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1. Introduction. The Fibonacci and Lucas numbers Fn, Ln (see [2]) are
defined by

F1 = F2 = 1, Fn+2 = Fn+1 + Fn, n ≥ 1;

L1 = 1, L2 = 3, Ln+2 = Ln+1 + Ln, n ≥ 1.

Since

(1) Fn−1Fn − Fn−2Fn+1 = (−1)n,

it follows that

gcd (Fn, Fn+1, . . . , Fn+m−1) = 1 for all m ≥ 2.

Consequently, integers x1, . . . , xm exist satisfying

x1Fn + x2Fn+1 + . . .+ xmFn+m−1 = 1.

We call (x1, . . . , xm) a multiplier vector . By equation (1), one such vector is

(2) Mn = ((−1)nFn−1, (−1)n+1Fn−2, 0, . . . , 0).

The problem of finding all multiplier vectors reduces to finding a Z-basis
for the lattice Λ of integer vectors (x1, . . . , xm) satisfying

x1Fn + x2Fn+1 + . . .+ xmFn+m−1 = 0.

It is easy to prove by induction on m that such a lattice basis is given by
Mn+2, L1, . . . ,Lm−2, where

(3)

L1 = (1, 1,−1, 0, . . . , 0),

L2 = (0, 1, 1,−1, 0, . . . , 0),

...

Lm−2 = (0, . . . , 0, 1, 1,−1).

Hence the general multiplier vector has the form

Mn + y1L1 + . . .+ ym−2Lm−2 + ym−1Mn+2,

where y1, . . . , ym−1 are integers.
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Table 1. Least multipliers, m = 4, 5, 2 ≤ n ≤ 20

n Least multipliers, m = 4
2 1 0 0 0
3 −1 1 0 0
4 2 −1 0 0
5 −3 1 −1 1
6 4 −3 2 −1
7 −7 4 −3 2
8 11 −7 5 −3
9 −18 12 −7 4

10 30 −18 11 −7
11 −48 30 −18 11
12 78 −48 29 −18
13 −126 77 −48 30
14 203 −126 78 −48
15 −329 203 −126 78
16 532 −329 204 −126
17 −861 533 −329 203
18 1394 −861 532 −329
19 −2255 1394 −861 532
20 3649 −2255 1393 −861

n Least multipliers, m = 5
2 1 0 0 0 0
3 −1 1 0 0 0
4 2 −1 0 0 0
5 −3 1 −1 1 0
6 4 −3 2 −1 0
7 −7 4 −3 2 0
8 11 −7 4 −4 1
9 −18 12 −6 5 −1

10 29 −19 10 −9 2
11 −47 31 −16 14 −3
12 76 −50 27 −22 4
13 −123 80 −44 37 −7
14 200 −129 70 −59 11
15 −323 209 −114 96 −18
16 523 −338 184 −155 29
17 −846 548 −297 250 −47
18 1368 −887 482 −405 76
19 −2214 1435 −779 655 −123
20 3582 −2322 1260 −1061 200

A recent paper by the author and collaborators [1] contains an algo-
rithm for finding small multipliers based on the LLL lattice basis reduction
algorithm. Starting with a short multiplier, we then use the Fincke–Pohst
algorithm to determine the shortest multipliers. When applied to the Fi-
bonacci sequence, this experimentally always locates a unique multiplier of
least length if n > 1. For m = 2, it is well known that the extended Euclid’s
algorithm, applied to coprime positive integers a, b, where b does not divide
a, produces a multiplier vector (x1, x2) satisfying |x1| ≤ b/2, |x2| ≤ a/2,
which is consequently the unique least multiplier. With a = Fn+1, b = Fn,
n ≥ 3, this gives the multiplier vector Mn.

However, for m ≥ 3, the smallest multiplier problem for Fn, . . . , Fn+m−1

seems to have escaped attention. (Table 1 gives the least multipliers for
m = 4 and 5, 2 ≤ n ≤ 20.)

In this paper, we prove that there is a unique multiplier vector of least
length if n ≥ 2, namely Wn,m, where

(4) Wn,m = (−1)nVn,m = (−1)n(Wn,1,m,−Wn,2,m, . . . ,−Wn,m,m),

which is defined as follows, using the greatest integer function: Let

Pn = (Fn−1,−Fn−2, 0, . . . , 0),(5)

Vn,m = Pn −Gn,1,mL1 +Gn,2,mL2 − . . .+ (−1)mGn,m−2,mLm−2,(6)

where the nonnegative integers Gn,1,m, . . . , Gn,m−2,m are defined as follows:
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Let

Hn,r,m =
⌊
Fm−r(Fn−2 + Fr)

Fm

⌋
, 1 ≤ r ≤ m.

