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1. Introduction. Let Z, N, Q, R be the sets of integers, positive inte-
gers, rational numbers and real numbers respectively. Let Dy, Dy € N with
ged(Dy, Do) = 1. There were many papers concerned with the equation

(1) Diz* —Dyy? =1, z,y€eN,

written by Ljunggren, Bumby, Cohn, Ke and Sun. Concerning the solvability
of (1), Zhu [7] and Le [2] proved independently that if D; = 1, then (1) has
solutions (z,y) if and only if the fundamental solution u; + v/ Dy of Pell’s
equation
u27D2v2:1, u,v € 7,
satisfies either u; = 2% or u? + Dov} = 2%, where x; € N. In addition, Zhu
[7] showed that if Dy = 1, then (1) has solutions (z,y) if and only if the
equation
W2 —Dw?=—-1, U, ez,

has solutions (u’,v") and its least positive integer solution (u},v]) satisfies
v} = 22, where x; € N. In this paper we prove a general result as follows.

THEOREM 1. If min(Dy, Dy) > 1, then (1) has solutions (z,y) if and
only if the equation
(2) DU? —Dy,V?=1, UV €Z,
has solutions (U, V') and its least positive integer solution (U1, Vy) satisfies

U, = x%, where x1 € N.

Let N(Dy,D3) denote the number of solutions (z,y) of (1). Ljunggren
[4] showed that N(1,Ds) < 2. In [3], Le proved that if Dy > €%, then
N(1,Ds) < 1. Recently, Wu [6] relaxed the condition Dy > €54 to Dy > €37.
In this paper we prove the following result.
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THEOREM 2. If D, is a square and

9.379-108  if min(D;, Dy) =1,

>
max (D1, D) > {2.374 -10%°  if min(Dy, D3) > 1,

then N(Dl,Dg) S 1.

2. Preliminaries

LEMMA 1. For any odd prime p with p =1 (mod 4), there exists a1 € N
such that p > a1 > 1, 2tay and (a1/p) = —1, where (a1/p) is Legendre’s
symbol.

Proof. It is a well known fact that there exists a € N with p > a > 1
and (a/p) = —1. Since (a/p) = ((p — a)/p) for p=1 (mod 4), we get
_Ja if 2ta,
M p—a if 2| a.
The lemma is proved.

LEMMA 2 ([3, Lemma 3]). Let d € N be square-free. If (u,v) and (u',v")
are solutions of the equation

(3) u? —dv® =1, u,veEN,

with v =0 (mod u), then there exist fived dy,ds € N such that
(4) d1d2 = d, u+1= (5d11)%, u—1= (5d2'l)g,

' +1=08dv?, ' —1=ddyvl?,

where §,v1,v2, v}, vy € N satisfy

1 if 24w,

2 if 2|v.

LEMMA 3 ([5]). For min(Dy, D2) > 1, if (2) has solutions (U, V'), then it
has a unique positive integer solution (Uy, V1) such that U/ D1+ Viyv/ Dy <
UVD1 + V/Dy for all positive integer solutions (U, V') of (2). (U1, V1) is
called the least solution of (2). Moreover, all positive integer solutions (U, V)
of (2) are given by

U\/D;y +V/Dy = (Uy\/Dy + Vi\/Ds)', teN, 24t

LEMMA 4. For min(Dy, Dy) > 1, let (U, V) be a solution of (2), and let

(6) e=U\/D1+Vy/Dy, &=U\/D1—VyDs.

Further, for any m € Z with 2¢m, let
em+em
(7) E(m) = ——

E+¢€
Then E(m) € N and:

5 Svive = v, vhL =1, 6=
102
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(i) E(m) = E(—=m).
(ii)) E(m) =1 (mod 4), BE(m) = (=1)™=Y/2m (mod U).
(iii) For anym,m’ € Z with24mm’, E(m) = —E(m—2m’) (mod E(m/)).
(iv) For any m,m’ € Z with 2¢mm’ and gcd(m, m’) =1, (E(m)/E(m’))
= 1, where (x/x) is the Jacobi symbol.

Proof. Since e = 1 by (2) and (6), we get (i) by (7). Since we have
E(m+4)+E(m) = (e2+2%)E(m+2) = —2E(m+2) (mod 4U), (ii) follows
by induction on m in view of the fact that E(—1) = F(1) = 1.

