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On the pure Jacobi sums

by

Shigeki Akiyama (Niigata)

Let p be an odd prime and Fq be the field of q = p2 elements. We consider
the Jacobi sum over Fq:

J(χ, ψ) =
∑

x∈Fq
χ(x)ψ(1− x),

where χ and ψ are non-trivial characters of F×q , whose value at 0 is defined to
be 0. It is well known that the absolute value of J(χ, ψ) is

√
q = p whenever

χψ is not principal. Following [9], [11], call the Jacobi sum J(χ, ψ) pure if
J(χ, ψ)/p is a root of unity.

Let ord(χ) be the order of χ in F̂×q . We assume that ord(ψ) = 2 and
ord(χ) = n ≥ 3. This special type of Jacobi sums plays an important role
in evaluating the argument of the Gauss sum

G(χ) =
∑

x∈Fq
χ(x)ζ

TrFq/Fp (x)
p ,

where ζp is a primitive pth root of unity (see [2], [3]). Moreover, recently the
rationality of this Jacobi sum is used to characterize the irreducible module
of the Terwilliger algebras of cyclotomic association schemes (see [10]).

In this note, we prove

Theorem. J(χ, ψ) is pure if and only if one of the following four con-
ditions holds:

1. n is a divisor of p+ 1,
2. n = 2(p− 1)/k with an odd integer k,
3. n = 24 and p ≡ 17, 19 (mod 24),
4. n = 60 and p ≡ 41, 49 (mod 60).

Further , J(χ, ψ) = ±p in all four cases.

There are numerous results concerning the determination of Gauss and
Jacobi sums. See e.g. [2], [3], [8]. A nice historical survey is found in [4]. The
same type “purity” problems for the case of Gauss sums are treated in [6],
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[13], [1], [7], [9], [11]. But it seems that no such concrete result on Jacobi
sums is known. Although our essential tool is the theorem of Stickelberger,
the argument for the “only if” part is elementary and rather complicated.
The author feels somewhat curious that this simple result is derived by such
a brute force method.

We first see

Proposition. Let S1 = {x ∈ (Z/nZ)× : x ≡ i (mod n) for i ∈ [1, n/2)∩
Z}, and S2 = (Z/nZ)× \ S1. Then J(χ, ψ) is pure if and only if there exists
x ∈ S1 such that xS1 = S1 and p ≡ −x (mod n).

P r o o f. By the Theorem of Hasse–Davenport (see Theorem 5.1 of [12])
and the well known result on the sign determination of Gauss sums of order
2 for the prime field Fp, we get G(ψ) = (−1)(p+1)/2p. The theorem of Stick-
elberger (see Theorem 2.2 of [12]) states that J(χ, ψ)/p = ±G(χ)/G(χψ) is
a unit of the integer ring of Q(ζn) if and only if
{
a

n

}
+
{
pa

n

}
=
{
a

n
+

1
2

}
+
{
p

(
a

n
+

1
2

)}
for all a with (a, n) = 1.

Here {x} = x − [x] and [x] is the greatest integer not exceeding x. As p is
odd, we have to check the conditions for a ∈ S1 only, because the condition
is symmetric with respect to a↔ n−a. Thus we choose a with 1 ≤ a ≤ n/2
and (a, n) = 1. Then

(1)
a

n
+
{
pa

n

}
=
a

n
+

1
2

+
{
pa

n
+

1
2

}
for a ∈ S1.

Note that the condition depends only on p (mod n). We see that (1) is
equivalent to {pa/n} ∈ [1/2, 1) for a ∈ S1. Put p = ny − x with integers
x, y. Then x (mod n) ∈ S1 and {xa/n} must lie in the interval [0,1/2).
Noting that |J(χ, ψ)| = p and Q(ζn)/Q is an abelian extention, J(χ, ψ)/p
is a root of unity under these conditions. This shows the assertion.

R e m a r k. Consider the Jacobi sum on the general finite field Fq with q =
pf , for a while. Then, similarly to the above proof, we can easily show that,
if the extension degree f is odd, then there are no χ for which J(χ, ψ)/

√
q

is a root of unity. Our Theorem concerns the first non-trivial case.