Then for m even,

(7) Gn,r,m =
{
Hn,r,m if 2 ≤ r ≤ m− 2, r even,
Hn−1,r+1,m if 1 ≤ r ≤ m− 3, r odd,

while for m odd,

(8) Gn,r,m =
{
Hn,r,m−1 = Gn,r,m−1 if 2 ≤ r ≤ m− 3, r even,
Hn−1,r+1,m+1 = Gn,r,m+1 if 1 ≤ r ≤ m− 2, r odd.

The definition of Gn,r,m extends naturally to r = −1, 0,m− 1,m:

Gn,−1,m = Fn−3, Gn,0,m = Fn−2, Gn,m−1,m = Gn,m,m = 0.

Then equations (4)–(6) give

(9) Wn,r,m = Gn,r−2,m +Gn,r−1,m −Gn,r,m.
It was not difficult to identify these multipliers for 2 ≤ n ≤ 2m+ 2 (see

Table 2). It was also not difficult to identify them for m even, n arbitrary,
though the initial form of the answer was not elegant. However, it did take
some effort to identify the case of m odd, n arbitrary. This was done with
the help of the GNUBC 1.03 programming language, which enables one to
write simple exact arithmetic number theory programs quickly.

To prove minimality of length, we use the slightly modified lattice basis
for Λ,

L1, . . . ,Lm−2,Wn+2,m,

which is the one always produced by our LLL-based extended gcd algorithm.
We then have to prove that if n > 1,

‖x1L1 + . . .+ xm−2Lm−2 + xm−1Wn+2,m −Wn,m‖2 ≥ ‖Wn,m‖2
for all integers x1, . . . , xm−1, with equality only if x1 = . . . = xm−1 = 0.

The proof divides naturally into two cases. If xm−1 is nonzero, the coef-
ficient of x2

m−1 dominates. For this we need Lemmas 5 and 11.
If xm−1 = 0, the argument is more delicate and divides into several

subcases, again using Lemma 5. The other lemmas play a supporting role for
the derivation of Lemmas 5 and 11. In particular, Lemma 2 is important, as
congruence properties in Lemma 4 reduce the calculation of the discrepancies
for general n to the case n ≤ 2m+ 2, where everything is quite explicit.

2. Explicit expressions for Wn,r,m. For later use in the proof of
Lemma 11, we need the following simpler form for Wn,1,m in terms of the
least integer function:
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Lemma 1.

Wn,1,m =





⌈
Fn+m−3 − Fm−2

Fm

⌉
if m is even,

⌈
Fn+m−2 − Fm−1

Fm+1

⌉
if m is odd.

P r o o f. The identity Fn+m−3 = FmFn−1 − Fm−2Fn−3 follows from the
well known identity

Fa+b = FaFb+2 − Fa−2Fb,

with a = m and b = n− 3. Consequently, if m is even,

Wn,1,m = Fn−1 −Gn,1,m = Fn−1 −
⌊
Fm−2(Fn−3 + 1)

Fm

⌋

= −
⌊−Fn+m−3 + Fm−2

Fm

⌋
=
⌈
Fn+m−3 − Fm−2

Fm

⌉
,

and similarly if m is odd.

The Wn,r,m with m even and 3 ≤ n ≤ 2m+ 2 have an especially simple
description in terms of Lucas numbers and play a central role in the proof
of Lemma 5:

Lemma 2. (See Table 2, which summarizes (a) and (c).)

(a) Let 3 ≤ n ≤ m+ 2, m even. If n is odd ,

Wn,r,m =

{
Ln−r−2 if r ≤ n− 3,
1 if r = n− 2, n− 1,
0 if r ≥ n.

If n is even,

Wn,r,m =





Ln−r−2 if r ≤ n− 4,
2 if r = n− 3,
1 if r = n− 2,
0 if r ≥ n− 1.

(b) Let 3 ≤ n ≤ m+ 2, m odd. Then

Wn,r,m = Wn,r,m−1, 1 ≤ r ≤ m− 1, Wn,m,m = 0.

