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1. Introduction. A number defined by a series does not in general
have an interesting continued fraction expansion. There are, however, some
exceptions, such as the series

∞∑
n=0

1
22n = [0, 1, 4, 2, 4, 4, 6, 4, 2, 4, 6, 2, 4, 6, 4, 4, 2, . . .],

dealt with (independently) in [4] and [11]. The continued fraction expansion
for this series has a type of symmetry known as folding symmetry. In this
paper, we generalize folding symmetry, and give examples such as

∞∑
n=0

1
T4n(2)

= [0, 1, 1, 23, 1, 2, 1, 18815, 3, 1, 23, 3, 1, 23, 1, 2, 1,

106597754640383, 3, 1, 23, 1, 3, 23, 1, 3, 18815, 1, 2, 1, 23,

3, 1, 23, 1, 2, 1, 18815, 3, 1, 23, 3, 1, 23, 1, 2, 1, . . .],

where Tl(x) is the lth Chebyshev polynomial.
In addition, we prove a general characterization of this sort of series.

These series are of the form
∞∑

n=0

1
fn(m)

,

where m ∈ Z, f(x) ∈ Z[x], and fn(x) denotes the nth iterate of f(x). (For
example, in the first case f(x) = x2, and in the second f(x) = T4(x).) In
addition, they are specialized, in the terminology of [10]. For example, the
first is a special case of

∞∑
n=0

1
x2n = [0, x− 1, x + 2, x, x, x− 2, x, x + 2, x, x− 2, x + 2, . . .],

with x = 2. A continued fraction over Q(x), such as this one, with the
property that each partial quotient has integer coefficients, is called special-
izable, because when one specializes by choosing an integer value for x, one

[297]
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gets immediately a continued fraction whose partial quotients are integers.
The continued fraction one obtains is then called specialized . We prove a
theorem (Theorem 7.12) that determines all sums of the form

∞∑
n=0

1
fn(x)

(for f(x) ∈ Z[x]) that have specializable continued fractions.
Before proceeding any further, we quickly review the basics of contin-

ued fractions, and give a short account of folding symmetry. Consider the
continued fraction

[a0, a1, . . . , an] = a0 +
1

a1 +
1

a2 +
1

· · ·+
1

an−1 +
1
an

.

We define p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1, and for n ≥ 2,

pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2.

Proposition 1.1. For each n,
pn

qn
= [a0, a1, . . . , an],

and we have pnqn−1 − qnpn−1 = (−1)n−1.

For a proof of this standard result, see Theorems 149 and 150 of [3]. Now
consider the function fn(z) of z defined by

fn(z) = a0 +
1

a1 +
1

a2 +
1

· · ·+
1

an +
1
z

.

This function will be useful shortly. By Proposition 1.1,

fn(z) =
pnz + pn−1

qnz + qn−1
.

We now define the notation we will use to talk about symmetry in contin-
ued fractions. Let −→wn denote the word a1, a2, . . . , an. We use ←−wn to denote



Symmetry and specializability 299

the word an, an−1, . . . , a1, and −←−wn to denote −an,−an−1, . . . ,−a1. This
notation will be used mainly in continued fractions. (This is the notation of
[9], where Proposition 1.2 was first stated in this form.)

We now give a proof of Proposition 1.2, known as the Folding Lemma,
for completeness and in preparation for the proof in Section 4 of a general-
ization.

Proposition 1.2.
pn

qn
+

(−1)n

xq2
n

= [a0,−→wn, x,−←−wn].

P r o o f. First, note that f−1
n (z) = [0,−an,−an−1, . . . ,−a0 + z]. In

particular, f−1
n (∞) = [0,−←−wn]. However, it is easy to see that

f−1
n (z) =

−qn−1z + pn−1

qnz − pn
.

Hence, [x,−←−wn] = x− qn−1/qn, and

[a0,−→wn, x,−←−wn] =
pn(x− qn−1/qn) + pn−1

qn(x− qn−1/qn) + qn−1

=
pnqnx− (pnqn−1 − qnpn−1)

q2
nx

.

The desired result follows immediately.

A continued fraction [a0,−→wn, x1,−←−wn] is said to be folded . We gener-
alize this notion as follows. A folded continued fraction has 2-fold symme-
try . We say that [a0,−→wn, x1,−←−wn, x2,−→wn] has 3-fold symmetry , [a0,−→wn, x1,
−←−wn, x2,−→wn, x3,−←−wn] has 4-fold symmetry , etc. The Folding Lemma gen-
eralizes nicely to k-fold symmetry. We deal with the generalization in Sec-
tion 4.

For a more involved discussion of the Folding Lemma, see [9]. Folded
continued fractions were discovered independently by Kmošek and Shallit.
See [4, 11, 12]. The Folding Lemma first appears in [6, p. 209], and more
explicitly in [1, p. 332].

2. Applications of the Folding Lemma. As an example of the
sort of series with which we will deal in Section 6, we discuss an example
due to Shallit (see [12]). This will serve as preparation for applying similar
techniques later. In addition, we will need the last result of this section.

Folded continued fractions were originally studied to explain the simple
continued fractions of certain series. For example, the Liouville number
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n=0 1/10n! has an amazing continued fraction expansion:

∞∑
n=0

1
10n!

= [0, 4, 1, 3, 5, 99, 1, 4, 3, 1, 4, 999999999999, 1, 3, 1,

3, 4, 1, 99, 5, 3, 1, 4, . . .].

The Folding Lemma applies to the partial sums, giving a continued frac-
tion expansion for each of them in terms of that of the one before. For
example, we easily get

4∑
n=0

1
10n!

= [0, 5,−4,−5,−100, 5, 4,−5,−1000000000000, 5,−4,−5, 100,

5, 4,−5].

This gives the nearest integer continued fraction for the series, but it would
be more interesting to get the simple continued fraction. (In a simple con-
tinued fraction, all of the partial quotients are integers, and all are positive,
except perhaps the first.)

In fact, we can easily get the simple continued fraction expansion of any
number with k-fold symmetry, assuming that [a0,−→wn] is a simple continued
fraction. First, note that since [. . . , a, 0, b, . . .] = [. . . , a+ b, . . .], it is never a
problem to have 0 occur in a continued fraction. We can apply [. . . , a,−β] =
[. . . , a− 1, 1, β− 1] to get rid of negatives. (This is the method of [10].) For
example, [a0,−→wn, x1,−←−wn] = [a0, a1, . . . , an, x1 − 1, 1, an − 1, an−1, . . . , a1].
Similarly, in the case of 3-fold symmetry we get [a0, a1, . . . , an, x1−1, 1, an−
1, an−1, . . . , a2, a1−1, 1, x2−1, a1, . . . , an]. Note also that changing the sign
of some xi is easily handled, since [. . . , a,−x − 1, 1, a − 1, . . .] = [. . . , a −
1, 1, x− 1, a, . . .]. (Note that one can remove negatives from any continued
fraction, not just one with k-fold symmetry.)