The sufficiency of the conditions of the Theorem follows immediately
since:

• 1× S1 = S1 ↔ Condition 1.
• n ≡ 0 (mod 4) and (n/2− 1)S1 = S1 ↔ Condition 2.
• If n = 24 and S1 = {1̃, 5̃, 7̃, 1̃1}, then 5̃S1 = S1 and 7̃S1 = S1 ↔

Condition 3.
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• If n = 60 and S1 = {1̃, 7̃, 1̃1, 1̃3, 1̃7, 1̃9, 2̃3, 2̃9}, then 1̃1S1 = S1 and
1̃9S1 = S1 ↔ Condition 4.

Here we denote by x̃ the coset x (mod n). Our next task is to show that
J(χ, ψ) is real in the above four cases. The first two cases are handled easily.

Lemma 1. We have J(χ, ψ) = ±p whenever n is a divisor of p + 1 or
n = 2(p− 1)/k with an odd integer k.

P r o o f. We have

(2) J(χ, ψ) =
∑

x∈Fq
χ(xp)ψ(1− xp) =

∑

x∈Fq
χp(x)ψp(1− x) = J(χp, ψ).

If p ≡ −1 (mod n) then

J(χp, ψ) = J(χ, ψ) = J(χ, ψ).

This shows the first case. For the second case, we have p− 1 ≡ nk/2 ≡ n/2
(mod n) and χp−1 = χn/2 = ψ, as n = ord(χ). By using (2) and ψ(−1) = 1,
we have

J(χ, ψ) =
∑

x∈Fq
χp(x)ψ(1− x) =

∑

x∈Fq
χ(x)ψ(x(1− x))

=
∑

x∈F×q

χ(x)ψ(x−1(1− x−1)) =
∑

x∈Fq
χ(x)ψ(x− 1)

= J(χ, ψ).

This shows the assertion.

The case n = 24 was already proved in [3]. We show this directly for the
convenience of the reader.

Lemma 2. We have J(χ, ψ) = ±p whenever n = 24 and p ≡ 17, 19
(mod 24).

P r o o f. We have already shown that J(χ, ψ)/p is a root of unity of the
field Q(ζ24). Let σk be the element of Gal(Q(ζ24)/Q) with σk(ζ24) = ζk24.
Then

σ11(J(χ, ψ)) = σ11(G(χ)G(ψ)/G(χ13)) = G(χ13)G(ψ)/G(χ) = J(χ, ψ).

This shows that J(χ, ψ)/p, the 24-th root of unity, is invariant under σ11,
proving the assertion.

The first manuscript of this note did not contain the following proof of
Lemma 3, which is essentially due to Mieko Yamada. The author tried in vain
to do this. She also informed me that a more general assertion concerning
Lemmas 1–3 is presented in [10] and the detailed version of it will contain
its proof.
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Lemma 3. We have J(χ, ψ) = ±p whenever n = 60 and p ≡ 41, 49
(mod 60).

P r o o f. As in Lemma 2, we see σ29(J(χ, ψ)) = (J(χ, ψ)). Thus J(χ, ψ) ∈
Q(
√−1) and J(χ, ψ)/p is equal to ±1 or ±√−1. Note that

(3) (J(χ, ψ))5 ≡ J(χ5, ψ) (mod 5).

As ord(χ5) = 12, we see that there exist rational integers C, D with
p = C2 +D2 and

J(χ5, ψ) = −(C +D
√−1)2,

by Theorems 4.8 and 4.10 of [3]. We easily see that CD ≡ 0 (mod 5) as
p ≡ ±1 (mod 5). This shows the assertion.

R e m a r k. There is a remaining problem to determine the sign of J(χ, ψ)
when it is real. See [3] for the first three cases of the Theorem. If n = 60
and p ≡ 41, 49 (mod 60), the congruence relation (3) and Theorems 4.8 and
4.10 of [3] are enough to determine the sign ambiguity of J(χ, ψ). Summing
up, we have

J(χ, ψ) =




p, for cases 1 and 3,
(−1)(p+1)/2p, for case 2,
±(p3

)
p, for case 4.

Here ± of the last case is + (resp. −) when A ≡ 0 (mod 5) (resp. 6≡), with
a positive odd integer A, which is uniquely determined by p = A2 +B2.

Now we show the necessity of the conditions of the Theorem. For conve-
nience, we identify the element of S1 (resp. S2) with the integer in [1, n/2)
(resp. [n/2, n)) in the later proof.