(c) Let 3 +m ≤ n ≤ 2m+ 2. Then

Wn,r,m =
{
Ln−r−2 if r 6= 2m− n+ 3,
Ln−r−2 + 1 if r = 2m− n+ 3.

These formulae follow from explicit expressions below for Gn,r,m in terms
of the Fibonacci numbers, when m is even:

Lemma 3. (a) Let 3 ≤ n ≤ m+ 2. If r is even,

Gn,r,m =
{
Fn−r−2 if r ≤ n− 2,
0 if r ≥ n− 1.
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Table 2. The Wn,r,m, 1 ≤ n ≤ 2m+ 2, m even

n Wn,1,m Wn,2,m Wn,3,m Wn,4,m Wn,5,m

1 0 1 0 0 0
2 1 0 0 0 0
3 L0 − 1 1 0 0 0
4 L1 + 1 L0 − 1 0 0 0
5 L2 L1 L0 − 1 1 0
6 L3 L2 L1 + 1 L0 − 1 0
7 L4 L3 L2 L1 L0 − 1
...

...
...

...
...

...
m− 1 Lm−4 Lm−5

m Lm−3 Lm−4
m+ 1 Lm−2 Lm−3
m+ 2 Lm−1 Lm−2
m+ 3 Lm Lm−1
m+ 4 Lm+1 Lm
m+ 5 Lm+2 Lm+1
m+ 6 Lm+3 Lm+2

...
...

...
...

...
...

2m L2m−3 L2m−4 L2m−5 + 1
2m+ 1 L2m−2 L2m−3 + 1 L2m−4
2m+ 2 L2m−1 + 1 L2m−2 L2m−3

Table 2 (cont.)

n Wn,6,m . . . Wn,m−3,m Wn,m−2,m Wn,m−1,m Wn,m,m

1 0 . . . 0 0 0 0
2 0 . . . 0 0 0 0
3 0 . . . 0 0 0 0
4 0 . . . 0 0 0 0
5 0 . . . 0 0 0 0
6 0 . . . 0 0 0 0
7 1 . . . 0 0 0 0
...

...
...

...
...

...
...

m− 1 . . . L0 − 1 1 0 0
m . . . L1 + 1 L0 − 1 0 0

m+ 1 . . . L2 L1 L0 − 1 1
m+ 2 . . . L3 L2 L1 + 1 L0 − 1
m+ 3 . . . L4 L3 L2 L1 + 1
m+ 4 . . . L5 L4 L3 + 1 L2
m+ 5 . . . L6 L5 + 1 L4 L3
m+ 6 . . . L7 + 1 L6 L5 L4

...
...

...
...

...
...

...
2m . . . Lm+1 Lm Lm−1 Lm−2

2m+ 1 . . . Lm+2 Lm+1 Lm Lm−1
2m+ 2 . . . Lm+3 Lm+2 Lm+1 Lm
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If r is odd ,

Gn,r,m =
{
Fn−r−4 if r ≤ n− 3,
0 if r ≥ n− 2.

(b) Let m+ 3 ≤ n ≤ 2m+ 2. If r is even,

Gn,r,m =
{
Fn−r−2 if r ≤ 2m− n+ 2,
Fn−r−2 − Fn−2m+r−2 if r ≥ 2m− n+ 3.

If r is odd ,

Gn,r,m =
{
Fn−r−4 if r ≤ 2m− n+ 1,
Fn−r−4 − Fn−2m+r−2 if r ≥ 2m− n+ 2.

(c) If n = 1 or 2, Gn,r,m = 0 for 1 ≤ r ≤ m.

P r o o f. We assume r and m are even, as the case of odd r depends
trivially on this case. We start from the following identity, valid for a even:

(10) Fa−rFb − FaFb−r = (−1)rFb−aFr.

Then
Fm−rFn−2 − FmFn−r−2 = −Fn−m−2Fr.