In this way, we get the simple continued fraction for the sum. This
explains the amazing continued fraction noted above. Since the continued
fraction expansion of each partial sum arises from that of the previous partial
sum by an application of the Folding Lemma, we say that the continued
fraction has iterated 2-fold symmetry . Iterated k-fold symmetry is defined
analogously.

Note that the Folding Lemma applies not only to Q, but also to Q(x).
If l is an integer greater than 1, then the series

∑∞
n=0 1/xln converges to a

formal Laurent series. The Folding Lemma shows that it has iterated 2-fold
symmetry in its continued fraction.

In addition, the partial quotients are in Z[x]. In the terminology of [10],
the continued fraction is specializable. We can specialize x to any positive
integer greater than 1, and get a simple continued fraction with iterated 2-
fold symmetry. In a typical continued fraction with polynomial coefficients,
the partial quotients will have non-integral coefficients, so we will not get
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integral partial quotients if we attempt to specialize. (This point of view
was first taken in [7], although these series had been studied earlier.)

Now consider f(x) ∈ Z[x] with degree greater than 1, such that f(x) ≡ 0
(mod x2). If we define the iterates f0(x) = x, and fn(x) = f(fn−1(x)), then
the Folding Lemma implies that

∑∞
n=0 1/fn(x) has a specializable continued

fraction with iterated 2-fold symmetry. In Section 7, we will determine all
polynomials f(x) ∈ Z[x] for which this sum is specializable.

3. Modified continuants. To state the Generalized Folding Lemma,
we will need to use continuant polynomials. Ours will sometimes have to
be modified, though, to have a sign alternation. Fix ε = ±1. We define
modified continuants K ′ by

(1) K ′(x1) = x1.
(2) K ′(x1, x2) = x1x2 + ε.
(3) For each k ≥ 2,

K ′(x1, . . . , xk) = K ′(x1, . . . , xk−1)xk + εK ′(x1, . . . , xk−2).

It is sometimes convenient to define K ′ without any variables as K ′( ) =
1. Note that when ε = 1, these polynomials are the usual continuants; when
ε = −1, they are the same except for the sign alternation.

Because modified continuants are the same as ordinary continuants, ex-
cept for the sign alternation when ε = −1, one would expect the theory
of modified continuants to be nearly the same as that of continuants, and
indeed it is. For the theory of continuants, see [2]. All of our results for
modified continuants are based directly on analogous results for continuants
given in [2].

One fundamental fact about modified continuants is that K ′(x1, . . . , xk)
is the sum of the terms which can be obtained by replacing each of a col-
lection of disjoint pairs of consecutive variables in x1 . . . xk with ε. This is
easily seen from the definition. From this fact, it follows that the modified
continuants also satisfy the recurrence relation

(3.1) K ′(x1, . . . , xk) = x1K
′(x2, . . . , xk) + εK ′(x3, . . . , xk).

Lemma 3.1. We have the continued fraction expansion

K ′(x1, . . . , xm)
K ′(x2, . . . , xm)

= x1 +
ε

x2 +
ε

x3 +
ε

· · ·+
ε

xm−1 +
ε

xm

.
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P r o o f. The cases in which m ≤ 3 are trivial. Now, we continue by
induction on m. The continued fraction on the right is equal to

K ′(x1, . . . , xm−1 + ε/xm)
K ′(x2, . . . , xm−1 + ε/xm)

.

Applying the recurrence defining K ′ twice gives

K ′(x1, . . . , xm−2)(xm−1 + ε/xm) + εK ′(x1, . . . , xm−3)
K ′(x2, . . . , xm−2)(xm−1 + ε/xm) + εK ′(x2, . . . , xm−3)

,

and then
K ′(x1, . . . , xm−1) + εK ′(x1, . . . , xm−2)/xm

K ′(x2, . . . , xm−1) + εK ′(x2, . . . , xm−2)/xm
.

Multiplying the numerator and denominator by xm and applying the recur-
rence again proves the lemma.

4. The Generalized Folding Lemma. Define S2 = [a0,−→wn, x1,
−←−wn], S3 = [a0,−→wn, x1,−←−wn, x2,−→wn], etc. Thus, Sk is the general form of a
continued fraction with k-fold symmetry. Also, from now on set ε = (−1)n

(for use in modified continuants), and for convenience set p = pn and q = qn.
Our principal result about k-fold symmetry is the following theorem, the
Generalized Folding Lemma:

Theorem 4.1. For all k ≥ 2,

Sk =
p

q
+

(−1)nK ′(x2q, . . . , xk−1q)
qK ′(x1q, . . . , xk−1q)

.

P r o o f. We prove this by induction. It is easy to check that the case
k = 2 is the Folding Lemma. Now suppose that it holds for k − 1.

In the continued fraction by which Sk is defined, if one omits the initial
a0,−→wn, then one is left with a continued fraction with (k−1)-fold symmetry.
Call it S′k. As in the proof of the Folding Lemma, we know that [x1,−←−wn] =
x1 − qn−1/qn. It follows by induction that

S′k = x1 −
qn−1

qn
+

(−1)nK ′(x3qn, . . . , xk−1qn)
qnK ′(x2qn, . . . , xk−1qn)

.

Now, since Sk = [a0,−→wn, S′k], we see that

Sk =
pn

(
x1 −

qn−1

qn
+

(−1)nK ′(x3qn, . . . , xk−1qn)
qnK ′(x2qn, . . . , xk−1qn)

)
+ pn−1

qn

(
x1 −

qn−1

qn
+

(−1)nK ′(x3qn, . . . , xk−1qn)
qnK ′(x2qn, . . . , xk−1qn)

)
+ qn−1

.
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This is equal to (after applying pnqn−1 − qnpn−1 = (−1)n−1)

pqx1K
′(x2q, . . . , xk−1q) + (−1)npK ′(x3q, . . . , xk−1q)

q2x1K ′(x2q, . . . , xk−1q) + (−1)nqK ′(x3q, . . . , xk−1q)

+
(−1)nK ′(x2q, . . . , xk−1q)

q2x1K ′(x2q, . . . , xk−1q) + (−1)nqK ′(x3q, . . . , xk−1q)
,

which simplifies to
p

q
+

(−1)nK ′(x2q, . . . , xk−1q)
q2x1K ′(x2q, . . . , xk−1q) + (−1)nqK ′(x3q, . . . , xk−1q)

.

Now applying (3.1) to the denominator yields the final result.

If we apply Lemma 3.1 to Sk, we arrive at the following corollary to
Theorem 4.1:

Corollary 4.2. We have the continued fraction expansion

Sk =
p

q
+

1
q

(−1)n

x1q +
(−1)n

x2q +
(−1)n

· · ·+
(−1)n

xk−2q +
(−1)n

xk−1q

.

