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1. Introduction. Let Q be the field of rational numbers, p a prime
number and Qp the completion of Q with respect to the p-adic valuation | |p
defined on Q by

(1.1) |0|p = 0 and |A|p = p−a if A = par/s, where p - r, p - s.

Then Qp is the field of p-adic numbers with p-adic valuation | |p, the exten-
sion of the original valuation on Q (cf. Koblitz [12] or Schikhof [19]).

It is well known that every A ∈ Qp has a unique series representation
A =

∑∞
n=v(A) cnp

n, cn ∈ {0, 1, 2, . . . , p − 1}. In the discussion below we
call the finite series 〈A〉 =

∑
v(A)≤n≤0 cnp

n the fractional part of A. Then
〈A〉 ∈ Sp, where we define Sp = {〈A〉 : A ∈ Qp} ⊂ Q.

This set Sp is not multiplicatively or additively closed. The function 〈A〉
and set Sp have been used in the study of certain types of p-adic continued
fractions by Mahler [14], Ruban [17] and Laohakosol [13] in particular.

Recently the fractional part 〈A〉 was used by the present authors [7], [8]
to derive some new unique series expansions for any element A ∈ Qp, in-
cluding in particular analogues of certain “Sylvester”, “Engel” and “Lüroth”
expansions of arbitrary real numbers into series with rational terms (cf. [16],
Chap. IV). It turns out that p-adic and real Lüroth series may be regarded
in some sense as algorithmic relatives of continued fractions, and there is
some interest in studying possible parallels between the algorithms or digits
inducing them. In the direction of metric and asymptotic results concerning
digits, various analogies of this kind were previously established, especially
by Jager and de Vroedt [5] and Salát [18] for real Lüroth series, and by
Ruban [17] for p-adic continued fractions, in comparison with classical the-
orems of Khinchin (see e.g. [2], [6]) for real continued fractions. (In these
developments, Haar measure for p-adic numbers replaces Lebesgue measure
for real numbers.)

The main aim of the present paper is to state or derive some similar
metric and asymptotic results for the p-adic Lüroth-type expansions re-
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ferred to above. Here, as in other areas such as e.g. transcendence and
diophantine approximation theory (cf. Sprindžuk [20]), there are also par-
allels with results in the partly analogous but different context of Lau-
rent series over finite fields; see Paysant-Le Roux and Dubois [15] and
the present authors [9], [10]. Consequently, many of the steps below are
given only in outline, together with references to fuller parallel arguments
where appropriate. (We thank an anonymous referee for some helpful com-
ments.)

2. Lüroth-type algorithm and ergodic properties. The Lüroth-type
expansion (see (2.1) below) of a p-adic number A ∈ Qp was derived in [7]
from the following algorithm for the “digits” an = an(A) ∈ Sp:

Define a0 = 〈A〉 and A1 = A− a0 and observe that

a0 = c ∈ Sp ⇔ v(A− c) ≥ 1⇔ A− c ∈ Xp,

where Xp = pZp is the maximal ideal in the ring Zp of all p-adic integers,
i.e. p-adic numbers of order ≥ 0. If An 6= 0 (n ≥ 1) has already been defined,
inductively define

an = 〈1/An〉 and An+1 = (an − 1)(anAn − 1),

so that v(an) ≤ −1 for n ≥ 1. If any Am = 0, or am = 0, stop the algorithm.
This algorithm leads (cf. [7]) to a finite or convergent (relative to | |p)

expansion

(2.1) A = a0 +
1
a1

+
∑

n≥2

1
a1(a1 − 1) . . . an−1(an−1 − 1)an

,

which is unique for A subject to the stated condition on the digits an.
Another way of looking at it is in terms of operators a and T (where a :
Xp \ {0} → Sp, T : Xp → Xp) such that a(x) = 〈1/x〉, T (0) = 0 and
otherwise T (x) = (a(x) − 1)(xa(x) − 1). Then for x = A1 ∈ Xp we have
a1 = a1(x) = a(x) and more generally an = an(x) = a1(Tn−1x) if 0 6=
Tn−1x ∈ Xp .

Although the conclusions of the next theorem are sharpened in Section 3
below it seems at least worth sketching briefly how they can also be deduced
from the Ergodic Theorem, after proving that x ∈ Xp ⇒ T (x) ∈ Xp and
that the resulting operator T : Xp → Xp is ergodic relative to Haar measure
µ on Xp.