Hence

Fm−r(Fn−2 + Fr) = FmFn−r−2 + (Fm−r − Fn−m−2)Fr(11)

= FmFn−r−2 + (Fm−r + (−1)nFm−n+2)Fr

and

Gn,r,m =
⌊
Fm−r(Fn−2 + Fr)

Fm

⌋
= Fn−r−2 +

⌊
(Fm−r − Fn−m−2)Fr

Fm

⌋
(12)

= Fn−r−2 +
⌊

(Fm−r + (−1)nFm−n+2)Fr
Fm

⌋
.(13)

(a) Assume 3 ≤ n ≤ m + 2. First suppose r ≤ n − 2. Then m − r ≥
m− n+ 2 ≥ 0 and hence

0 ≤ Fm−n+2 ≤ Fm−r
and

0 ≤ Fm−r + (−1)nFm−n+2 ≤ 2Fm−r.
Hence

0 ≤ (Fm−r + (−1)nFm−n+2)Fr
Fm

≤ 2Fm−rFr
Fm

< 1,

as 2Fm−rFr < Fm if 2 ≤ r ≤ m− 2. Hence⌊
(Fm−r + (−1)nFm−n+2)Fr

Fm

⌋
= 0

and equation (13) gives Gn,r,m = Fn−r−2.
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Next suppose r ≥ n− 1. Then

0 ≤ Fm−r(Fn−2 + Fr)
Fm

≤ Fm−r(Fr−1 + Fr)
Fm

=
Fm−rFr+1

Fm
< 1,

where we have used the inequality FaFb < Fa+b−1 if 2 ≤ a, 1 ≤ b. Hence
Gn,r,m = 0.

(b) Assume m + 3 ≤ n ≤ 2m + 2. First assume r ≤ 2m − n + 2. Then
m− r ≥ n−m− 2 ≥ 0 and

Fm−r ≥ Fn−m−2 ≥ 0

and as seen before, the second integer part is zero in formula (12) and
Gn,r,m = Fn−r−2.

Next assume r ≥ 2m−n+3. Again we use a special case of equation (10):

Fn−m−2Fr − FmFn−2m+r−2 = (−1)nFm−rF2m−n+2.

This, together with equation (12), gives

Gn,r,m = Fn−r−2 − Fn−2m+r−2 +
⌊
Fm−r(Fr + (−1)n+1F2m−n+2)

Fm

⌋
.

But r ≥ 2m − n + 3 implies Fr ≥ F2m−n+2 ≥ 0 and as before, the integer
part vanishes and we have Gn,r,m = Fn−r−2 − Fn−2m+r−2.

3. The discrepancies Dn,r,m and En,r,m

Lemma 4. Let Dn,r,m = Wn,r−2,m −Wn,r−1,m −Wn,r,m, 3 ≤ r ≤ m.

(a) If n = t+ 2Nm, m even,

Fn = Ft + FNmLNm+t and Dn,r,m = Dt,r,m.

(b) If m is odd , then

Dn,r,m =
{
Dn,r,m−1 if r is even,
Dn,r,m+1 if r is odd.

P r o o f. (a) Let n = t+ 2Nm, m even. Then

Fn − Ft = Ft+2Nm − Ft = FNm+t+Nm − FNm+t−Nm = FNmLNm+t,

as Nm is even. Noting that FNm ≡ 0 (mod Fm), we have from equation (7)
and the definition of Hn,r,m:

(14) Gn,r,m =





Gt,r,m +
Fm−rFNmLNm+t

Fm
if 2 ≤ r ≤ m− 2, r even,

Gt,r,n +
Fm−r−1FNmLNm+t

Fm
if 1 ≤ r ≤ m− 3, r odd.
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Hence, noting that Z = (FNmLNm+t)/Fm is an integer, we verify that
with r even, equations (7) and (9) give

Wn,r,m = Wt,r,m + Fm−r+2Z,

Wn,r−1,m = Wt,r,m − Fm−rZ + 2Fm−r+2Z,

Wn,r−2,m = Wt,r,m + Fm−r+4Z.

Hence

Dn,r,m −Dt,r,m = (Fm−r+4 − (−Fm−r + 2Fm−r+2)− Fm−r+2)Z

= (Fm−r + Fm−r+4 − 3Fm−r+2)Z

= (Fm−r + Fm−r+3 − 2Fm−r+2)Z

= (Fm−r + Fm−r+1 − Fm−r+2)Z = 0.

Similarly for r odd.
(b) Let m be odd. Then if r is even, equations (8) and (9) give

Wn,r,m = Gn,r−2,m−1 +Gn,r−1,m+1 −Gn,r,m−1,

Wn,r−1,m = Gn,r−3,m+1 +Gn,r−2,m−1 −Gn,r−1,m+1,

Wn,r−2,m = Gn,r−4,m−1 +Gn,r−3,m+1 −Gn,r−2,m−1,

and consequently

Dn,r,m = 3Gn,r−2,m−1 −Gn,r,m−1 −Gn,r−4,m−1 = Dn,r,m−1.