5. Further results on k-fold symmetry. A few simple algebraic
manipulations give the following equivalent formula for Sk:

Sk =
p

q
+

(−1)n

x1q2

1

1 +
(−1)n

x1x2q2

1

1 +
(−1)n

x2x3q2

1

· · ·+ (−1)n

xk−2xk−1q2

.

This expansion seems messier and less natural than that given by Corol-
lary 4.2, but it has one advantage. Set

Xk =
(−1)nK ′(x3q, . . . , xk−1q)

qK ′(x2q, . . . , xk−1q)
.

The expansion above makes it clear that

Sk =
p

q
+

(−1)n

x1q2

∞∑
i=0

(
− Xk

x1

)i

.

One might hope that the partial sums would have interesting continued
fraction expansions. In the case of 3-fold symmetry, there is a simple and
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useful description of the continued fractions for the partial sums. We have

X3 =
(−1)nK ′( )
qK ′(x2q)

=
(−1)n

x2q2
.

Note that 1/X3 is an integer (assuming that x2 is an integer). The partial
sums have 4-fold symmetry, as we see from the following proposition:

Proposition 5.1. For all j ≥ 1, if

x3 = −x1

(
1− (−x1/X3)j

1− (−x1/X3)

)
,

then

p

q
+

(−1)n

x1q2

j∑
i=0

(
−X3

x1

)i

=
(−1)nK ′(x2q, x3q)
qK ′(x1q, x2q, x3q)

.

P r o o f. We can and shall solve the equation for the value of x3 that
makes it true. The important point is that x3 turns out to be an integer, so
4-fold symmetry occurs.

We now solve the equation. It is equivalent to
j∑

i=0

(
−X3

x1

)i

=
1

1 +
(−1)n

x1x2q2

1

1 +
(−1)n

x2x3q2

.

Equivalently,

−X3/x1 − (−X3/x1)j+1

(−X3/x1)j+1 − 1
=

(−1)n

x1x2q2

1

1 +
(−1)n

x2x3q2

.

This is the same as

−1 + (−X3/x1)j

(−X3/x1)j+1 − 1
=

1

1 +
(−1)n

x2x3q2

.

Finally, this is equivalent to

(−X3/x1)j − 1
(−X3/x1)j+1 − (−X3/x1)j

=
x2x3q

2

(−1)n
.

The formula for x3 follows immediately.

This proposition may seem complicated and perhaps uninteresting. How-
ever, in Section 6 we will use it to explain an interesting continued fraction
expansion.
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6. Applications of the Generalized Folding Lemma. We now use
our results to determine some explicit continued fractions. Note that setting
k = 3 in Theorem 4.1, and possibly changing signs, shows that

p

q
± a

abq2 ± 1

has 3-fold symmetry for all a and b, and all combinations of signs. Of course,
this holds true not only in the rationals, but also in fields of rational func-
tions, for example. As before, we will work in Q(x) (and also its completion
Q((x)), the field of formal Laurent series).

Now suppose that f(x) is polynomial over Z of degree greater than 1
such that f(x) ≡ 1 (mod x2(x − 1)) in Z[x]. As before, define the iterates
f0(x) = x, fn(x) = f(fn−1(x)). Then a trivial induction implies that

fn(x) ≡ 1 (mod (f0(x)f1(x) . . . fn−1(x))2).

Using this, we see that the series
∑∞

n=0 1/fn(x) (which converges to a formal
Laurent series in x) has iterated 3-fold symmetry in its continued fraction
expansion, with partial quotients in Z[x]. (Similarly, there is also 3-fold
symmetry when f(x) ≡ −1 (mod x2(x + 1)).)

In particular, if l is a non-zero multiple of 4, then the Chebyshev poly-
nomial Tl(x) (defined by Tl(x) = cos(l cos−1(x))) satisfies the congruence
condition (and is of degree greater than 1). Since for all a and b, Tab(x) =
Ta(Tb(x)), it follows that

(6.1)
∞∑

n=0

1
Tln(x)

has iterated 3-fold symmetry. Also, the partial quotients have integer coef-
ficients, so the continued fraction is specializable. When we specialize x to
any positive integer greater than 1, we get a simple continued fraction with
iterated 3-fold symmetry. For example,

∞∑
n=0

1
T4n(2)

= [0, 1, 1, 23, 1, 2, 1, 18815, 3, 1, 23, 3, 1, 23, 1, 2, 1,

106597754640383, 3, 1, 23, 1, 3, 23, 1, 3, 18815, 1, 2, 1, 23,

3, 1, 23, 1, 2, 1, 18815, 3, 1, 23, 3, 1, 23, 1, 2, 1, . . .].

When l is not divisible by 4, the series (6.1) displays more complicated
behavior. Here is an apparently typical example of the case when l is odd:

∞∑
n=0

1
T3n(2)

= [0, 1, 1, 5, 1, 414, 1, 2, 4, 280903, 1, 3, 3, 207, 2, 5, 1,

22165307996832415, 6, 2, 207, 3, 4, 140451, 1, 3, 3,

118, 2, 2, 1, 1, 7, . . .].
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There is partial symmetry, but it breaks down. It would be interesting to
have an explanation of this behavior, and of that for l ≡ 2 (mod 4). (By
Theorem 7.12, these series never have specializable continued fractions.)

We can also use Proposition 5.1 to prove that certain series have 4-fold
symmetry in their continued fractions. For example, Proposition 5.1 implies
that for each l,

3l+2∑
n=0

1
x2n +

l∑
n=0

1
x3·8n

has iterated 4-fold symmetry. To see this, write the sum as
l∑

n=0

(
1

x8n +
1

x2·8n +
1

x3·8n +
1

x4·8n

)
and apply Proposition 5.1 with q = x4·8l−1

, j = 3, x1 = (−1)n, and x2 = −1.
This explains the symmetry observed in

∞∑
n=0

1
22n +

∞∑
n=0

1
88n = [0, 1, 16, 14, 16, 1, 65792, 15, 17, 65792,

1, 16, 14, 16, 18, 14, 16, 1, 65792, 16,

340282366920938463481821351505477763072,

1, 15, 65792, 1, 16, 14, 16, . . .].

Also, one checks easily that the extremely large partial quotients are exactly
the numbers 223n+1

+ 223n

.
One can generate other examples of this phenomenon. For example,

Proposition 5.1 implies that
∞∑

n=0

1
x6n +

∞∑
n=0

1
x2·6n +

∞∑
n=0

1
x3·6n

has iterated 4-fold symmetry. It is unclear whether it is essentially a coin-
cidence that these sums have iterated 4-fold symmetry, or whether there is
some more general result along these lines.

