many prime factors. By using the above-mentioned Rédei–Reichardt result
we can show that a(n)/2w(n) or b(n/2)/2w(n/2) is an odd integer so that the
BSD conjectures (BSD1) and (BSD2) are true for such n (see Section 4).
This is the relation between non-congruent numbers, odd graphs, the 2-parts
of the class numbers of imaginary quadratic fields and the BSD conjecture
on En.
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2. Odd graphs and the 2-class number of Q(
√
−2n). We use stan-

dard terminology of graph theory. Let G = (V,E) be a (simple) directed
graph, V = {v1, . . . , vm} the vertices of G, and E (⊆ V × V ) the arcs of G.
The adjacency matrix of G is defined by A(G) = (aij)1≤i,j≤m, where

aij =
{

1 if i 6= j and −−→vivj ∈ E,
0 otherwise.

Let di =
∑m

j=1 aij be the outdegree of the vertex vi (1 ≤ i ≤ m), and
M(G) = diag(d1, . . . , dm) − A(G). Then the sum of each row of M(G)
is zero, so that det M(G) = 0. Let Mij = Mij(G) be the (i, j) co-factor
of M(G); we have Mij = (−1)j+kMik. If the matrix A(G), and so M(G), is
symmetric, we view G as a non-directed graph and the “two-direction arc”
vivj as an edge. For a non-directed graph G, we have

M11 = (−1)i+kMik (1 ≤ i, k ≤ m)

and it is well known that the absolute value of M11 is the number of spanning
trees of G.

Definition 2.1. Let G = (V,E) be a directed graph. A partition
V = V1∪V2 is called odd if either there exists v1 ∈ V1 such that #{v1 → V2}
(the number of arcs from v1 to vertices of V2) is odd, or there exists v2 ∈ V2

such that #{v2 → V1} is odd. Otherwise the partition is called even. G is
called odd if each non-trivial partition of V is odd.

Let r = rankF2
M(G) be the rank of the matrix M(G) over F2. Then

r ≤ rankQ M(G) ≤ m − 1. We have the following nice criterion for oddness
of G.

Lemma 2.2. Let G = G(V,E) be a directed graph with m vertices, r =
rankF2

M(G). Then the number of even partitions of V is 2m−r−1. In

particular , G is an odd graph iff r = m − 1. For G non-directed , G is odd

iff the number t(G) of spanning trees of G is odd.

P r o o f. Consider the following homogeneous linear equations over F2:

(2.1) M(G)




x1
...

xm



 =




0
...
0



 .

Each vector (c1, . . . , cm) over F2 corresponds to a partition of V =
{v1, . . . , vm} by

V1 = {vi : ci = 0}, V2 = {vi : ci = 1}.
The vectors (c1, . . . , cm) and (c1 + 1, . . . , cm + 1) correspond to the same
partition of V up to interchanging V1 and V2. A vector (c1, . . . , cm) is a
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solution of (2.1) iff
∑m

j=1 aijcj + dici = 0 (1 ≤ i ≤ m). But in F2 we have

m∑

j=1

aijcj + dici =

m∑

j=1

aij(cj + ci)

=

{∑m
j=1 aijcj =

∑m
j=1,cj=1 aij if ci = 0,∑m

j=1 aij(cj + 1) =
∑m

j=1,cj=0 aij if ci = 1,

=

{
#{vi → V2} if vi ∈ V1,
#{vi → V1} if vi ∈ V2.

Therefore (x1, . . . , xm) = (c1, . . . , cm) is a solution of (2.1) over F2 iff the
partition V = V1 ∪ V2 is even. So the number of even partitions of V is half
of the number of solutions of (2.1) over F2, which is 1

2
· 2m−r = 2m−r−1.

For G non-directed, we know that r = m− 1 iff t(G) = M11 = 1 ∈ F2. This
completes the proof.

Many odd non-directed graphs can be found easily from Lemma 2.2.

Corollary 2.3. (1) The following non-directed graphs are odd :

• a tree T ;
• a cycle Cn with an odd number n of vertices;
• a perfect graph Kn with an odd number n of vertices (for each pair of

distinct vertices vi and vj there exists an edge vivj in Kn).
(2) Suppose that G1 and G2 are non-directed graphs. Let G be a “glue”

of G1 and G2 as shown in Fig. 1.