Similarly when r is odd, we find Dn,r,m = Dn,r,m+1.

Lemma 5. For each n, we have Wn,r−2,m = Wn,r−1,m +Wn,r,m, with at
most three exceptional r, which satisfy |Dn,r,m| = 1.

P r o o f. If m is even, Lemma 4(a) reduces the problem to the range
1 ≤ n ≤ 2m, where it is evidently true, by virtue of the explicit formulae
for Wn,r,m given in Lemma 2. We also observe that if m is even, then for
n even, there are at most 2 odd r and one even r for which |Dn,r,m| = 1.
Then Lemma 4(b) gives the result when n is even. Similarly for n odd.

As a corollary, we have

Lemma 6. For fixed n > 1 and m ≥ 3,

Wn,r−1,m ≥Wn,r,m if 2 ≤ r ≤ m.
P r o o f. This is clear when n ≤ m + 2, while for n ≥ m + 3, it is a

consequence of the inequalities Wn,m,m ≥ 1, Wn,m−1,m ≥Wn,m,m and

Wn,r−2,m ≥Wn,r−1,m +Wn,r,m − 1, 3 ≤ r ≤ m.
We will need an alternative Z-basis for the lattice Λ.

Lemma 7. The vectors L1, . . . ,Lm−2,Wn+2,m form a Z-basis for Λ.
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P r o o f. This is a consequence of the identity

Wn+2,m =Mn+2 + (−1)n
m−2∑

i=1

(−1)iGn+2,i,mLi,

which follows from equations (4)–(6).

Lemma 8. Let En,r,m = Gn+2,r,m−Gn+1,r,m−Gn,r,m, where m is even.

(a) If n ≡ t (mod 2m), then En,r,m = Et,r,m.
(b) If n = 1, 2,m + 1 or m + 2, then En,r,m = 0 for 1 ≤ r ≤ m. If

3 ≤ n ≤ m and n is even,

En,r,m =
{

1 if r = n− 3,
0 otherwise.

If 3 ≤ n ≤ m and n is odd ,

En,r,m =
{

1 if r = n− 1,
0 otherwise.

If m+ 3 ≤ n ≤ 2m+ 2,

En,r,m =
{−1 if r = n− 2−m,

0 otherwise.

P r o o f. (a) follows from equation (14), while (b) follows from the explicit
form of Gn,r,m given in Lemma 3.

Lemma 9. Let En,m =Wn+2,m +Wn+1,m −Wn,m. Then

(15) En,m = (0, . . . , 0) or ± Li for some i.

P r o o f. By equations (4)–(6),

En,m = (−1)n(Vn+2,m − Vn+1,m − Vn,m)

= (−1)n
m−2∑
r=1

(−1)rEn,r,mLr.

If m is even, Lemma 8 gives the result directly, while if m is odd, we see
from equation (8) that

En,r,m =
{
En,r,m−1 if 2 ≤ r ≤ m− 3, r even,
En−1,r+1,m+1 if 1 ≤ r ≤ m− 2, r is odd.

Then Lemma 8, with m replaced by m − 1 and m + 1, respectively, gives
the result.

As a corollary, we have

Lemma 10. For fixed r and m,

Wn+1,r,m ≥Wn,r,m.
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P r o o f. If n ≤ m, the result follows from Lemma 2. If n ≥ m + 1, m
even, or n ≥ m+ 2, m odd, we have Wn,r,m ≥ 1 and equation (15) gives

Wn+2,r,m ≥Wn+1,r,m +Wn,r,m − 1,

which gives the desired result. The remaining cases are simple exercises.

4. A size estimate for ‖Wn+2,m‖
Lemma 11. If n ≥ 5,

(16) ‖Wn+2,m‖2 > 2Wn+2,m · Wn,m + 18.

P r o o f. Wn+2,m −Wn,m −Wn+1,m = 0 or τiLi, where τi = ±1. Hence

‖Wn+2,m‖2 − 2Wn+2,m · Wn,m + ‖Wn,m‖2
≥ ‖Wn+1,m‖2 − 2Wn+1,m · Li + ‖Li‖2 ≥ ‖Wn+1,m‖2 − 3.

Hence the desired inequality will follow if we can prove

(17) ‖Wn+1‖2 > ‖Wn‖2 + 21.