7. Specializability. These results bring up some interesting related
questions. Suppose that f(x) is a polynomial over Z, of degree greater than
1. Under what conditions does

(7.1)
∞∑

n=0

1
fn(x)

have a specializable continued fraction? Several of the sums dealt with ear-
lier in this paper were of this form, with the allowable functions characterized
by congruence conditions. In this section, we will show that in general, such
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a series is specializable if and only if f(x) satisfies one of fourteen congruence
conditions.

All of our examples so far have had symmetry. However, this is not the
case in general. We will prove shortly that if f(x) ≡ −x (mod x2), then
the sum has a specializable continued fraction, although k-fold symmetry
does not occur. The proof is fairly typical of our methods in this section.
We first guess what the continued fraction expansion is, and then prove it
by induction. Surprisingly, this works in every case in which the continued
fraction expansion is specializable, although several cases are tricky. More
surprisingly, we can actually rule out every other case, and thereby arrive
at a complete classification of the polynomials for which the series (7.1) has
a specializable continued fraction.

Before we deal with the case of f(x) ≡ −x (mod x2), we need to set up
some notation. Let f(x) = g(x)x2−x, and then set A1(x) = −g(x), A2(x) =
g(f(x))x2, A3(x) = −g(f2(x))(f(x)/x)2, A4(x) = g(f3(x))x2(f2(x)/f(x))2,
etc. In general,

A2l(x) = g(f2l−1(x))x2(f2(x)/f(x))2(f4(x)/f3(x))2 . . .

. . . (f2l−2(x)/f2l−3(x))2,

and

A2l+1(x) = −g(f2l(x))(f(x)/x)2(f3(x)/f2(x))2 . . . (f2l−1(x)/f2l−2(x))2.

(The condition on f(x) implies that these are polynomials.) Then we have
the following result:

Proposition 7.1. Let f(x) = g(x)x2−x, and Ai(x) be as defined above.
Then for each l,

l∑
n=0

1
fn(x)

= [0, x, A1(x), A2(x), . . . , Al(x)].

P r o o f. We prove this by induction. The base case is trivial. Now note
that

−x2[A1(f(x)), A2(f(x)), . . . , Al(f(x))] = [A2(x), A3(x), . . . , Al+1(x)].

This, combined with the identity [0, x,−g(x),−x2X] = 1/x + [0, f(x), X],
proves the result.

We get a similar result when f(x) ≡ x2 − x + 1 (mod x2(x − 1)2). Let
f(x) = x2−x+1+x2(x−1)2g(x), and set A1(x) = −g(x)(x−1)2, B1(x) =
−x2, and in general

Al(x) = −g(f l−1(x))
(

f l−1(x)− 1
xf(x) . . . f l−2(x)

)2

,
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and
Bl(x) = −x2f(x)2f2(x)2 . . . f l−1(x)2.

(As in the previous example, the condition on f(x) implies that these are
polynomials.) Then we have the following result:

Proposition 7.2. Let f(x) = x2 − x + 1 + x2(x − 1)2g(x), and Ai(x)
and Bi(x) be as defined above. Then for each l,

l∑
n=0

1
fn(x)

= [0, x, A1(x)− 1, B1(x), A2(x), B2(x), . . . , Al(x), Bl(x)].

P r o o f. We prove this by induction. The base case is trivial. Now note
that

[A1(f(x)), B1(f(x)), . . . , Al(f(x)), Bl(f(x))]
= x2[A2(x), B2(x), . . . , Al+1(x), Bl+1(x)].

This, combined with the identity [0, x, A1(x)−1, B1(x), X] = 1/x+[0, f(x),
−1 + x2X], proves the result.

Note that in the special case where f(x) = x2 − x + 1, we have
∞∑

n=0

1
fn(x)

=
1

x− 1
.

Of course, this example is rather special.
We now determine exactly which polynomials f(x) are such that all of

the partial sums of
∑∞

n=0 1/fn(x) have specializable continued fractions.
Before doing this, however, we need to discuss a few points about proving
non-specializability.

Suppose that one has a continued fraction expansion for a formal Lau-
rent series. If one of the partial quotients does not have integral coef-
ficients, it is not necessarily the case that the Laurent series does not
have a specializable continued fraction. To see this, note that the identity
[a+1/b, c] = [a, b,−(c+b)/b2] shows that when the constant term of a partial
quotient is not an integer, one can on occasion adjust the continued fraction
to make it specializable. For example, [x−1/3, 9x2+3] = [x,−3,−x2]. How-
ever, it is not hard to see that if the first partial quotient without integer
coefficients has a non-integral coefficient other than the constant term, then
the Laurent series has no specializable continued fraction. This observation
will suffice for all of the examples we will consider.

Also, we will look at continued fractions involving several variables.
When one wants to prove that such a continued fraction is not specializ-
able, one must be careful about 0 as a partial quotient. If one of the partial
quotients becomes 0 for certain values of some of the variables, then its two
neighboring partial quotients add when the variables assume those values.
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This could make the continued fraction specializable. In general, it will be
clear that this does not happen, however.

We begin with the following easy lemma.

Lemma 7.3. Let f(x) be a (non-zero) polynomial over Z. Then 1/x +
1/f(x) has a specializable continued fraction iff f(x) is congruent modulo
x2 to one of

0,−1, 1,−x,−x− 1,−x + 1,−2x,−2x− 1,−2x + 1.

P r o o f. Suppose that f(x) = g(x)x2 + bx + a. Then

1
x

+
1

f(x)
=

[
0, x,−g(x),− x

b + 1
+

a

(b + 1)2
,− (b + 1)3x

a2
− (b + 1)2

a

]
.

From this, we see that unless b = 0, b = −1, or b = −2, there is no
specializable continued fraction for 1/x + 1/f(x). Now, we just check each
case.

When b = 0, 1/x + 1/f(x) = [0, x,−g(x),−x + a,−x/a2 − 1/a]. When
b = −1, 1/x+1/f(x) = [0, x,−g(x),−x2/a]. When b = −2, 1/x+1/f(x) =
[0, x,−g(x), x + a, x/a2 − 1/a]. From these, we see that in each case, we
must have a = −1, a = 0, or a = 1 to have specializability, and that in each
of those cases, 1/x + 1/f(x) does have a specializable continued fraction.

Lemma 7.4. Let f(x) be a (non-zero) polynomial over Z, and suppose that
f(x) = 1+kx2+x2(x−1)g(x) with g(x) ∈ Z[x]. Then 1/x+1/f(x)+1/f2(x)
has a specializable continued fraction iff k = 0.

P r o o f. We look at the more general sum
1
x

+
1

f(x)
+

1
1 + kf(x)2 + f(x)2(f(x)− 1)G(x)

.