Fig. 1

Then G is odd iff both G1 and G2 are odd.

(3) Every odd non-directed graph is connected.

P r o o f. (1) follows from t(T ) = 1, t(Cn) = n and t(Kn) = nn−2 by
Cayley. (2) comes from t(G) = t(G1)t(G2). (3) For a disconnected non-
directed graph G, t(G) = 0.

The concept of odd graph has been used to determine the solvability of
the Pell equation x2 − dy2 = −1 (see [2], for instance). For our purpose,
we now describe a relation between an odd graph and the Sylow 2-subgroup
C2

K of the class group CK of an imaginary quadratic field K.
Let K = Q(

√
−D) (D ≥ 2) be an imaginary quadratic field, −D =

disc(K) the discriminant of K, hK = |CK | the class number of K, r2 =
dimF2

CK/C2
K the 2-rank of CK . Gauss’ genus theory says that r2 = t−1 so
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that 2t−1 |hK , where t = w(D) is the number of distinct prime factors of D.
Now we define the directed graph G(D) in the following way. The vertices
of G(D) are all prime factors of D. For distinct vertices pi and pj , there is
an arc −−→pipj in G(D) iff

( pj

pi

)
= −1, where

(
p
q

)
is the Legendre symbol but

we assume that
(

n
2

)
= 1 for each odd integer n.

Theorem 2.4. Let K = Q(
√
−D) (D ≥ 2) be an imaginary quadratic

field , −D = disc(K), and t the number of distinct prime factors of D. Then

(1) 2t−1 ‖hK ⇔ the directed graph G(D) is odd.

(2) If D = 8p2 . . . pt (t ≥ 2), p2 ≡ ±3 (mod 8) and pi ≡ 1 (mod 8) for

i ≥ 3, then 2t−1 ‖hK iff G(D/8) is odd.

P r o o f. (1) Let p1, . . . , pt be the distinct prime factors of D. For each
subset S of {1, . . . , t} with 1 ≤ |S| ≤ t − 1, let QS =

∏
i∈S pi and Q′

S be
the square-free part of D/QS. We denote by αS the ambiguous ideal in OK

with N(αS) = QS. Then genus theory says that the set

{[αS ] = [αS ] : S ⊂ {1, . . . , t}, 1 ≤ |S| ≤ t − 1}
consists of 2r2 − 1 = 1

2
(2t − 2) ideal classes in CK with order 2, where [α]

denotes the class of the ideal α, and S = {1, . . . , t}−S. Rédei and Reichardt
([6], [7]) proved that [αS ] ∈ C2

K iff the equation

u2QS + v2Q′
S − w2 = 0

has a non-trivial Q-solution (u, v,w) 6= (0, 0, 0). By Legendre, the last
statement is equivalent to the existence of X,Y ∈ Z such that

X2 ≡ QS (mod Q′
S) and Y 2 ≡ Q′

S (mod QS).

Therefore

2t−1 ‖hK ⇔ [αS ] 6∈ C2
K for each S ⊂ {1, . . . , t} with 1 ≤ |S| ≤ t − 1,

⇔ for each S ⊂ {1, . . . , t} with 1 ≤ |S| ≤ t − 1, either there
exists a prime number p |Q′

S such that
(

QS

p

)
= −1, or there

exists a prime number q |QS such that
(Q′

S

q

)
= −1,

⇔ G(D) is an odd graph.

(2) In this case G(D/8) is a non-directed graph by the quadratic reci-
procity law and G(D) is as in Fig. 2 since

(
2
p2

)
= −1 and

(
2
pi

)
= 1 for

i ≥ 3.

Fig. 2
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It is easy to see that G(D) is odd iff G(D/8) is odd. This completes the
proof of Theorem 2.4.

3. 2-descent method. The aim of this section is to show more integers
n with arbitrarily many prime factors to be non-congruent numbers and
2 ∤ #(X(En)) for these n by the 2-descent method. First, we describe the
2-descent method briefly. (For details see the last chapter of Silverman’s
book [11].)