But Wn+1,r,m ≥Wn,r,m ≥ 0 and from Lemma 1, it is easy to prove that

Wn+1,1,m > Wn,1,m + 3

if n ≥ 7. Then because Wn,1,m ≥ 2 if n ≥ 4, inequality (17) follows if n ≥ 7.
Cases n = 5 and 6 of inequality (16) can be verified using the following

identities:

W5,m = (−3, 1,−1, 1, 0, 0, . . .), W6,m = (4,−3, 2,−1, 0, 0, . . .),

W7,m = (−7, 4,−3, 1,−1, 1, . . .), W8,m = (11,−7, 4,−3, 2,−1, . . .),

if m ≥ 6. Also

W5,5 = (−3, 1,−1, 1, 0), W6,5 = (4,−3, 2,−1, 0),

W7,5 = (−7, 4,−3, 2, 0), W8,5 = (11,−7, 4,−4, 1),

W5,4 = (−3, 1,−1, 1), W6,4 = (4,−3, 2,−1),

W7,4 = (−7, 4,−3, 2), W8,4 = (11,−7, 5,−3),

W5,3 = (−3, 2, 0), W6,3 = (4,−4, 1),

W7,3 = (−7, 6,−1), W8,3 = (11,−10, 2).

5. The proof of minimality

Theorem. For all integers x1, . . . , xm−1,

(18) ‖x1L1 + . . .+ xm−2Lm−2 + xm−1Wn+2,m −Wn,m‖2 ≥ ‖Wn,m‖2,
with equality only if x1 = . . . = xm−1 = 0.
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P r o o f. Inequality (18) is equivalent to

(19) ‖x1L1 + . . .+ xm−2Lm−2 +Wn+2,mxm−1‖2

− 2
m−2∑

i=1

Li · Wn,m xi − 2Wn+2 · Wn,m xm−1 ≥ 0.

The left hand side of this inequality expands to
m−2∑

i=1

m−2∑

j=1

Li · Lj xixj + ‖Wn+2,m‖2x2
m−1 + 2

m−2∑

i=1

Li · Wn+2,m xixm−1.

Now εi = Li · Wn,m = (−1)nDn,i+2,m. But by Lemma 5, Dn,r,m = 0 for
3 ≤ r ≤ m, with at most three exceptional r, in which case Dn,r,m = ±1.
Also ηi = Li · Wn+2,m = 0, with at most three exceptions.

Also

Li · Lj =





3 if i = j,
0 if j = i+ 1,
−1 if j = i+ 2,
0 if j ≥ i+ 3.

Substituting all this in the expanded form of inequality (19) gives the
equivalent inequality

(20) Q = Q1 +Ax2
m−1 − 2Bxm−1 + 2

m−2∑

i=1

ηixixm−1 − 2
m−2∑

i=1

εixi ≥ 0,

where A = ‖Wn+2,m‖2, B =Wn+2,m · Wn,m and

Q1 = 3
m−2∑

i=1

x2
i − 2

m−4∑

i=1

xixi+2.

Now let x1, . . . , xm−2 be integers, not all zero. We prove Q > 0.

C a s e 1: xm−1 nonzero. The coefficient of x2
m−1 dominates. For com-

pleting the square gives the equivalent inequality

Q = Q2 +
(
A−

m−2∑

i=1

η2
i

)
x2
m−1 − 2

(
B −

m−2∑

i=1

εiηi

)
xm−1(21)

+
m−2∑

i=1

(xi − εi + ηixm−1)2 −
m−2∑

i=1

ε2
i ≥ 0,

where Q2 ≥ 0. Here

Q2 =





2x2
1 if m = 3,

2x2
1 + 2x2

2 if m = 4,
(x1 − x3)2 + x2

1 + 2x2
2 + x2

3 if m = 5,
T + x2

1 + x2
2 + x2

m−3 + x2
m−2 if m ≥ 6,
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where

(22) T =
m−4∑

i=1

(xi − xi+2)2.

But
m−2∑

i=1

ε2
i ≤ 3,

m−2∑

i=1

η2
i ≤ 3,

∣∣∣
m−2∑

i=1

εiηi

∣∣∣ ≤ 6.

Hence inequality (21) holds with strict inequality, if we can prove

(A− 3)x2
m−1 − 3 > 2(B + 6)|xm−1|.