Notice that

(8) E(m) + E(m —2m') = (™™ 42" )B(m),

where e~ 4 &"~™" ¢ 7, since m —m/ is even. So we have (iii). Moreover,
using (8) and (ii), we obtain (iv) by induction. The lemma is proved.

By much the same argument as in the proof of Lemma 4, we can prove
the following lemma.

LEMMA 5. For min(Dy, D2) > 1, let U, V,e,€ be defined as in Lemma 4,
and let

gm—gm

F =
(m)=—7—%
for any m € Z with 2¢m. Then F(m) € Z and:

(i) F(m) = —F(—m) and F(m) > 0 if m > 0.

(ii) For any m,m’ € Z with 2¢fmm’, F(m) = F(m —2m/) (mod F(m)).

LeEMMA 6. If (U,V) and (U',V') are positive integer solutions of (2)
satisfying U' = 0 (mod U) or V' = 0 (mod V), then there exists t' € N
such that

(9) U'\/Dy+V'\/Dy = (U\/Dy +V/Dy)"', 24t

Proof. Let ¢ = Uiv/D1 + Viv Dy and € = Ui/ D1 — Viv/ Do, where
(U1, V1) is the least solution of (2). By Lemma 3, there exist m, m’ € N such

that

(10)  U\/D1+V/Dy=e", UDi+V'\/Dy=c"™, 2tmm/.
Then we have U = U E(m), V. = ViF(m), U = Ui E(m’) and V' =
ViF(m/').

By Lemma 4(iii), if U’ =0 (mod U), then we have

(11) 0=U'=U,E(m')=-U,E(m' —2m)=...=xU,E(s) (modU),

where s € 7Z satisfies 2{s and —m < s < m. Since 0 < E(s) < E(m) if
|s| < m, we obtain s = m by (11). Therefore, m |m’ and (9) holds by (10).
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The proof in the case V/ = 0 (mod V) is analogous. By Lemma 5(ii),
we then have

0=V =ViF(m')=WViF(m' —2m)=... =V, F(s) (modV),

where s € Z satisfies 2ts and —m < s < m. Since 0 < |F(s)| < F(m) if
|s| < m, we get s = m, and hence, m |m’. Thus (9) holds in this case. The
lemma, is proved.

Let a be an algebraic number with the minimal polynomial

d
aozd+...—|—ad:a0H(z—cria), ag > 0,
i=1

where o1, ...,04a are all conjugates of a. Then

d
h(a) = %<log ag + Zlogmax(l, |0¢a|))

i=1

is called the logarithmic absolute height of a.

LEMMA 7 ([1, Corollary 2]). Let oy, as be real algebraic numbers with
a; > 1 and ag > 1 which are multiplicatively independent, and let
log A; > max(h(a;), [logaj|/r,1/r) for j = 1,2, where r = [Q(aq,as) :
QJ/[R(ay,c2) : R]. If A=bylogay —bylogas # 0 for some by, by € N, then
|A] > exp(—24.347* (log A1) (log Az)(max(log b’ + 0.69,21/r,1/2))?),

where b = by /(rlog As) + by /(rlog Ay).

3. Proof of Theorem 1. The sufficiency of the theorem is clear; it
suffices to prove the necessity. Now we assume that (1) has solutions (x,y).
Then (1) has a unique solution (z1,y;) such that

(12) .fL'%\/ D1 + Y1V D2 S 1‘2\/ D1 + AV D2

for all solutions (z,y) of (1). Clearly, (z%,y;) is a positive integer solution
of (2). Let (U1, V1) be the least solution of (2). By Lemma 3, we have

(13)  2?/Dy +y1/Da = (U/D1 + Vi/Do)', teN, 24t.

If t = 1, then the theorem is proved. Otherwise, ¢ has an odd prime fac-
tor p. By Lemma 3, (2) has a positive integer solution (U, V') which satisfies

(14) U\/Dy +V /Dy = (Uyy/Dy + Viy/D2)"”.

From (13) and (14), we get

(15) 22y/D1 + y1v/Da = (U\/Dy + V+/Dy)P.
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For any m € Z with 2{¢m, let €, € and E(m) be defined as in (6) and (7),
respectively. From (15) we get
el + &P
2v/ Dy
By Lemma 4(ii), E(p) € N with E(p) = (—=1)?=1/2p (mod U). This implies
that ged(U, E(p)) =1 or p.