Let a, b ∈ Z and E : y2 = x3 + ax2 + bx be an elliptic curve over Q.
The 2-dual curve of E is E′ : Y 2 = X3 − 2aX2 + (a2 − 4b)X. We have the
2-isogeny

φ : E → E′, φ(x, y) = (y2/x2, y(b − x2)/x2).

The kernel of φ is E[φ] = {0, (0, 0)}, where 0 denotes the infinite point of E

as the identity of the Q-point group E(Q). Let φ̂ : E′ → E be the dual of

φ so that φφ̂ = [2] and φ̂φ = [2]. We have the following exact sequences:

(3.1) 0 → E′(Q)[φ̂]

φ(E(Q)[2])
→ E′(Q)

φ(E(Q))

φ̂−→ E(Q)

2E(Q)
→ E(Q)

φ̂(E′(Q))
→ 0,

(3.2) 0 → E′(Q)

φ(E(Q))
→ S(φ)(E)

f−→ X(E)[φ] → 0,

(3.3) 0 → E(Q)

φ̂(E′(Q))
→ S(φ̂)(E′)

f̂−→ X(E′)[φ̂] → 0,

(3.4) 0 → X(E)[φ] → X(E)[2]
φ−→ X(E′)[φ̂] → 0,

where S(φ)(E) is the φ-Selmer group of E/Q which is a finite subgroup of
Q×/Q×2 and can be calculated in the following way. Let

S = {∞} ∪ {prime factors of 2b(a2 − 4b)}.
Let M be the subgroup of Q×/Q×2 generated by −1 and all prime factors
of 2b(a2 − 4b). For each d ∈ M , we have the curves (homogeneous spaces of
E/Q and E′/Q)

cd : dw2 = d2t4 − 2adt2z2 + (a2 − 4b)z4,

c′d : dw2 = d2t4 + adt2z2 + bz4.

Then we have the following isomorphisms of groups

S(φ)(E) ∼= {d ∈ M : cd(Qv) 6= ∅ for each v ∈ S},
S(φ̂)(E) ∼= {d ∈ M : c′d(Qv) 6= ∅ for each v ∈ S},

where cd(Qv) 6= ∅ means that the curve cd has a non-trivial solution (w, t, y)

6= (0, 0, 0) in Qv. With these isomorphisms, the kernels of f and f̂ in the
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exact sequences (3.2) and (3.3) are

(3.5) ker f = {d ∈ M : cd(Q) 6= ∅}, ker f̂ = {d ∈ M : c′d(Q) 6= ∅}.
For our case, the elliptic curve En and its dual E′

n have the equations

En : y2 = x3 − n2x, E′
n : Y 2 = X3 + 4n2X

and

S = {∞} ∪ {prime factors of 2n}.
Moreover, M is the subgroup of Q×/Q×2 generated by −1 and the prime
factors of 2n. For each d ∈ M , the homogeneous spaces are

cd : dw2 = d2t4 + 4n2z4, c′d : dw2 = d2t4 − n2z4.

From (3.5) we know that

(3.6) 1 ∈ ker f, ±1,±n ∈ ker f̂ .

Since En(Q)[2] = {0, (y, x) = (0, 0), (0,±n)} and E′
n(Q)[φ̂] = φ(En(Q)[2]) =

{0, (0, 0)}, the exact sequences (3.1)–(3.3) imply that

2 + rankEn(Q) = dimF2
ker f + dimF2

ker f̂(3.7)

= dimF2
S(φ)(En) − dimF2

X(En)[φ]

+ dimF2
S(φ̂)(E′

n) − dimF2
X(E′

n)[φ̂],

which together with (3.6) implies that

rankEn(Q) = 0 ⇔ ker f = {1} and ker f̂ = {±1,±n}.
In particular, if S(φ)(En) = {1} and S(φ̂)(E′

n) = {±1,±n}, then we have

rankEn(Q) = 0 and X(En)[φ] = X(E′
n)[φ̂] = {1}. Then (3.4) implies

X(En)[2] = {1}, which means that the order of the group X(En) is odd.

Theorem 3.1. We have S(φ)(En) = {1} and S(φ̂)(E′
n) = {±1,±n} in

the following two cases (p1, . . . , pt are distinct odd prime numbers).

