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On the diophantine equation D1x
4 −D2y

2 = 1
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Maohua Le (Zhanjiang)

1. Introduction. Let Z, N, Q, R be the sets of integers, positive inte-
gers, rational numbers and real numbers respectively. Let D1, D2 ∈ N with
gcd(D1, D2) = 1. There were many papers concerned with the equation

(1) D1x
4 −D2y

2 = 1, x, y ∈ N,
written by Ljunggren, Bumby, Cohn, Ke and Sun. Concerning the solvability
of (1), Zhu [7] and Le [2] proved independently that if D1 = 1, then (1) has
solutions (x, y) if and only if the fundamental solution u1 + v1

√
D2 of Pell’s

equation

u2 −D2v
2 = 1, u, v ∈ Z,

satisfies either u1 = x2
1 or u2

1 +D2v
2
1 = x2

1, where x1 ∈ N. In addition, Zhu
[7] showed that if D2 = 1, then (1) has solutions (x, y) if and only if the
equation

u′2 −D1v
′2 = −1, u′, v′ ∈ Z,

has solutions (u′, v′) and its least positive integer solution (u′1, v
′
1) satisfies

v′1 = x2
1, where x1 ∈ N. In this paper we prove a general result as follows.

Theorem 1. If min(D1, D2) > 1, then (1) has solutions (x, y) if and
only if the equation

(2) D1U
2 −D2V

2 = 1, U, V ∈ Z,
has solutions (U, V ) and its least positive integer solution (U1, V1) satisfies
U1 = x2

1, where x1 ∈ N.

Let N(D1, D2) denote the number of solutions (x, y) of (1). Ljunggren
[4] showed that N(1, D2) ≤ 2. In [3], Le proved that if D2 > e64, then
N(1, D2) ≤ 1. Recently, Wu [6] relaxed the condition D2 > e64 to D2 > e37.
In this paper we prove the following result.
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Theorem 2. If D1 is a square and

max(D1, D2) ≥
{

9.379 · 108 if min(D1, D2) = 1,
2.374 · 1010 if min(D1, D2) > 1,

then N(D1, D2) ≤ 1.

2. Preliminaries

Lemma 1. For any odd prime p with p ≡ 1 (mod 4), there exists a1 ∈ N
such that p > a1 > 1, 2 - a1 and (a1/p) = −1, where (a1/p) is Legendre’s
symbol.

P r o o f. It is a well known fact that there exists a ∈ N with p > a > 1
and (a/p) = −1. Since (a/p) = ((p− a)/p) for p ≡ 1 (mod 4), we get

a1 =
{
a if 2 - a,
p− a if 2 | a.

The lemma is proved.

Lemma 2 ([3, Lemma 3]). Let d ∈ N be square-free. If (u, v) and (u′, v′)
are solutions of the equation

(3) u2 − dv2 = 1, u, v ∈ N,
with u′ ≡ 0 (mod u), then there exist fixed d1, d2 ∈ N such that

(4)
d1d2 = d, u+ 1 = δd1v

2
1 , u− 1 = δd2v

2
2 ,

u′ + 1 = δd1v
′
1
2, u′ − 1 = δd2v

′
2
2,

where δ, v1, v2, v
′
1, v
′
2 ∈ N satisfy

(5) δv1v2 = v, δv′1v
′
2 = v′, δ =

{
1 if 2 - v,
2 if 2 | v.

Lemma 3 ([5]). For min(D1, D2) > 1, if (2) has solutions (U, V ), then it
has a unique positive integer solution (U1, V1) such that U1

√
D1 +V1

√
D2 ≤

U
√
D1 + V

√
D2 for all positive integer solutions (U, V ) of (2). (U1, V1) is

called the least solution of (2). Moreover , all positive integer solutions (U, V )
of (2) are given by

U
√
D1 + V

√
D2 = (U1

√
D1 + V1

√
D2)t, t ∈ N, 2 - t.

Lemma 4. For min(D1, D2) > 1, let (U, V ) be a solution of (2), and let

(6) ε = U
√
D1 + V

√
D2, ε = U

√
D1 − V

√
D2.

Further , for any m ∈ Z with 2 -m, let

(7) E(m) =
εm + εm

ε+ ε
.