This will be true if A > 2B + 18 and this follows from Lemma 11 if n ≥ 5.
Finally, only the case n = 4 needs any thought and this is straightfor-

ward, as W2,m = (2,−1, 0, 0, . . . , 0), W4,m = (4,−3, 2,−1, . . . , 0), if m ≥ 4.

C a s e 2: xm−1 = 0. The argument is more delicate. We start by assum-
ing m ≥ 6. Then Q = T + S0 − U , where

S0 = 2x2
1 + 2x2

2 + x2
3 + . . .+ x2

m−4 + 2x2
m−3 + 2x2

m−2

and

U = 2
m−2∑

i=1

εixi.

In what follows, we make use of the inequalities

x(x± 1) ≥ 0, x(x± 2) ≥ −1 if x ∈ Z.
Clearly we need only consider T ≤ 3.
C a s e 2(a): T = 0. ThenQ = S0−U and x1 = x3 = . . . , x2 = x4 = . . .

Hence one of x1, x2 must be nonzero and one of xm−3, xm−2 must be nonzero.
Then a consideration of the possible terms in U shows that

Q = S0 − U = 2x2
1 + 2x2

2 + x2
3 + . . .+ x2

m−4 + 2x2
m−3 + 2x2

m−2 − U ≥ 1.

C a s e 2(b): T = 1. Then Q = 1 + S0 − U and there exists i such that

|xi − xi+2| = 1, while xj = xj+2 if j 6= i.

A consideration of the possible terms in U shows that S0−U ≥ 0 and hence
Q = 1 + S0 − U ≥ 1.

C a s e 2(c): T = 2. Then Q = 2 + S0 − U . If one of x1, x2, xm−3, xm−2

is nonzero, then S0 ≥ 2 and Q ≥ 1. Suppose x1 = x2 = xm−3 = xm−2 = 0.
Then

S0 = x2
3 + . . .+ x2

m−4.

If at least two of the variables are nonzero, then S0 ≥ 2 and Q =
2 + S0 − U ≥ 1. If precisely one variable xk has nonzero coefficient, then
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S0 = x2
k. If |xk| ≥ 2, we are done. However, if |xk| = 1, then nonzero

terms in U can contribute at most x2
k ± 2xk ≥ −1 to S0 − U and we have

Q = 2 + S0 − U ≥ 1.
C a s e 2(d). T = 3. Then Q = 3 +S0−U ≥ 0. Moreover, Q = 0 implies

S0−U = −3 and there exist indices I, J,K satisfying 3 ≤ I < J < K ≤ m−4
with

xI = εI = ±1, xJ = εJ = ±1, xK = εK = ±1,

while xi = 0 if i 6= I, J,K. A consideration of cases shows this would in turn
imply T ≥ 4.

Finally, there remain the cases m = 3, 4, 5.

• m = 3: Here x2
1 > 0 and

Q = 3x2
1 − 2ε1x1 = x2

1 − 2x1(x1 − ε1) > 0.

• m = 4: Here x2
1 + x2

2 > 0 and

Q = 3x2
1 + 3x2

2 − 2ε1x1 − 2ε2x2

= x2
1 + x2

2 + 2x1(x1 − ε1) + 2x2(x2 − ε2) > 0.

• m = 5: Here x2
1 + x2

2 + x2
3 > 0 and

Q = (x1 − x3)2 + 2x2
1 + 3x2

2 + 2x2
3 − 2ε1x1 − 2ε2x2 − 2ε3x3

= (x1 − x3)2 + x2
2 + 2x1(x1 − ε1) + 2x2(x2 − ε2) + 2x3(x3 − ε3) ≥ 0.

Moreover, equality implies x1 = x3 = ε1 = ε3 and x2 = 0. Then

0 = ε1 − ε3 = (L1 − L3) · Wn,5

= (1, 1,−2,−1,−1) · Wn,5

= (−1)n(Wn,1,5 −Wn,2,5 + 2Wn,3,5 +Wn,4,5 −Wn,1,5).

But Lemma 6 implies Wn,r−1,5 ≥ Wn,r,5 if n > 1, r ≥ 2. Also Lemma 10
gives Wn,3,5 ≥ W5,3,5 = 1 if n ≥ 5. Hence we get a contradiction if n ≥ 5.
Also we cannot have n < 5, as (ε1, ε3) = (1, 0), (0, 0), (1, 0) for n = 2, 3, 4,
respectively.
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