(I) n = p1p2 . . . pt (t ≥ 1), p1 ≡ 3 (mod 8), pi ≡ 1 (mod 8) for i ≥ 2,
and G(n) is an odd graph.

(II) n = 2p1p2 . . . pt (t ≥ 1), p1 ≡ 5 (mod 8), pi ≡ 1 (mod 8) for i ≥ 2,
and G(n/2) is an odd graph.

Therefore rankEn(Q) = 0 so that n is a non-congruent number , and the

order of the Tate–Shafarevich group X(En) is odd.

P r o o f. (I) Note that the graph G(n) is non-directed by the quadratic
reciprocity law, and G(n) odd implies that G(2n) is odd. Moreover,

M = 〈−1, 2, p1, . . . , pt〉 ⊆ Q×/Q×2, S = {∞, 2, p1, . . . , pt},
cd : dw2 = d2t4 + 4n2z4, c′d : dw2 = d2t4 − n2z4.
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We need to show that:

(Ia) For each d ∈ M , d 6= 1, there exists v ∈ S such that cd(Qv) = ∅.
(Ib) For each d ∈ M , d 6= ±1,±n, there exists v ∈ S such that c′d(Qv)

= ∅.
To prove (Ia), let V = {2, p1, . . . , pt}. It is easy to see that cd(Q∞) = ∅

for d<0. So we just need to consider the cases d=
∏

p∈V1
p for each V1⊆V ,

V1 6= ∅. Suppose that V1 6= V . Then V1 and V2 = V − V1 is a non-trivial
partition of V . Since G(2n) is an odd graph, we know that either there exists

q ∈ V1 such that
( 2n/d

q

)
= −1, or there exists p ∈ V2 such that

(
d
p

)
= −1.

Now we prove cd(Qp) = cd(Qq) = ∅. Suppose that (w, t, z) 6= (0, 0, 0)
is a non-trivial solution of the curve cd in Qp. Let w = dw′. Then cd

has the form dw′2 = t4 + (2n/d)2z4. For each l ∈ Z, (w′p2l, tpl, zpl) is
also a solution of the curve cd in Qp. So we can assume w′, t, z ∈ Zp and
vp(w

′) = vp(t) = 0, where vp is the exponential valuation of Qp normalized
by vp(p) = 1. Since p ∤ d and p | 2n

d , we know that dw′2 ≡ t4 (mod p), which

contradicts
(

d
p

)
= −1. Therefore cd(Qp) = ∅.

On the other hand, q 6= 2 since we assume
(

m
2

)
= 1 for each odd m.

If q = p1 ≡ 3 (mod 4), the equation of cd implies that t4 ≡ −(2n/d)2z4

(mod q) since q | d and q ∤ 2n
d

. This contradicts
(
−1
q

)
= −1. If q = pi ≡ 1

(mod 8) (i ≥ 2), then
(−1

p

)

4

= 1 and

(
2n/d

q

)
=

(−(2n/d)2

q

)

4

= 1,

which contradicts the assumption
(2n/d

q

)
= −1. Therefore cd(Qq) = ∅.

Next we consider the case V1 = V so that d = 2n. The curve c2n is
2nw′2 = t4 + z4. By reduction mod p1 we know that c2n(Qp1

) = ∅. This
completes the proof of (Ia) so we have S(φ)(En) = {1}.

To prove (Ib) let V = {p1, . . . , pt}. Since ±1,±n ∈ S(φ̂)(E′
n), S(φ̂)(E′

n)

is a group, and c′2(Q2) = ∅, we need to show that d 6∈ S(φ̂)(E′
n) for each

1 < d < n, d |n. We have d =
∏

p∈V1
p where V1 is a subset of V such that

1 ≤ |V1| < t. Since G(n) is an odd graph, we know that either there exists

q | d such that
(n/d

q

)
= −1 or there exists p |n/d such that

(
d
p

)
= −1. Since

G(n) is a non-directed odd graph, there exist at least 2 prime factors of n
having the above properties of p or q. Therefore we can assume p 6= p1.