(Note that we do not require that G(x) = g(f(x)).)
If k = 0, this has the continued fraction expansion [0, x,−g(x)(x −

1),−x + 1,−x − 1, G(x)g(x)(x − 1), x + 1, x − 1, g(x)(x − 1),−x + 1,−x −
1, g(x)(x−1), x−1, x+1]. If k = 1, then it has the expansion [0, x,−g(x)(x−
1)−1,−x+1,−x−1, G(x)g(x)(x−1)+G(x), x,−g(x)x3 +(g(x)−1)x2,−x,
g(x)(x − 1) + 1, x − 2, x/4 + 1/2], which cannot be made specializable. Fi-
nally, for all other values of k, it has the expansion [0, x,−g(x)(x − 1) −
k,−x + 1,−x − 1, G(x)g(x)(x − 1) + G(x)k, x + 1 − k, x/(k2 − 2k + 1) +
1/(k−1), g(x)(k2−2k +1)2x+(k2−2k +1)(k−g(x)+k3 +2 kg(x)−2 k2−
k2g(x)),−x/(k2 − 2k + 1)− 1/(k − 1),−x− 1 + k, g(x)(x− 1) + k, x− 1−
k, x/(1 + 2 k + k2) + 1/(k + 1)], which also cannot be made specializable.

Now note that changing f(x) to −f(−x) has no effect on the specializ-
ability of the continued fractions for the partial sums we are studying. Thus,
we immediately get the following lemma:
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Lemma 7.5. Let f(x) be a (non-zero) polynomial over Z, and suppose
that f(x) = −1+kx2 +x2(x+1)g(x) with g(x) ∈ Z[x]. Then 1/x+1/f(x)+
1/f2(x) has a specializable continued fraction iff k = 0.

Lemma 7.6. Let f(x) be a (non-zero) polynomial over Z, and suppose
that f(x) = −2x + x2g(x) with g(x) ∈ Z[x]. Then 1/x + 1/f(x) + 1/f2(x)
never has a specializable continued fraction.

P r o o f. As in the proof of Lemma 7.4, we generalize slightly, and look
at

1
x

+
1

f(x)
+

1
−2f(x) + f(x)2G(x)

,

where G(x) need not be equal to g(f(x)). This has the continued fraction ex-
pansion [0, x,−g(x), x,−G(x),−x,−g(x), x/3], which cannot be made spe-
cializable.

Similar arguments, best carried out using computer algebra software,
prove the following two lemmas:

Lemma 7.7. Let f(x) be a (non-zero) polynomial over Z, and suppose that
f(x) ≡ −2x+1 (mod x2). Then 1/x+1/f(x)+1/f2(x) has a specializable
continued fraction iff f(x) ≡ −x3 +3x2−2x+1 (mod x2(x−1)2) or f(x) ≡
x2 − 2x + 1 (mod x2(x− 1)2).

Lemma 7.8. Let f(x) be a (non-zero) polynomial over Z, and suppose that
f(x) ≡ −x + 1 (mod x2). Then 1/x + 1/f(x) + 1/f2(x) has a specializable
continued fraction iff f(x) ≡ x2 − x + 1, x3 − x + 1, x3 − x2 − x + 1, or
−x3 + 2x2 − x + 1 (mod x2(x− 1)2).

(Of course, changing f(x) to −f(−x) gives analogous results for the cases
in which f(x) ≡ −2x− 1 (mod x2) or f(x) ≡ −x− 1 (mod x2).)

In fact, when f(x) ≡ x3 − x + 1 (mod x2(x − 1)2), one can check that
1/x + 1/f(x) + 1/f2(x) + 1/f3(x) does not have a specializable continued
fraction. This, combined with the preceding lemmas, proves the necessity
of the conditions of the following theorem:

Theorem 7.9. Let f(x) be a polynomial over Z, of degree greater than
1. All of the partial sums of

∑∞
n=0 1/fn(x) have specializable continued

fractions if and only if f(x) satisfies one of the following congruences:

(1) f(x) ≡ 0 (mod x2).
(2) f(x) ≡ −x (mod x2).
(3) f(x) ≡ 1 (mod x2(x− 1)).
(4) f(x) ≡ −1 (mod x2(x + 1)).
(5) f(x) ≡ x3 − x2 − x + 1 (mod x2(x− 1)2).
(6) f(x) ≡ −x3 + 2x2 − x + 1 (mod x2(x− 1)2).
(7) f(x) ≡ −x3 + 3x2 − 2x + 1 (mod x2(x− 1)2).
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(8) f(x) ≡ x3 + x2 − x− 1 (mod x2(x + 1)2).
(9) f(x) ≡ −x3 − 2x2 − x− 1 (mod x2(x + 1)2).

(10) f(x) ≡ −x3 − 3x2 − 2x− 1 (mod x2(x + 1)2).
(11) f(x) ≡ x2 − x + 1 (mod x2(x− 1)2).
(12) f(x) ≡ x2 − 2x + 1 (mod x2(x− 1)2).
(13) f(x) ≡ −x2 − x− 1 (mod x2(x + 1)2).
(14) f(x) ≡ −x2 − 2x− 1 (mod x2(x + 1)2).

P r o o f. We have already proved the necessity that one of these congru-
ences hold. We now prove its sufficiency.

Because of our results so far, and the symmetry between f(x) and
−f(−x), we see that we need only deal with (5), (6), (7), and (12). Set
Sn(x) = 1/x + 1/f(x) + · · ·+ 1/fn(x), and Qn(x) = xf(x) . . . fn(x).

We begin with (6). Suppose that f(x) = −x3+2x2−x+1+x2(x−1)2g(x).
First, define the polynomials A0(x) = 1, A1(x) = (1−f(x))/x, and for n ≥ 2

An(x) =
1− fn(x)

xf(x) . . . fn−1(x)
+ fn(x)fn−1(x)An−2(x).

(Because f(x) − 1 = x(x − 1)2(xg(x) − 1), these are indeed polynomi-
als. In fact, we see from this that for n > 1, fn(x) − 1 is divisible by
Qn−1(x)Qn−2(x).)

In fact, An(x) is the denominator of the penultimate convergent of Sn(x).
We will see later that the continued fraction expansion of Sn(x) has even
length. If Sn(x) = p/q with p and q coprime, then p′/q′ is the penultimate
convergent iff pq′ − qp′ = 1, and also deg q′ < deg q and deg p′ < deg p. In
this case, it is easiest to check simply that q′(p/q)− 1/q is a polynomial of
degree less than deg p = deg q − 1. Of course, the denominator of Sn(x) is
easily seen to be Qn(x). (This is the method used in [10].)

Our proof that An(x) is the denominator of the penultimate convergent
will be by induction. The first two cases are easy to check. Also, note that if
Sn(x)An(x)− 1/Qn(x) is a polynomial, then it automatically has the right
degree. Now, we express it as(

Sn−2(x) +
1

fn−1(x)
+

1
fn(x)

)
×

(
1− fn(x)
Qn−1(x)

+ fn(x)fn−1(x)An−2(x)
)
− 1

Qn(x)
.