Lemma 4. Besides case 1 of the Theorem, if J(χ, ψ) is pure then n =
ord(χ) is divisible by 4.

P r o o f. Assume n is odd and a 6= 1 is an integer with aS1 = S1. Choose
an integer i ≥ 1 such that n/2i+1 < a ≤ n/2i. Then a 6= 1 implies 1 ≤
n/2i+1. Thus 2i ∈ S1 and 2ia ∈ S2, which contradicts aS1 = S1. Thus by
the Proposition, n must be even. Now if n = 2m and m is odd, then similarly
we choose a ∈ S1 and an integer i. Noting that a is odd, we have

a

(
n

2
− 2i

)
≡ n

2
− 2ia (mod n).

We get n/2− 2i ∈ S1 and n/2− 2ia ∈ S2, which contradicts aS1 = S1.

The next step is a prototype of our following arguments, which seems
somewhat curious at first glance.

Lemma 5. Besides cases 1 or 2 of the Theorem, if n is divisible by 8 and
n > 142, then J(χ, ψ) is not pure.
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P r o o f. Let

T (a, b) = {x ∈ (Z/nZ)× : x ≡ i (mod n) for i ∈ [a, b) ∩ Z}
and define

Ti = T

(
(i− 1)n

4
,
in

4

)
(i = 1, 2, 3, 4).

We identify each element of Ti with an integer in [(i − 1)n/4, in/4). Let
n = 2em (e ≥ 3) with m odd. Consider a vector

(A,B,C,D) =
(
n

2e
+ 2i,

n

2e
+ 2i+1,

n

2e
+
n

4
+ 2i,

n

2e
+
n

4
+ 2i+1

)

for i ≥ 1.

Assume that 2i+4 ≤ n, which implies A,B,C,D ∈ S1. As n/2 is even, the
condition aS1 = S1 is equivalent to (n/2− a)S1 = S1 and n/2− a also lies
in S1. Thus if J(χ, ψ) is pure, we may assume a ∈ [1, n/4) and aS1 = S1.
We first treat the case a ∈ [8, n/4). Let i ≥ 1 be an integer such that
a ∈ [n/2i+2, n/2i+1). (We can choose i which satisfies 2i+4 ≤ n in this case.)
Then we have aA ∈ T1 and aB ∈ T2. In fact, B − A = 2i and 2ia (mod n)
has a representative in [n/4, n/2) ∩ Z. Thus if aA (∈ S1) lies in T2 then aB
must be in S2. Noting a is odd, we consider two cases:

1. If a ≡ 1 (mod 4) then

aD ≡ n/4 + aB (mod n),

which implies aD ∈ T3.
2. If a ≡ 3 (mod 4) then

aC ≡ 3n/4 + aA (mod n),

which implies aC ∈ T4.

Therefore when a ∈ [8, n/4), we have shown that, contrary to the as-
sumption, aA, aB, aC and aD cannot lie in S1 simultaneously.

There remains the case a ∈ [1, 7]. The value 1 corresponds to case 1 or 2
of the Theorem. (Remember that we used the reflection a↔ n/2−a.) Thus
the only remaining case is a = 3, 5 and 7. But this case is easily handled
because if aS1 = S1 then a2S1 = S1 and n/4 > 72 implies a2 ∈ [8, n/4).

Lemma 6. Besides cases 1 or 2 of the Theorem, if n > 102 and n = 4m
and (m, 3) = 1 then J(χ, ψ) is not pure.

P r o o f. In this case, consider a vector

(A,B,C) =
(
n

4
+ 2i,

n

4
+ 2i+1,

n

4
+ 3 · 2i

)
for i ≥ 1.

As A, B and C must be in S1, we assume 3 · 2i+2 ≤ n. Using the re-
flection a ↔ n/2 − a, we may choose a ∈ [1, n/4). First we assume that
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a ∈ [6, n/4) and aS1 = S1. Choose the integer i with a ∈ [n/2i+2, n/2i+1).
Then by the same argument as in Lemma 5, we have aA ∈ T1 and aB ∈ T2.
Thus aC ∈ S2, which is a contradiction. The case a = 3 and 5 is handled
similarly.

In the following, we proceed similarly. In other words, we first choose
four elements in S1. Then we show that the a-multiple of these elements
cannot lie in S1 simultaneously. The later arguments become a little bit
complicated, especially in Lemma 8.