Then E(m) ∈ N and :
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(i) E(m) = E(−m).
(ii) E(m) ≡ 1 (mod 4), E(m) ≡ (−1)(m−1)/2m (mod U).

(iii) For any m,m′ ∈ Z with 2 -mm′, E(m) ≡ −E(m−2m′) (mod E(m′)).
(iv) For any m,m′ ∈ Z with 2 -mm′ and gcd(m,m′) = 1, (E(m)/E(m′))

= 1, where (∗/∗) is the Jacobi symbol.

P r o o f. Since εε = 1 by (2) and (6), we get (i) by (7). Since we have
E(m+4)+E(m) = (ε2 +ε2)E(m+2) ≡ −2E(m+2) (mod 4U), (ii) follows
by induction on m in view of the fact that E(−1) = E(1) = 1.

Notice that

(8) E(m) + E(m− 2m′) = (εm−m
′
+ εm−m

′
)E(m′),

where εm−m
′
+εm−m

′ ∈ Z, since m−m′ is even. So we have (iii). Moreover,
using (8) and (ii), we obtain (iv) by induction. The lemma is proved.

By much the same argument as in the proof of Lemma 4, we can prove
the following lemma.

Lemma 5. For min(D1, D2) > 1, let U, V, ε, ε be defined as in Lemma 4,
and let

F (m) =
εm − εm
ε− ε

for any m ∈ Z with 2 -m. Then F (m) ∈ Z and :

(i) F (m) = −F (−m) and F (m) > 0 if m > 0.
(ii) For any m,m′ ∈ Z with 2 -mm′, F (m) ≡ F (m−2m′) (mod F (m)).

Lemma 6. If (U, V ) and (U ′, V ′) are positive integer solutions of (2)
satisfying U ′ ≡ 0 (mod U) or V ′ ≡ 0 (mod V ), then there exists t′ ∈ N
such that

(9) U ′
√
D1 + V ′

√
D2 = (U

√
D1 + V

√
D2)t

′
, 2 - t′.

P r o o f. Let ε = U1
√
D1 + V1

√
D2 and ε = U1

√
D1 − V1

√
D2, where

(U1, V1) is the least solution of (2). By Lemma 3, there exist m,m′ ∈ N such
that

(10) U
√
D1 + V

√
D2 = εm, U ′

√
D1 + V ′

√
D2 = εm

′
, 2 -mm′.

Then we have U = U1E(m), V = V1F (m), U ′ = U1E(m′) and V ′ =
V1F (m′).

By Lemma 4(iii), if U ′ ≡ 0 (mod U), then we have

(11) 0 ≡ U ′ = U1E(m′) ≡ −U1E(m′ − 2m) ≡ . . . ≡ ±U1E(s) (modU),

where s ∈ Z satisfies 2 - s and −m < s ≤ m. Since 0 < E(s) < E(m) if
|s| < m, we obtain s = m by (11). Therefore, m |m′ and (9) holds by (10).
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The proof in the case V ′ ≡ 0 (mod V ) is analogous. By Lemma 5(ii),
we then have

0 ≡ V ′ = V1F (m′) ≡ V1F (m′ − 2m) ≡ . . . ≡ V1F (s) (modV ),

where s ∈ Z satisfies 2 - s and −m < s ≤ m. Since 0 < |F (s)| < F (m) if
|s| < m, we get s = m, and hence, m |m′. Thus (9) holds in this case. The
lemma is proved.

Let α be an algebraic number with the minimal polynomial

a0z
d + . . .+ ad = a0

d∏

i=1

(z − σiα), a0 > 0,

where σ1α, . . . , σdα are all conjugates of α. Then

h(α) =
1
d

(
log a0 +

d∑

i=1

log max(1, |σiα|)
)

is called the logarithmic absolute height of α.

Lemma 7 ([1, Corollary 2]). Let α1, α2 be real algebraic numbers with
α1 > 1 and α2 > 1 which are multiplicatively independent , and let
logAj ≥ max(h(αj), |logαj |/r, 1/r) for j = 1, 2, where r = [Q(α1, α2) :
Q]/[R(α1, α2) : R]. If Λ = b1 logα1− b2 logα2 6= 0 for some b1, b2 ∈ N, then

|Λ| ≥ exp(−24.34r4(logA1)(logA2)(max(log b′ + 0.69, 21/r, 1/2))2),

where b′ = b1/(r logA2) + b2/(r logA1).