Suppose that c′d : dw2 = d2t4 − n2z4 has a solution (w, t, z) 6= (0, 0, 0)
in Qp; we can assume that min{vp(w), vp(t), vp(z)} = 0. If vp(w) ≥ 1,
then vp(t) ≥ 1. Let w = n

d w′ and t = n
d t′. Then c′d has the equation

dw′2 = n2t′4 − d2z4. Therefore
(
±d
p

)
= 1, which contradicts

(
d
p

)
= −1, so

we have c′d(Qp) = ∅. In the same way we can show that c′d(Qq) = ∅. This

completes the proof of S(φ̂)(E′
n) = {±1,±n}.
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(II) It is easy to see that cd(Q2) = c′d(Q2) = ∅ for each d |n, 2 | d, d > 0.

Therefore d 6∈ S(φ)(En) and d 6∈ S(φ̂)(E′
n) for such d. Since G(n/2) is a non-

directed odd graph, we can show d 6∈ S(φ)(En) for each d |n/2, 1 < d ≤ n/2,

and d 6∈ S(φ̂)(E′
n) for each d |n/2, 1 < d < n/2, by the same argument as in

the proof of (I). Therefore S(φ)(En) = {1} and S(φ̂)(E′
n) = {±1,±n}. This

completes the proof of Theorem 3.1.

R e m a r k 3.2. From the quadratic reciprocity law and Dirichlet’s theo-
rem on prime numbers in arithmetic progressions it is easy to show that for
each directed graph G there exist inifinitely many D such that G(D) = G.
Therefore Theorem 2.4 yields many non-congruent numbers with any given
number of prime factors. For the case of t ≤ 3, Theorem 3.1 was proved by
Genocchi and Lagrange (see the list in Section 1).

4. BSD conjecture on En : y2 = x3 − n2x. For natural numbers a1,
a2, . . . , an, we denote by N(n; a1, a2, . . . , an) the number of integral solutions
of the equation n = a1x

2
1 + a2x

2
2 + . . . + anx2

n.

Theorem 4.1. (1) Suppose that n satisfies the condition (I) of The-

orem 3.1. Then the conjectures (BSD1) and (BSD2) are true for En iff

N(n; 1, 64, 2) ≡ 0 (mod 2t+1).

(2) Suppose that n satisfies the condition (II) of Theorem 3.1. Then

(BSD1) and (BSD2) are true for En iff N(n/2; 1, 32, 4) ≡ 0 (mod 2t+1).

P r o o f. (1) By Tunnell’s result stated in Section 1, we know that

LEn
(1)/A = (a(n)/2t)2,

where a(n) is given by (1.2). Since n ≡ 3 (mod 8), it is easy to see that

a(n) =
1

2

∑

x2+16y2+2z2=n

ζ(x + 4y) =
1

2

∑

x2+16y2+2z2=n

(−1)((x+4d)2−1)/8

=
1

2

∑

x2+16y2+2z2=n

(−1)(x
2−1)/8+y

=
1

2

( ∑

x2+16y2+2z2=n
2|y

(−1)(x
2−1)/8 −

∑

x2+16y2+2z2=n
2 ∤ y

(−1)(x
2−1)/8

)

=
∑

x2+64y2+2z2=n

(−1)(x
2−1)/8 − 1

2

∑

x2+16y2+2z2=n

(−1)(x
2−1)/8.

For n ≡ 3 (mod 16), we have 3 ≡ n ≡ x2 + 2z2 ≡ x2 + 2 (mod 16).
Therefore x2 ≡ 1 (mod 16), and (x2 − 1)/8 ≡ 0 (mod 2). For n ≡ 11
(mod 16), we have 11 ≡ x2 + 2 (mod 16). Therefore x2 ≡ 9 (mod 16) and
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(x2 − 1)/8 ≡ 1 (mod 2). Thus we know that

a(n) = ±
(
N(n; 1, 64, 2) − 1

2
N(n; 1, 16, 2)

)
.

Since n ≡ 3 (mod 8) we have

N(n; 1, 16, 2) = #{(x, y, z) ∈ Z3 : x2 + y2 + 2z2 = n, 2 | y}
= 2h(−2n) (see Section 1)

≡ 2t+1 (mod 2t+2) (Theorem 2.4).