The product (1/fn−1(x) + 1/fn(x))fn(x)fn−1(x)An−2(x) is a polynomial,
as is Sn−2(x)(1 − fn(x))/Qn−1(x). (The latter one is a polynomial since
fn(x)−1 is divisible by Qn−1(x)Qn−2(x).) Also by induction we deduce that
Sn−2(x)An−2(x)fn(x)fn−1(x) is a polynomial plus fn(x)fn−1(x)/Qn−2(x).
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Thus, we need only show that

(7.2)
fn(x)fn−1(x)

Qn−2(x)
+

(
1

fn−1(x)
+

1
fn(x)

)(
1− fn(x)
Qn−1(x)

)
− 1

Qn(x)

is a polynomial, or equivalently that

fn(x)fn−1(x) +
(

1
fn−1(x)

+
1

fn(x)

)(
1− fn(x)
fn−1(x)

)
− 1

fn(x)fn−1(x)

is a polynomial which is divisible by Qn−2(x). This follows immediately
from the fact that when n = 2, it is a polynomial which is divisible by
f(x) − 1, because one sees then that it is always a polynomial divisible by
fn−1(x)− 1, which is divisible by Qn−2(x)Qn−3(x).

Now let X1(x) = −g(x)(x− 1)2 + x− 2, and for n ≥ 2,

Xn(x) =
An−2(x)
Qn−2(x)

− An−1(x)
Qn−1(x)

+
1− fn(x)
Qn−1(x)2

.

(One can prove by induction that this is a polynomial, by looking at the
differences Xn(x) − Xn−2(x) and showing that they are polynomials in a
way like that used to prove that (7.2) is a polynomial.)

Note that S1(x) = [0, x,X1(x),−x2]. Now suppose that −→sn is such
that for each n, Sn(x) = [0,−→sn]. Then for n ≥ 2 we have Sn(x) = [0,−→sn−1,
Xn(x),−←−sn−2, f

n−1(x)2,−→sn−2]. (Strictly speaking, one should probably de-
fine −→sn inductively as −→sn−1, Xn(x),−←−sn−2, f

n−1(x)2, −→sn−2, and then note
that Sn(x) = [0,−→sn].)

This is not hard to prove. Of course,

[Xn(x),−←−sn−2] = Xn(x)−An−2(x)/Qn−2(x).

It follows from the Folding Lemma that

[Xn(x),−←−sn−2, f
n−1(x)2,−→sn−2]

= Xn(x)− An−2(x)
Qn−2(x)

− 1
fn−1(x)2Qn−2(x)2

.

From this, one sees that if one subtracts Sn−1(x) from the whole continued
fraction, one gets(

Qn−1(x)
(
−Qn−1(x)

(
Xn(x)− An−2(x)

Qn−2(x)

− 1
fn−1(x)2Qn−2(x)2

)
−An−1(x)

))−1

.

If one applies the definitions of Xn(x) and of Qn(x), this simplifies to
1/fn(x). (There is no need to use the recurrence defining Al(x) in these
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manipulations, because all of the occurrences of Al(x) (for various l) can-
cel.) We omit the details. This proves the sufficiency of case (6).

We now deal with case (12). Suppose that f(x) = (x− 1)2(1 + g(x)x2).
First, define the polynomials (for n ≥ 1)

An(x) =
fn(x)− 1
fn−1(x)

+ fn(x)fn−1(x)Sn−1(x).

(One can check easily that these are polynomials.)
As before, An(x) is the denominator of the penultimate convergent of

Sn(x). We will prove that the continued fraction expansion of Sn(x) has
odd length. Assuming this, it is easy to prove that An(x) is indeed this
denominator. Note that the denominator of Sn(x) is fn(x)fn−1(x). Let
Bn(x) = An(x)Sn(x) + 1/(fn(x)fn−1(x)). We need to show that Bn(x) is
a polynomial. To do this by induction, we look at the difference

Bn(x)−Bn−1(f(x)) =
(

An−1(f(x)) +
fn(x)fn−1(x)

x

)(
Sn−1(f(x)) +

1
x

)
−An−1(f(x))Sn−1(f(x)),

and show that it is a polynomial. It is easy to check that fn(x)fn−1(x)/x2 is
a polynomial. Thus, this reduces to checking that An−1(f(x)) +
Sn−1(f(x))fn(x)fn−1(x) is a polynomial divisible by x. Call this Cn(x).
Then Cn+1(x) = Cn(f(x)) + fn(x)fn−1(x)/x + fn+1(x)fn(x)/f(x), and
one sees by induction that these are polynomials divisible by x.

Now, for n ≥ 2, define

Xn(x) = g(fn−1(x))
(

fn−1(x)− 1
fn−2(x)

)2

and for n ≥ 3,

Yn(x) = − fn−1(x)
fn−3(x)2

.

Also define Y2(x) = f(x).
Now note that S1(x) = [0, x,−g(x)(x− 1)2− 1, x+1, x− 1] and S2(x) =

[0, x,−g(x)(x−1)2−1, x+1, x−1, X2(x),−x, f(x)+1, x,−g(x)(x−1)2−1, x].
Suppose that for each n, Sn(x) = [0,−→sn]. Then for n ≥ 3, we have

(7.3) Sn(x) = [0,−→sn−1, Xn(x),
−−→sn−2, Yn(x),−→sn−3, Yn−1(x),−←−sn−3, Xn−1(x),←−sn−2].

This can be proved completely straightforwardly. The case n = 3 seems
to need to be treated differently, since it involves Y2(x), which does not quite
fit the pattern defining Yn(x) in general, but the same methods suffice to
prove it.
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In the general case, the techniques we have been using show that the
continued fraction in (7.3) is equal to a certain rational function of iterates
of f(x), g(x) applied to iterates of f(x), and partial sums of the series. (Note
that the numerators and denominators of the last two convergents of Sn(x)
can be expressed in terms of these.)

When one expresses each of the partial sums in terms of Sn(x) (and the
iterates of f(x)) and subtracts off Sn(x), one is left with a rational function
of the iterates of f(x), and g(x) applied to them. (The partial sums all
disappear by cancellation.) One can then express each of the iterates of
f(x) in terms of the first one to appear. This gives a rational function of
one iterate of f(x), as well as g(x) applied to several iterates. This rational
function vanishes identically. (This would be tedious to check by hand, but
is not very difficult to check using computer algebra software.)

Now, we deal with case (5). Suppose that f(x) = (x−1)2(1+x+x2g(x)).
Now define A1(x) = (f(x)− 1)/x, and for n ≥ 2,

An(x) =
fn(x)− 1
fn−1(x)

+ fn(x)fn−1(x)Sn−2(x).