Lemma 7. Besides cases 1 or 2 of the Theorem, if n > 462 and n = 4m
and m is odd and not square free, then J(χ, ψ) is not pure.

P r o o f. Let q be an odd prime and m is divisible by q2. In this case, we
take a vector

(A,B,C,D) =
(
n

4q
+2i,

n

4q
+2i+1,

n

4q
+
kn

2q
+2i,

n

4q
+
kn

2q
+2i+1

)
for i ≥ 1.

Here k is a positive integer smaller than 3q/4, which is taken suitably later.
Assume that 3 · 2i+4 ≤ n. Then

n

4q
+
kn

2q
+ 2i+1 ≤ n

12
+

3n
8

+ 2i+1 ≤ n

2
.

Thus A, B, C and D are contained in S1. We first prove the case a ∈
[24, n/4). Choose k so that

(4)
1
4
≤
{
ak

2q

}
≤ 3

4
.

This is possible. In fact, let l ∈ [q/2, 3q/2) ∩ Z and solve the congruence
for x:

ax ≡ l (mod 2q) and x ∈ [1, 2q] ∩ Z.
Define

k(l) =
{
x for x ≤ q,
2q − x for x > q.

Then (4) is satisfied for k = k(l). It is easily shown that the number of
distinct k(l) is (q + 1)/2. So k = k(l) can be taken smaller than, say, 3q/4.
Noting 3 · 2i+4 ≤ n and a ≥ 24, we can choose an integer i satisfying
a ∈ [n/2i+2, n/2i+1). Then, similarly to Lemma 5, we can easily check that
aA ∈ T1 and aB ∈ T2. By (4), we have akn/(2q) ∈ T2∪T3. We consider two
cases. If akn/(2q) ∈ T2 then aD ∈ S2. And if akn/(2q) ∈ T3 then aC ∈ S2.
This completes the proof for a ∈ [24, n/4). Finally, we treat the remaining
case a ≤ 23. If 23 ≥ a ≥ 5, then a2S1 = S1 and 24 < a2 < n/4; these cases
can be proved similarly. If a = 3 then consider 27S1 = S1.
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Lemma 8. Besides cases 1 or 2 of the Theorem, if n > 702 and n = 12m
and (m, 6) = 1 and m has a prime factor greater than 6, then J(χ, ψ) is not
pure.

P r o o f. Let q be the greatest prime factor of q. We assume (n/q, q) = 1,
in light of Lemma 7. In this case, we take a vector

(A,B,C,D) =
(
n

12
± 2i+1,

n

12
± 3 · 2i, A+

kn

2q
, B +

kn

2q

)
for i ≥ 1.

The signs in A and B are defined by

n/12± 2i+1 6≡ 0 (mod 3).

Here k is a positive integer smaller than 3q/4, which is chosen later. Assume
that 32 ·2i+3 ≤ n. Then we see that A, B, C and D are in [1, n/2). Moreover,
A,B ∈ S1 and C, D are coprime with 6. But, in this case, C, D may be
divisible by q. Let l ∈ [q/2, 3q/2) ∩ Z and k(l) be the integer defined by (5)
in Lemma 7. Then there exist (q + 1)/2 choices of k(l). As q ≥ 7, we can
take [q/4] + 3 different k(l) values. Then there exist at least three k = k(l)
such that both (4) and k ≤ 3q/4 hold. Thus we can choose k = k(l) so
that C,D ∈ S1. (Here we used the fact (n/q, q) = 1.) Now consider the case
a ∈ [36, n/4), and take the integer i with a ∈ [n/2i+2, n/2i+1). Similarly to
Lemma 7, we see that aA, aB, aC and aD cannot lie in S1 simultaneously.
Finally, we consider the case a ≤ 35. If a ∈ [7, 35] then a2 ∈ [36, n/4). If
a = 5 then 53S1 = S1 and 53 ∈ [36, n/4). This completes the proof.

P r o o f o f t h e T h e o r e m. By using the Proposition, very suitable
for numerical calculations, we can easily check the assertion of the Theorem
for n ≤ 702. Combining Lemmas 4–7, if n is a counterexample, we see that
n = 12m and (m, 6) = 1 with a square free integer m. Now in view of
Lemma 8, the greatest prime factor of m is 5, which yields case 4 of the
Theorem. This completes the proof.
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