Theorem 1. (i) For any given k ∈ Sp with v(k) ≤ −1, and all x ∈ Xp

outside a set of Haar measure 0, the digit value k has asymptotic frequency

lim
n→∞

1
n

#{r ≤ n : ar(x) = k} = |k|−2
p .
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(ii) For all x ∈ Xp outside a set of Haar measure 0 there exists a single
“Khinchin-type” constant

lim
n→∞

|a1(x) . . . an(x)|1/np = pp/(p−1).

(iii) For all x ∈ Xp outside a set of Haar measure 0,

|x− wn|p = p(−2p/(p−1)+o(1))n as n→∞,
where

wn = wn(x) =
n∑
r=1

λr−1

ar
, λ0 = 1, λr =

1
a1(a1 − 1) . . . ar(ar − 1)

.

For this and later theorems, a convenient description of the Haar measure
µ on Xp = pZp is given in Sprindžuk [20], pp. 67–70. In particular, µ(C) =
p−r for any “circle”, “disc” or “ball”

C = C(x, p−r−1) := {y ∈ Qp : |y − x|p ≤ p−r−1}
of radius p−r−1. So µ(Xp) = 1, since Xp = C(0, p−1).

Now note that every “digit” a(x) lies in the set S∗p := {〈A〉 : v(A) ≤ −1}.
For any given digits k1, . . . , kn ∈ S∗p , let

In = In(k1, . . . , kn) := {x ∈ Xp : a1(x) = k1, . . . , an(x) = kn}
and call In a basic (Lüroth) cylinder of rank n. Also let I0 = Xp.

The Lüroth-type expansion (2.1) of any x ∈ In then has the form

x = wn + λn
∑
r>n

1
an+1(an+1 − 1) . . . ar−1(ar−1 − 1)ar

,

where

λ0 = 1, λr =
1

k1(k1 − 1) . . . kr(kr − 1)
for 1 ≤ r ≤ n,

and

wn =
n∑
r=1

λr−1

kr
.

Thus x = wn + λnT
n(x) = ψn(Tn(x)), if ψn = ψn(k1, . . . , kn) : Xp → In is

defined by ψn(y) = wn + λny (y ∈ Xp). The “linear-type” map ψn is then
1-1 onto, with inverse map Tn : In → Xp. In particular, In = Im(ψn) =
wn+λnXp. Since Xp = C(0, p−1), it then follows that In = C(wn, p−1|λn|p)
and has Haar measure µ(In) = p−v(λn) = |λn|p. Hence

(2.2) µ(In) =
1

|k1(k1 − 1) . . . kn(kn − 1)|p =
1

|k1 . . . kn|2p
,

since v(k) = v(k − 1) for v(k) ≤ −1.
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More generally, for any r1 < . . . < rn, we obtain

(2.3) µ{x ∈ Xp : ar1(x) = k1, . . . , arn(x) = kn} = |k1 . . . kn|−2
p .

In particular, µ{x ∈ Xp : ar(x) = k} = |k|−2
p for any r ≥ 1 and k ∈ S∗p .

Thus the digit functions are identically distributed and independent random
variables relative to µ.

Now, in a standard way quite similar to that followed by Jager and
de Vroedt [5] for real Lüroth series, one can deduce that T is measure-
preserving and ergodic. (In fact, the stronger Bernoulli property for T could
be approached along lines analogous to some given in [1].)

Theorem 1 and some further conclusions then follow by making special
choices for integrable functions f in the ergodic formula

(2.4) lim
n→∞

1
n

n∑
r=1

f(T r−1x) =
\
Xp

f dµ a.e.

For example, part (i) of Theorem 1 follows from consideration of the char-
acteristic function fk of a basic cylinder I1(k). Alternatively, use of the
function f̂(·) = logp |a1(·)|p leads to the limit

(2.5) lim
n→∞

1
n

n∑
r=1

logp |ar(x)|p =
\

Xp\{0}
f̂ dµ =

p

p− 1
a.e.,

and this implies part (ii) of Theorem 1. The same function f̂ may be used
in the deduction of part (iii), in combination with the following inequalities
analogous to some appearing for Laurent series in [10]:

(2.6) 1−
n+1∑
r=1

logp |ar(x)|2p ≤ logp |x− wn|p ≤ −1−
n∑
r=1

logp |ar(x)|2p.

The function f̂ may also be used to show that the operator T has entropy

(2.7) h(T ) = − lim
n→∞

1
n

loge µ(In) =
2p loge p
p− 1

.