One can check, as before, that this is the denominator of the penultimate
convergent of Sn(x). We will prove shortly that the continued fraction has
odd length for n ≥ 2. Note that the denominator of Sn(x) is fn(x)fn−1(x).

Now define Xn(x) for n ≥ 3 to be

g(fn−1(x))
(

fn−1(x)− 1
fn−2(x)

)2

+ g(fn−2(x))(fn−2(x)− 1)2 + fn−2(x)− 1,

Yn(x) for n ≥ 4 to be(
fn−2(x)− 1

fn−3(x)

)2

×(g(fn−2(x))(fn−1(x) + (fn−2(x) + 1)(fn−2(x)− 1)2) + fn−2(x)2 − 2),

and Zn(x) for n ≥ 6 to be

−Yn−2(x)− fn−2(x)fn−3(x)2

fn−4(x)2fn−5(x)2
.

(These are easily seen to be polynomials.)
Also define X1(x) = −g(x)(x − 1)2 − x + 1, and X2(x) following the

definition above, except multiplied by −1. Define Y1(x) = −x2, Y2(x) =
−g(x)(x−1)4(g(x)x2+2x+2)−x4+2x3+x2−4x+1, and Y3(x) following the
definition above, except multiplied by −1. Finally, define Z3(x) = x2(f(x)+
1), Z4(x) = (f(x)2(f(f(x)) + 1) + 2x − 1)/x2, and Z5(x) following the
definition above, except with the second term multiplied by −1.
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Now note that S1(x) = [0, x,X1(x), Y1(x)] and S2(x) = [0, x,X1(x),
Y1(x), X2(x), x−1, x+1, Y2(x), x]. Suppose that for each n, Sn(x) = [0,−→sn].
Then for n ≥ 3 we have

Sn(x) = [0,−→sn−1, Xn(x),
−−→sn−2, 0,−→sn−4, Yn−2(x), 0, Zn(x),−←−sn−4, Yn(x),←−sn−2].

(When n = 3, −→s−1 and −←−s−1 appear here. They should be interpreted to
be empty words. Also, note that because 0 appears in this expansion, the
continued fraction collapses somewhat. However, it remains specializable.)

As before, this is straightforward to prove. The methods used for the
proof of the previous cases also work in this case. (It is best to use computer
algebra software for the calculations.)

Finally, we deal with case (7). First note that given any continued
fraction [a0, a1, . . . , an] with convergents pi/qi, and given any X, we have

(7.4) [a0,−→wn, X,←−wn, 1,−−→wn] =
pn

qn
+

1
qn(Xqn + 2qn−1)(−1)n + 1

.

(This is easy to prove using the techniques used to prove the Generalized
Folding Lemma.)

Now, suppose that f(x) = −x3 + 3x2 − 2x + 1 + g(x)x2(x − 1)2. Note
that f(x)− 1 = x(x− 1)(g(x)(x2−x)−x+2), and that the denominator of
Sn(x) is Qn(x). We will show that the continued fraction of Sn+1(x) arises
from that of Sn(x) through application of (7.4), for a suitable choice of X.

To prove this, we use the fact that for any continued fraction, pkqk−1 ≡
(−1)k−1 (mod qk). (This follows from the equation pkqk−1 − qkpk−1 =
(−1)k−1.) From this, one sees immediately that (7.4) is applicable (with X
a polynomial) if and only if

Sn(x)(fn+1(x)− 1) ≡ −2 (mod Qn(x)).

(It is easy to check that Qn(x) divides fn+1(x)− 1, so Sn(x)(fn+1(x)− 1)
is a polynomial.)

However, this is easy to prove by induction. The base case is trivial.
Now, assume that it holds for n − 1. Using induction and the fact that
fn(x)− 1 divides fn+1(x)− 1, we have

Sn−1(x)(fn+1(x)− 1) ≡ −2
(

fn+1(x)− 1
fn(x)− 1

)
(mod Qn(x)).

Hence,

Sn(x)(fn+1(x)− 1) ≡ −2
(

fn+1(x)− 1
fn(x)− 1

)
+

fn+1(x)− 1
fn(x)

(mod Qn(x)).

This simplifies to −fn(x)(fn(x)− 1)((fn(x) + 1)g(fn(x))− 1)− 2. Because
Qn−1(x) divides fn(x)−1, this is −2 modulo Qn(x), as desired. Hence, the
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continued fraction of Sn+1(x) is determined by that of Sn(x) by (7.4). Since
the continued fraction of S1(x) is [0, x,−g(x)x2 +(2g(x)+1)x−g(x)−3, x+
1, x− 1], all of these continued fractions are specializable.

This completes the proof.

Lemma 7.10. Let f(x) be a quadratic polynomial over Z. Then the sum∑∞
n=0 1/fn(x) has a specializable continued fraction iff f(x) = kx2 for some

k, f(x) = kx2 − x for some k, or f(x) is one of x2 − x + 1, x2 − 2x + 1,
−x2 − x− 1, or −x2 − 2x− 1.

(This lemma is proved the same way as the necessity of the conditions
in Theorem 7.9. We omit the details. Essentially, one looks at partial sums
and shows that they do not have specializable continued fractions, unless
f(x) belongs to one of the six cases of the lemma. Arguments like those
used to prove the next lemma show that the beginnings of the continued
fractions for these partial sums coincide with the beginning of the continued
fraction for the entire series. In each case, the non-specializability of the
continued fraction for the partial sum occurs near enough to its beginning
to imply that the entire series cannot have a specializable continued fraction
expansion.)

Lemma 7.11. Let f(x) be a polynomial over Z, of degree greater than
2. Then the partial sums of

∑∞
n=0 1/fn(x) are convergents to its continued

fraction.

P r o o f. Suppose that deg f(x) = l. Since the denominator of the par-
tial sum

∑k
n=0 1/fn(x) clearly divides f0(x)f1(x) . . . fk(x), it has degree at

most (lk+1 − 1)/(l− 1). Since l ≥ 3, this is strictly less than 1
2 deg fk+1(x).

Now note that if we define a valuation on Q(x) by |a(x)/b(x)| =
2deg a(x)−deg b(x), then it is easy to see that for a, ε ∈ Q(x), |aε| < 1 implies
ε+1/a = 1/(a+ε′) with |ε′| = |εa2|. From this, it follows immediately that∑k

n=0 1/fn(x) is a convergent of
∑k+1

n=0 1/fn(x). This proves our lemma.

Combining the last three results yields the following theorem:

Theorem 7.12. Let f(x) be a polynomial over Z, of degree greater than
1. Then

∑∞
n=0 1/fn(x) has a specializable continued fraction if and only

if f(x) satisfies one of the fourteen congruences listed in the statement of
Theorem 7.9.