If ged(U, E(p)) = 1, then from (16) we get U = 2%, and E(p) = z3,,
where 11,212 € N with z11212 = z;1. It follows that (211, V) is a solution
of (1) satisfying

which contradicts (12).

If ged(U, E(p)) = p, then we have
(17) U=paty, E(p)=pai,
where 11,212 € N with pz11212 = 21. Since E(p) = 1 (mod 4) by Lemma
4(ii), we see from (17) that p = 1 (mod 4). Therefore, by Lemma 1, there
exists a; € N such that 2ta;, p > a; > 1 and (a1/p) = —1. Further, since
p|U, by Lemma 4(ii), we get E(a;) = (—=1)(*=1/2¢; (mod p). So we have

(18) (#en) = (fien) = (ster) = (557)
_ (al_l)/zal aj
_ <(1>p) _ (p) =1,

by (17). However, by Lemma 4(iv), (18) is impossible. The theorem is proved.

(16) T = =UE(p).

4. Proof of Theorem 2. First we consider the case where min(Dy, D5)
> 1. By Theorem 1, if (1) has solutions (z,y), then (x1,y1) = (U1, V1)
is a solution of (1), where (Uy, V1) is the least solution of (2). Further, by
Lemma 3, if N(Dy,D2) > 1, then (1) has another solution (z2,y2) which
satisfies 9 > x1 and
(19) 29 =0 (mod z1).

Since D; is a square, Do cannot be such, therefore we may also assume,
without loss of generality, that Dy is square-free. Let D; = a?, where a € N
with a > 1. Then (ax?,y;) and (ax3,y2) are solutions of the equation

u? —Dyv? =1, w,veN.
Notice that ax3 = 0 (mod az?) by (19). We have
(20) ar] +1=06Do1yi,, ari —1= §Dayis,
(21) axs +1=06Doy3,, axi—1= 6Doys,,
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by Lemma 2, where 6, Doy, Doo, Y11, Y12, Y21, Y22 € N satisfy

(22) D21D22 = D27 ng(Dzl,Dgg) — 1’
1 if 24y,

We see from (20) and (21) that (yi1,21) and (y21,x2) are solutions of
the equation

6Dy X% —aY?=1, X,Y €N,
while (x1,y12) and (x2,y22) are solutions of the equation
aX'? —6DypY'? =1, XY eN

Let

(24) e1 =x1va+y11V0Da1, E1 = x1va— y111/0Da1,
(25) €2=x1\/5+y12\/@, g9 = 931f—y12\/@
Recall that o =0 (mod x1) by (19). Using Lemma 6, we have
(26) 22v/a+y2\/6Da1 =€, wav/a— ya\/6Day = E,
(27) 22V/a + y22\/0Da2 = €5, wav/a — y22/6Daz = £V,

where t1,t2 € N satisfy t1 > 1, to > 1 and 241¢1t2. From (24)—(27), we obtain

(28) €1+¢€1 =¢e2+ €,
(29) el pEl =l 2l
Let A=¢g, —g; and A’ = ?22 El . Since €181 = —1 and €989 = 1, from

(28) and (29) we get

2A 1 A\
(30)  loges = loges + 3 < )

e1te2 g 2it+1l\er+e
) 21
2 1 1
= loge
ogez + E1E92 zz:; 21+ 1 (6162)

2 (eg XN 1 1\
=1 —
ogezt 3 ( Z2Z—|—1<81€2>

2
2
=1
0ges + — <1+1/ (e162) +1/52;22+1<€152> >

2
< loges + .
€3

2A/ [e'e] 1 A, 21
31) tiloge; =tyloges + -
(31) tiloger =t loge g§1+5§2222+1<€§1+8§)
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=t2loger ¥ 227:_’_1 th _t2

1=2 =0 L&
2 [el2 & 1 1 :
. ol elel
e (G S ()
o 21
2 1 : :
=tyloge —|—< . < ) >
2 logeg 5§t2 1+1/(€§1532)+1/53t2 ;214—1 831852

2
< tyloges + T
€

respectively. By (30) and (31), we get loge; —loges > t1 loge; —taloges > 0.
This implies that (to —1)loges > (t1 — 1)loge;. Since 1 > 2 > 1 by (28),
we obtain to > t1. Since 2{t1t2, we get

(32) ta >ty +2.
Therefore, we find from (30)-(32) that

(tQ — t1> log €1

33 1o >
(33) 2 loge; — loges

> e2loge; > e3(log 51)674/53.