3. Proof of Theorem 1. The sufficiency of the theorem is clear; it
suffices to prove the necessity. Now we assume that (1) has solutions (x, y).
Then (1) has a unique solution (x1, y1) such that

(12) x2
1

√
D1 + y1

√
D2 ≤ x2

√
D1 + y

√
D2

for all solutions (x, y) of (1). Clearly, (x2
1, y1) is a positive integer solution

of (2). Let (U1, V1) be the least solution of (2). By Lemma 3, we have

(13) x2
1

√
D1 + y1

√
D2 = (U1

√
D1 + V1

√
D2)t, t ∈ N, 2 - t.

If t = 1, then the theorem is proved. Otherwise, t has an odd prime fac-
tor p. By Lemma 3, (2) has a positive integer solution (U, V ) which satisfies

(14) U
√
D1 + V

√
D2 = (U1

√
D1 + V1

√
D2)t/p.

From (13) and (14), we get

(15) x2
1

√
D1 + y1

√
D2 = (U

√
D1 + V

√
D2)p.
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For any m ∈ Z with 2 -m, let ε, ε and E(m) be defined as in (6) and (7),
respectively. From (15) we get

(16) x2
1 =

εp + εp

2
√
D1

= UE(p).

By Lemma 4(ii), E(p) ∈ N with E(p) ≡ (−1)(p−1)/2p (mod U). This implies
that gcd(U,E(p)) = 1 or p.

If gcd(U,E(p)) = 1, then from (16) we get U = x2
11 and E(p) = x2

12,
where x11, x12 ∈ N with x11x12 = x1. It follows that (x11, V ) is a solution
of (1) satisfying

x2
11

√
D1 + V

√
D2 = U

√
D1 + V

√
D2 = ε < εp = x2

1

√
D1 + y1

√
D2,

which contradicts (12).
If gcd(U,E(p)) = p, then we have

(17) U = px2
11, E(p) = px2

12,

where x11, x12 ∈ N with px11x12 = x1. Since E(p) ≡ 1 (mod 4) by Lemma
4(ii), we see from (17) that p ≡ 1 (mod 4). Therefore, by Lemma 1, there
exists a1 ∈ N such that 2 - a1, p > a1 > 1 and (a1/p) = −1. Further, since
p |U , by Lemma 4(ii), we get E(a1) ≡ (−1)(a1−1)/2a1 (mod p). So we have

(
E(p)
E(a1)

)
=
(
px2

12

E(a1)

)
=
(

p

E(a1)

)
=
(
E(a1)
p

)
(18)

=
(

(−1)(a1−1)/2a1

p

)
=
(
a1

p

)
= −1,

by (17). However, by Lemma 4(iv), (18) is impossible. The theorem is proved.

4. Proof of Theorem 2. First we consider the case where min(D1, D2)
> 1. By Theorem 1, if (1) has solutions (x, y), then (x1, y1) = (

√
U1, V1)

is a solution of (1), where (U1, V1) is the least solution of (2). Further, by
Lemma 3, if N(D1, D2) > 1, then (1) has another solution (x2, y2) which
satisfies x2 > x1 and

(19) x2 ≡ 0 (mod x1).

Since D1 is a square, D2 cannot be such, therefore we may also assume,
without loss of generality, that D2 is square-free. Let D1 = a2, where a ∈ N
with a > 1. Then (ax2

1, y1) and (ax2
2, y2) are solutions of the equation

u2 −D2v
2 = 1, u, v ∈ N.

Notice that ax2
2 ≡ 0 (mod ax2

1) by (19). We have

ax2
1 + 1 = δD21y

2
11, ax2

1 − 1 = δD22y
2
12,(20)

ax2
2 + 1 = δD21y

2
21, ax2

2 − 1 = δD22y
2
22,(21)
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by Lemma 2, where δ,D21, D22, y11, y12, y21, y22 ∈ N satisfy

(22) D21D22 = D2, gcd(D21, D22) = 1,

(23) δy11y12 = y1, δy21y22 = y2, δ =
{

1 if 2 - y1,
2 if 2 | y1.