Another interesting example is f(x) = x2 + x − 1. The continued frac-
tion in this case is not specializable, but no denominators greater than 2
occur. Doubling the continued fraction eliminates all but one of them. If
a continued fraction is not specializable, but the coefficients of its partial
quotients have denominators at most 2, then we call it semi-specializable.
Semi-specializable continued fractions are almost as interesting as special-
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izable ones, because it is fairly straightforward to transform a continued
fraction whose partial quotients are halves of integers to a simple continued
fraction. It might be interesting to find an analogue of Theorem 7.12 for
semi-specializability, because it is conceivable that there would be a simpler
or more interesting characterization.

8. Other forms of folding symmetry. In addition to folding symme-
try, at least one other similar form of symmetry occurs in some continued
fractions, this time in products rather than sums. Define −→an to be the word
a0, a1, . . . , an, and define ←−an to be an, an−1, . . . , a0. Thus, −→an = a0,−→wn.
This notation will be more convenient than the earlier notation.

Note that since [←−an] = pn/pn−1, −→an =←−an if and only if pn−1 = qn. (To
compute [←−an], note that [←−an] = −1/f−1

n (0) = pn/pn−1.) We now use this
to prove the following proposition:

Proposition 8.1. If −→an =←−an then

[−→an, x,←−an] =
pn

qn

(
1 +

(−1)n

qn(xpn + 2qn) + (−1)n−1

)
.

P r o o f. We have

[−→an, x,←−an] =
pn(x + pn−1/pn) + pn−1

qn(x + pn−1/pn) + qn−1
.

Now if we apply the relation pnqn−1 = (−1)n−1 + qnpn−1, we get

p2
nx + 2pnpn−1

pnqnx + 2qnpn−1 + (−1)n−1
,

and substituting pn−1 = qn gives

p2
nx + 2pnqn

pnqnx + 2q2
n + (−1)n−1

,

which is equal to

pn

qn

(
1 +

(−1)n

qn(xpn + 2qn) + (−1)n−1

)
,

as desired.

The symmetry appearing in Proposition 8.1 looks very much like 2-fold
symmetry, but of course is not exactly the same. For lack of a better name,
we call it duplicating symmetry .

Given the more restrictive hypotheses of Proposition 8.1 (compared to
those of the Folding Lemma), one might not expect there to be any inter-
esting applications. However, there are some.
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Products such as
∞∏

n=0

(
1 +

1
xln

)
do not have k-fold or duplicating symmetry. (They do have interesting
continued fraction expansions, which can be determined explicitly for l even.
For the details, see [7].) Surprisingly, the Chebyshev analogues

∞∏
n=0

(
1 +

1
Tln(x)

)
(where Tl(x) is the lth Chebyshev polynomial) have iterated duplicating
symmetry, provided that l ≡ 2 (mod 4). We prove this in slightly greater
generality.

Let f(x) be a polynomial over Z of degree greater than 1 such that

f(x) ≡ 2x2 − 1 (mod x(x2 − 1))

in Z[x]. It is easy to prove by induction that f i(x)2 − 1 is divisible by
(f0(x)+1)(f1(x)+1) . . . (f i(x)+1). Also, note that f i(x) divides f i+1(x)+1.

Now consider the product

Pn =
n∏

i=0

(
1 +

1
f i(x)

)
.

The remarks above show that its denominator is fn(x). We now show that
it has duplicating symmetry. We can assume (by induction) that Pn−1 has
a symmetric continued fraction, of odd length. (Note that P0 = [1, x−1, 1].)
Now, in order to apply Proposition 8.1, we need only show that

f(fn−1(x))− 2fn−1(x)2 + 1
fn−1(x)

is divisible by the numerator of Pn−1. Note that this is divisible by fn−1(x)2

−1, and hence by (f0(x)+1)(f1(x)+1) . . . (fn−1(x)+1). This implies that
it is divisible by the numerator of Pn−1, and thus that Pn has iterated
duplicating symmetry. (Note that in the special case f(x) = 2x2 − 1, we
have P∞ =

√
x2 − 1/(x− 1). See [8].)

When l ≡ 2 (mod 4), the Chebyshev polynomial Tl(x) satisfies the ap-
propriate congruence. Since for all a and b, Tab(x) = Ta(Tb(x)), it follows
that

∞∏
n=0

(
1 +

1
Tln(x)

)
has iterated duplicating symmetry. Also, the partial quotients have integer
coefficients, so the continued fraction is specializable. For l ≡ 0 (mod 4),
there appears to be a semi-specializable continued fraction, which is some-
what, but not entirely, symmetric. For l odd, things are more complicated.
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(In these cases, the continued fractions are almost certainly never specializ-
able.)

9. Open questions and conjectures. Unfortunately, this paper fails
to answer the following natural questions (among others):

(1) How do Theorems 7.9 and 7.12 generalize to products?
(2) Which of the sums studied in this paper have semi-specializable

continued fractions? What about the products?
(3) There are a number of continued fraction expansions derived in

this paper that are reminiscent of 2-fold or 3-fold symmetry. Are
any of them special cases of more general phenomena (as 2-fold
symmetry is a special case of k-fold symmetry)?

(4) Under what conditions is the sum of two specializable continued
fractions still specializable? (At the end of Section 6, a number
of cases in which this occurs are derived. However, the derivation
does not seem to generalize in this direction.)

(5) Does Proposition 5.1 have any interesting or useful generaliza-
tions?

We can, however, conjecture some partial answers to these questions:

Conjecture 9.1. There exists a finite collection {(ai(x), bi(x))} ⊂ Z[x]
× Z[x] such that each bi(x) divides x2(x2 − 1)2, with the property that if
f(x) ∈ Z[x] and deg f(x) > 1, then all of the partial products of

∏∞
n=0(1 +

1/fn(x)) have specializable continued fractions if and only if for some i,
f(x) ≡ ai(x) (mod bi(x)).

It may be the case that x2(x2 − 1)2 needs to be replaced by another
polynomial, but even in that case, the (appropriately modified) conjecture
is presumably true. Techniques similar to those used in the proof of The-
orem 7.9 will probably work. One will presumably also arrive at a result
analogous to Theorem 7.12.

It seems plausible that one can prove similar results for semi-specializabi-
lity (in the case of products or that of sums).

Conjecture 9.2. Let l be a non-zero multiple of 4. Then
∞∏

n=0

(
1 +

1
Tln(x)

)
has a semi-specializable continued fraction expansion.

If true, this result probably arises from congruence conditions satisfied
by the Chebyshev polynomials. The result about x2 + x − 1 mentioned at
the end of Section 7 may very well also generalize similarly.
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[4] M. Kmošek, Continued fraction expansion of some irrational numbers, Master’s
Thesis, Uniwersytet Warszawski, Warszawa, 1979 (in Polish).
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