Let K1 = Q(v/dD21a) and Ko = Q(v/dD22a). Since Dy is not a square,
we see from (22) that K7\ QN K3 \Q = 0. If there exist ky, k2 € Q such that
ehrehz — 1 then e el'2 = 1 for some my, my € Z with 2|m; and 2|my.
Notice that " € K7 \ Q and €' € Ko \ Q for any m € Z \ {0} with 2 |m.
We get m1 = mo = 0 and k1 = ko = 0. This implies that £; and e are
multiplicatively independent.

Let h(e1), h(e2) denote the logarithmic absolute heights of €1, 2 respec-
tively, and let r denote the degree of Q(e1,e3). Then

log g1 log es
———, h = .
r/2 "’ (e2) r/2
Further, let A =t loge; — tologes and

31 12
t= + :
2loges,  2logey

(34) 4<r<8, hle)=

(35)
Then we have

1
(36) t 2 A < <1+ )

- loger  2(loger)(loges) — logey taea" log ey

by (31). Using Lemma 7, from (34) we get
(37) A > exp(—6232(log e ) (log £2) (max(log t + 0.69,21/4))?).
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We now suppose that 1 > 785. By (28), €7 — (e2 + &2)e1 — 1 = 0. Since
g9 > 14+V/2, we get £ < 1.745e4, whence e, > 449.856. If log t+0.69 < 21/4,
then ¢ < 96 and

(38) to < 96logeq,

by (35). The combination of (33) and (38) yields 96 > 8%6_4/63 >6-10°, a
contradiction. Hence, logt + 0.69 > 21/4, and

(39) A > exp(—6232(loge1)(log o) (logt + 0.69)?),
by (37). The combination of (31) and (39) yields
(40) log 2 + 6232(log e1)(log e2)(logt + 0.69)? > 2t, log e5.

Further, by (31), (36) and (40), we get

2
t
1+ 3116(10g (10;6 ) + 0.7)
1
to

> 1982 4 3116( 10g (2 + & +0.69) >
log €9 & loge;  2(loge)(loges) ‘ loge;’

whence we conclude that

t
(41) 2 < 615000.
log ey

Therefore, from (33) and (41) we get 616000 < 6%6*4/53 < 615000, a con-
tradiction. So we have

(42) €1 < 785.

From (22), (24), (25) and (28), we get
(43) €1 = €9 — €1 +E2 > &9 +§2:2x1\/522\/5:2Di/4
and

(44) €1 > e160 —e1/e2 + eafer — 1/(e162) = (1 — E1)(ea — &2)

= (2y11V/0D21)(2y12/ 0 Da2) > 41/ D21 Doy = 44/ Ds.
Therefore, by (42)—(44), we obtain max(D1, Ds) < €1/16 < 2.374 - 101°.
Thus, if min(Dy, Dy) > 1 and max(Dy, Do) > 2.374 - 1019, then N(Dy, D)
<1.

Next we consider the case where min(Dy, Ds) = 1. Since D is a square,
we have Dy = 1 and Dy > 1. By much the same argument as in the proof
of the case min(Dy, Ds) > 1, we can find from the proof of [3, Theorem 1]
that if Dy # 1785 and N(1,D3) > 1, then there exist t1,t2 € N and real
quadratic algebraic numbers g1, g2 satisfying 1 < t; < t2, 1 < g2 < 01,
Dy < 01/16, h(o1) = (log 01)/2, h(02) = (log 02)/2, [Q(e1, 02) : Q] = 4,

(45) 0 <logos —logos < 2/@%, 0 < tilogor —talogps < 2/Q§t2,
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(46) ty > 02 (log 91)6_4/93.
Using Lemma 7, we get either 9%6*4/93 < 96 or
(47) t1 log 01 — talog 02 > exp(—1558(log 01)(log 02)(logt 4 0.69)%),

where

(48) ottt hloge—tlogo
2logos  2logor  logo: 2(log 01)(log 02)
2 1

< + .
logo1 203" (log 1) (log 02)
We now suppose that g; > 350. Then from (45), (47) and (48) we get
(49) ta/log 01 < 122000.

The combination of (46) and (49) yields 122400 < o2e~4/% < 122000, a
contradiction. So we have g; < 350 and Dy < 9.379 - 108. This implies that
if min(D1, D2) = 1 and max (D, D2) > 9.379 - 10%, then N(D1, Ds) < 1.
The proof is complete.
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