We see from (20) and (21) that (y11, x1) and (y21, x2) are solutions of
the equation

δD21X
2 − aY 2 = 1, X, Y ∈ N,

while (x1, y12) and (x2, y22) are solutions of the equation

aX ′2 − δD22Y
′2 = 1, X ′, Y ′ ∈ N.

Let

ε1 = x1
√
a+ y11

√
δD21, ε1 = x1

√
a− y11

√
δD21,(24)

ε2 = x1
√
a+ y12

√
δD22, ε2 = x1

√
a− y12

√
δD22.(25)

Recall that x2 ≡ 0 (mod x1) by (19). Using Lemma 6, we have

(26) x2
√
a+ y21

√
δD21 = εt11 , x2

√
a− y21

√
δD21 = εt11 ,

(27) x2
√
a+ y22

√
δD22 = εt22 , x2

√
a− y22

√
δD22 = εt22 ,

where t1, t2 ∈ N satisfy t1 > 1, t2 > 1 and 2 - t1t2. From (24)–(27), we obtain

(28) ε1 + ε1 = ε2 + ε2,

(29) εt11 + εt11 = εt22 + εt22 .

Let ∆ = ε2 − ε1 and ∆′ = εt22 − εt11 . Since ε1ε1 = −1 and ε2ε2 = 1, from
(28) and (29) we get

log ε1 = log ε2 +
2∆

ε1 + ε2

∞∑

i=0

1
2i+ 1

(
∆

ε1 + ε2

)2i

(30)

= log ε2 +
2

ε1ε2

∞∑

i=0

1
2i+ 1

(
1

ε1ε2

)2i

= log ε2 +
2
ε2

2

(
ε2

ε1

∞∑

i=0

1
2i+ 1

(
1

ε1ε2

)2i)

= log ε2 +
2
ε2

2

(
1

1 + 1/(ε1ε2) + 1/ε2
2

∞∑

i=0

1
2i+ 1

(
1

ε1ε2

)2i)

< log ε2 +
2
ε2

2
,

t1 log ε1 = t2 log ε2 +
2∆′

εt11 + εt22

∞∑

i=0

1
2i+ 1

(
∆′

εt11 + εt22

)2i

(31)
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= t2 log ε2 +
2

εt11 ε
t2
2

∞∑

i=0

1
2i+ 1

(
1

εt11 ε
t2
2

)2i

= t2 log ε2 +
2

ε2t2
2

(
εt22
εt11

∞∑

i=0

1
2i+ 1

(
1

εt11 ε
t2
2

)2i)

= t2 log ε2 +
2

ε2t2
2

(
1

1 + 1/(εt11 ε
t2
2 ) + 1/ε2t2

2

∞∑

i=0

1
2i+ 1

(
1

εt11 ε
t2
2

)2i)

< t2 log ε2 +
2

ε2t2
2

,

respectively. By (30) and (31), we get log ε1−log ε2 > t1 log ε1−t2 log ε2 > 0.
This implies that (t2 − 1) log ε2 > (t1 − 1) log ε1. Since ε1 > ε2 > 1 by (28),
we obtain t2 > t1. Since 2 - t1t2, we get

(32) t2 ≥ t1 + 2.

Therefore, we find from (30)–(32) that

(33) t2 >
(t2 − t1) log ε1

log ε1 − log ε2
> ε2

2 log ε1 > ε2
1(log ε1)e−4/ε22 .

Let K1 = Q(
√
δD21a) and K2 = Q(

√
δD22a). Since D2 is not a square,

we see from (22) that K1 \Q∩K2 \Q = ∅. If there exist k1, k2 ∈ Q such that
εk1

1 ε
k2
2 = 1, then εm1

1 εm2
2 = 1 for some m1,m2 ∈ Z with 2 |m1 and 2 |m2.

Notice that εm1 ∈ K1 \ Q and εm2 ∈ K2 \ Q for any m ∈ Z \ {0} with 2 |m.
We get m1 = m2 = 0 and k1 = k2 = 0. This implies that ε1 and ε2 are
multiplicatively independent.

Let h(ε1), h(ε2) denote the logarithmic absolute heights of ε1, ε2 respec-
tively, and let r denote the degree of Q(ε1, ε2). Then

(34) 4 ≤ r ≤ 8, h(ε1) =
log ε1

r/2
, h(ε2) =

log ε2

r/2
.