Lastly, it is interesting to note that, in contrast to (2.5), a truncation
argument involving the function f̃(·) = |a1(·)|p leads to the conclusion

(2.8) lim
n→∞

1
n

n∑
r=1

|ar(x)|p =∞ a.e.

3. Sharper asymptotic estimates. The fact that the p-adic Lüroth-
type digit functions ar(·) define identically distributed and independent ran-
dom variables on Xp paves the way for the introduction of methods and
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results of probability theory, which lead to sharper and deeper results than
those considered earlier.

In the first place, the law of the iterated logarithm and the central limit
theorem (cf. Theorems 3.16/17 in Galambos [4]) yield:

Theorem 2. Let An,k(x) = #{r ≤ n : ar(x) = k}. Then for almost all
x ∈ Xp,

lim sup
n→∞

An,k(x)− n|k|−2
p√

n log log n
=
√

2|k|−2
p (1− |k|−2

p ) .

Further , for any real z,

lim
n→∞

µ

{
x ∈ Xp : An,k(x)− n|k|−2

p <
z

|k|p
√
n(1− |k|−2

p )
}

=
1√
2π

z\
−∞

e−u
2/2 du.

Now define a sequence (tn) of independent random variables tn on Xp by

tn(x) =
{
v(an(x)) if |an(x)|p ≤ n2,
0 otherwise.

Then the expected value

E(tn) =
∑

pr≤n2

p−2rr(p− 1)pr = E(v(an(·))) +O

(
log n
n2

)
,

and a similar calculation of E(t2n) and the variance var(tn) leads to the
estimate

(3.1) Bn :=
n∑
r=1

var(tr) =
pn

(p− 1)2 +O(1) as n→∞.

Next, since tn(x) ≤ 2 logp n = o(
√
Bn/ log logBn ), the law of the iterated

logarithm implies

(3.2) lim sup
n→∞

∑n
r=1 tr −

∑n
r=1E(tr)√

2B log logBn
= 1 a.e.

Hence

(3.3) lim sup
n→∞

∑n
r=1 tr −

∑n
r=1E(v(ar(·)))√

2 p
(p−1)2n log log n

= 1 a.e.

Now let Un = {x ∈ Xp : tn(x) 6= v(an(x))}. Then

µ(Un) =
∑

|k|p>n2

|k|−2
p <

1
n2 ,
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and the Borel–Cantelli lemma yields µ(lim supn→∞ Un) = 0. Thus, for al-
most all x ∈ Xp, there exists n0(x) with tn(x) = v(an(x)) for n ≥ n0(x).
Therefore (3.3) now implies:

Theorem 3. For almost all x ∈ Xp,

lim sup
n→∞

∑n
r=1 v(ar(x))− c1n√

n log log n
=
√

2c2,

where c1 = p/(p− 1), c2 = p/(p− 1)2. Hence as n→∞,

|a1(x) . . . an(x)|1/np = pp/(p−1) +O

(√
log log n

n

)
a.e.

The next theorem sharpens the last part of Theorem 1 above:

Theorem 4. If wn = wn(x) is defined as in Theorem 1(iii) then

lim sup
n→∞

v(x− wn) + 2pn/(p− 1)√
n log log n

=
√

8p
p− 1

a.e.

Hence

1
n
v(x− wn) = − 2p

p− 1
+O

(√
log log n

n

)
a.e.

By symmetry as in Feller [3], p. 205, Theorem 3 leads to

(3.4) lim inf
n→∞

∑n
r=1 v(a2

r(x))− 2pn/(p− 1)√
n log log n

= −2
√

2c2 a.e.

In combination with (2.6) above, this implies Theorem 4.

4. Average and individual estimates for digits. By (2.8) above,
the average

1
n

n∑
r=1

|ar(x)|p →∞ a.e. on Xp

as n→∞. Theorem 5 estimates this average in probability over Xp:

Theorem 5. For any fixed ε > 0,

lim
n→∞

µ

{
x ∈ Xp :

1
n logp n

∣∣∣
n∑
r=1

|ar(x)|p − (p− 1)
∣∣∣ > ε

}
= 0,

i.e.

1
n logp n

n∑
r=1

|ar(x)|p → p− 1 in probability over Xp.
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P r o o f. Consider the truncation method of Feller [3], Chapter 10, §2, as
applied to the random variables Ur, Vr (r ≤ n) defined by

Ur(x) = |ar(x)|p, Vr(x) = 0 if |ar(x)|p ≤ n logp n,

Ur(x) = 0, Vr(x) = |ar(x)|p if |ar(x)|p > n logp n.