Theorem 3.1 says that rankEn(Q) = 0 and 2 ∤ #(X(En)). Therefore

(BSD1) and (BSD2) are true for En

⇔ a(n)/2t ≡ 1 (mod 2)

⇔ 2N(n; 1, 64, 2) − N(n; 1, 16, 2) ≡ 2t+1 (mod 2t+2)

⇔ N(n; 1, 64, 2) ≡ 0 (mod 2t+1).

(2) In this case we have

LEn
(1)/A = (b(n/2)/2t)2,

where b(n/2) is given by (1.3). The congruence n/2 ≡ 5 (mod 8) implies
that

b(n/2) =
1

2

∑

x2+8y2+4z2=n/2

ζ ′(x + 2
√
−2 y)

=
1

2

(
N(n/2; 1, 32, 4) −

∑

x2+8y2+4z2=n/2
2 ∤ y

1
)

= N(n/2; 1, 32, 4) − 1

2
N(n/2; 1, 8, 4).

But n/2 ≡ 5 (mod 8) implies that

N(n/2; 1, 8, 4) = #{(x, y, z) ∈ Z3 : x2 + 2y2 + z2 = n, 2 | z}
= 2h(−n) ≡ 2t+1 (mod 2t+2) (by Theorem 2.4).

Therefore

(BSD1) and (BSD2) are true for En

⇔ b(n/2)/2t ≡ 1 (mod 2)

⇔ N(n/2; 1, 32, 4) − 1
2N(n/2; 1, 8, 4) ≡ 2t (mod 2t+1)

⇔ N(n/2; 1, 32, 4) ≡ 0 (mod 2t+1).

This completes the proof of Theorem 4.1.

R e m a r k 4.2. If n satisfies the condition (I) of Theorem 3.1, then
N(n; 1, 64) = 0 since n has a prime factor p1 ≡ 3 (mod 8) and N(n; 1, 2) =
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2t+1 by considering the decomposition of p1, . . . , pt in Z[
√
−2]. Therefore

N(n; 1, 64, 2) ≡ #{(x, y, z) ∈ Z3 : x2+64y2+2z2 = n, xyz 6= 0} (mod 2t+1).
In particular, N(n; 1, 64, 2) ≡ 0 (mod 8) and (BSD1) and (BSD2) are true
for such En provided t = 1 and 2. Similarly, if n satisfies the condition (II)
of Theorem 3.1, then N(n; 1, 32, 4) ≡ #{(x, y, z) ∈ Z3 : x2 + 32y2 + 4z2

= n, xyz 6= 0} (mod 2t+1) and (BSD1) and (BSD2) are true for such En

provided t = 1, 2.
For t ≥ 3, we do not know in general how to prove the congruences

N(n; 1, 64, 2) ≡ 0 (mod 2t+1) for n satisfying the condition (I) of Theo-
rem 3.1, and N(n/2; 1, 32, 4) ≡ 0 (mod 2t+1) for n satisfying the condition
(II) of Theorem 3.1.

The following formula is found in [3]:

N(n; 1, 1, 16, 32) =
∑

d1d2=n

(
2

d1

)
d2 + 8

∑

n=x2+4y2

x,y≥1

(
2

x

)(−1

y

)
y

for n ≡ 5 (mod 8).

For n satisfying the condition (II) of Theorem 3.1 and t = 3, the above
formula gives that N(n/2; 1, 1, 16, 32) ≡ 16 (mod 32). Therefore

0 ≡ #{(x, y, z, w) ∈ Z4 : x2 + y2 + 16z2 + 32w2 = n/2} (mod 32)

= N(n/2; 1, 1, 16, 32) − N(n/2; 1, 1, 16) − N(n/2; 1, 1, 32) + N(n/2; 1, 1)

≡ 16 − 1
3
N(n/2; 1, 1, 1) − 2N(n/2; 1, 4, 32) + 16 (mod 32)

≡ −4h(−n) − 2N(n/2; 1, 4, 32) (mod 32)

≡ −2N(n/2; 1, 4, 32) (mod 32).

This shows that N(n/2; 1, 4, 32) ≡ 0 (mod 24) and (BSD1) and (BSD2) are
true for n satisfying the condition (II) of Theorem 3.1 and t = 3.

Acknowledgements. The author thanks the referee for several cor-
rections and the reference [10] where P. Serf finds several classes of non-
congruent numbers with 4–6 odd prime factors.
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