Further, let Λ = t1 log ε1 − t2 log ε2 and

(35) t =
t1

2 log ε2
+

t2
2 log ε1

.

Then we have

(36) t =
t2

log ε1
+

Λ

2(log ε1)(log ε2)
<

t2
log ε1

(
1 +

1

t2ε
2t2
2 log ε2

)
,

by (31). Using Lemma 7, from (34) we get

(37) Λ ≥ exp(−6232(log ε1)(log ε2)(max(log t+ 0.69, 21/4))2).
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We now suppose that ε1 ≥ 785. By (28), ε2
1 − (ε2 + ε2)ε1 − 1 = 0. Since

ε2 ≥ 1+
√

2, we get ε1 < 1.745ε2, whence ε2 > 449.856. If log t+0.69 ≤ 21/4,
then t < 96 and

(38) t2 < 96 log ε1,

by (35). The combination of (33) and (38) yields 96 > ε2
1e
−4/ε22 > 6 · 105, a

contradiction. Hence, log t+ 0.69 > 21/4, and

(39) Λ ≥ exp(−6232(log ε1)(log ε2)(log t+ 0.69)2),

by (37). The combination of (31) and (39) yields

(40) log 2 + 6232(log ε1)(log ε2)(log t+ 0.69)2 > 2t2 log ε2.

Further, by (31), (36) and (40), we get

1 + 3116
(

log
(

t2
log ε1

)
+ 0.7

)2

>
log 2
log ε2

+ 3116
(

log
(

t2
log ε1

+
Λ

2(log ε1)(log ε2)

)
+ 0.69

)2

>
t2

log ε1
,

whence we conclude that

(41)
t2

log ε1
< 615000.

Therefore, from (33) and (41) we get 616000 < ε2
1e
−4/ε22 < 615000, a con-

tradiction. So we have

(42) ε1 < 785.

From (22), (24), (25) and (28), we get

(43) ε1 = ε2 − ε1 + ε2 > ε2 + ε2 = 2x1
√
a ≥ 2

√
a = 2D1/4

1

and

ε2
1 > ε1ε2 − ε1/ε2 + ε2/ε1 − 1/(ε1ε2) = (ε1 − ε1)(ε2 − ε2)(44)

= (2y11

√
δD21)(2y12

√
δD22) ≥ 4

√
D21D22 = 4

√
D2.

Therefore, by (42)–(44), we obtain max(D1, D2) < ε4
1/16 < 2.374 · 1010.

Thus, if min(D1, D2) > 1 and max(D1, D2) ≥ 2.374 · 1010, then N(D1, D2)
≤ 1.

Next we consider the case where min(D1, D2) = 1. Since D1 is a square,
we have D1 = 1 and D2 > 1. By much the same argument as in the proof
of the case min(D1, D2) > 1, we can find from the proof of [3, Theorem 1]
that if D2 6= 1785 and N(1, D2) > 1, then there exist t1, t2 ∈ N and real
quadratic algebraic numbers %1, %2 satisfying 1 < t1 < t2, 1 < %2 < %1,
D2 < %4

1/16, h(%1) = (log %1)/2, h(%2) = (log %2)/2, [Q(%1, %2) : Q] = 4,

(45) 0 < log %1 − log %2 < 2/%2
2, 0 < t1 log %1 − t2 log %2 < 2/%2t2

2 ,
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(46) t2 > %2
1(log %1)e−4/%2

2 .

Using Lemma 7, we get either %2
1e
−4/%2

2 < 96 or

(47) t1 log %1 − t2 log %2 ≥ exp(−1558(log %1)(log %2)(log t+ 0.69)2),

where

t =
t1

2 log %2
+

t2
2 log %1

=
t2

log %1
+
t1 log %1 − t2 log %2

2(log %1)(log %2)
(48)

<
t2

log %1
+

1

2%2t2
2 (log %1)(log %2)

.

We now suppose that %1 ≥ 350. Then from (45), (47) and (48) we get

(49) t2/ log %1 < 122000.

The combination of (46) and (49) yields 122400 < %2
1e
−4/%2

2 < 122000, a
contradiction. So we have %1 < 350 and D2 < 9.379 · 108. This implies that
if min(D1, D2) = 1 and max(D1, D2) ≥ 9.379 · 108, then N(D1, D2) ≤ 1.
The proof is complete.
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