In that case

(4.1) µ

{
x ∈ Xp :

1
n logp n

∣∣∣
n∑
r=1

|ar(x)|p − (p− 1)
∣∣∣ > ε

}

≤ µ{x : |U1 + . . .+ Un − (p− 1)n logp n| > εn logp n}
+ µ{x : V1 + . . .+ Vn 6= 0},

and

µ{x : V1 + . . .+ Vn 6= 0} ≤ nµ{x : |a1(x)|p > n logp n}(4.2)

= n
∑

|k|p>n logp n

|k|−2
p < 1/ logp n = o(1).

Next E(U1 + . . .+Un) = nE(U1) and var(U1 + . . .+Un) = n var(U1), where

E(U1) =
∑

|k|p≤n logp n

|k|−1
p = (p− 1) logp([n logp n])(4.3)

∼ (p− 1) logp n as n→∞
and

(4.4) var(U1) < E(U2
1 ) =

∑

|k|p≤logp n

1 < pn(logp n).

Theorem 5 then follows from an application of (4.3) and (4.4) to Chebyshev’s
inequality:

(4.5) µ{x : |U1 + . . .+ Un − nE(U1)| > εnE(U1)} ≤ n var(U1)
(εnE(U1))2 = o(1).

Note that the conclusion of Theorem 5 is not valid with probability one,
since Theorem 3.13 in Galambos [4] implies that either

lim sup
n→∞

1
n logp n

n∑
r=1

|ar(x)|p =∞ a.e.

or

lim inf
n→∞

1
n logp n

∑
|ar(x)|p = 0 a.e.

Regarding estimates for individual digits, now consider:
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Theorem 6. Given any positive increasing function ψ(n) of n,

|an(x)|p = O(ψ(n)) a.e.⇔
∞∑
n=1

1/ψ(n) <∞.

In fact , |an(x)|p = O(ψ(n)) is false a.e. if the series diverges.

P r o o f. Let Vn = {x ∈ Xp : |an(x)|p > ψ(n)}. Since µ{x : an(x) = k}
= |k|−2

p by (2.3), it follows that

µ(Vn) =
∑

|k|p>ψ(n)

|k|−2
p ≤ p/ψ(n).

If
∑∞
n=1 ψ(n)−1 < ∞, then the Borel–Cantelli lemma (cf. [4], p. 36)

yields µ(lim supVn) = 0. Hence |an(x)|p > ψ(n) for at most finitely many
n, for almost all x ∈ Xp. Thus |an(x)|p = O(ψ(n)) a.e.

If
∑∞
n=1 ψ(n)−1 diverges, the Abel–Dini theorem (Knopp [11], p. 290)

implies that there exists a positive increasing function θ(n) with θ(n)→∞
as n → ∞ such that

∑∞
n=1 ψ(n)−1θ(n)−1 also diverges. Then let Wn =

{x ∈ Xp : |an(x)|p > ψ(n)θ(n)}. The independence of the random variables
an implies the independence of the sets Wn. Also

∞∑
n=1

µ(Wn) =
∞∑
n=1

∑

|k|p>ψ(n)θ(n)

|k|−2
p >

1
p

∞∑
n=1

1
ψ(n)θ(n)

=∞.

Thus the Borel–Cantelli lemma yields µ(lim supWn) = 1, and so |an(x)|p >
ψ(n)θ(n) holds with probability one, for infinitely many n. Thus |an(x)|p =
O(ψ(n)) is false a.e.

Corollary. For almost all x ∈ Xp,

lim sup
n→∞

log |an(x)|p − logn
log log n

= 1.

P r o o f. Theorem 6 implies that |an(x)|p = O(n(log n)α) a.e. for any
α > 1, while |an(x)|p = O(n(logn)β) is false a.e. for any β ≤ 1. The corollary
then follows by choosing α = 1 + ε, β = 1− ε (ε > 0).

(Note that the corresponding lower limit is not finite a.e., since (2.3)
earlier shows that |an(x)|p can take any particular constant value pN (N ≥
1) for all n, and all x in a set of positive measure.)

References

[1] J. Barr ionuevo, R. M. Burton, K. Dajan i and C. Kraa ikamp, Ergodic prop-
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