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Primitive lattice points in convex planar domains

by

Martin N. Huxley (Cardiff) and Werner Georg Nowak (Vienna)

1. Introduction. Let D denote a compact convex subset of R2 which
contains the origin as an inner point. Suppose that the boundary ∂D of D
is smooth with finite nonzero curvature throughout, and define a “canonical
map” M from ∂D to the unit circle, which maps every point u of ∂D to
the outward normal vector of ∂D in u of length unity. Assume that M is
one-one and of class (1) C∞. Let F denote the distance function of D, i.e.,

F (u) = inf{τ > 0 : u/τ ∈ D} (u ∈ R2),

and put Q = F 2, thus Q is homogeneous of degree 2. For a large real variable
x, define AD(x) as the number of lattice points of Z2

∗ := Z2 \ {(0, 0)} in the
“blown up” domain

√
xD, i.e.,

AD(x) = #(
√
xD ∩ Z2

∗) = #{m ∈ Z2
∗ : Q(m) ≤ x},

and PD(x) as the “lattice rest”

PD(x) = AD(x)− a(D)x,

where a(D) is the area of D.
Only recently, Huxley [9], Theorem 5, showed that the problem of esti-

mating PD(x) from above is not more difficult for general D than for the
classic case that D is the unit disk. He proved that

(1.1) PD(x) = O(x23/73(log x)315/146),

uniformly with respect to rotations and translations of
√
xD.
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(1) In this supposition, C∞ can be replaced by CK with some K ∈ N sufficiently

large. The whole somewhat technical condition is only stated to ensure the validity of
the estimate (1.3), which in turn depends on the asymptotic expansion for the Fourier
coefficients of the indicator function of

√
xD (see Hlawka [6], [7]).
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A bit earlier, the second named author [17], [18] had obtained the results
that

(1.2) lim
x→∞

inf
(

PD(x)
(x log x)1/4

)
< 0,

and

(1.3)
T\
0

(PD(x))2 dx� T 3/2,

T\
0

|PD(x)| dx� T 5/4.

Refined mean-square results, with somewhat relaxed smoothness conditions
on the boundary of D, may be found in the first named author’s paper [10]
and in his monograph [11].

For the classic circle problem (cf., e.g., the book of Krätzel [14] for its
history), a slight improvement of (1.2) has been established by Hafner [3],
while the mean-square bound in (1.3) may be replaced by an asymptotic
formula: See Kátai [13] for the sharpest version to date.

The objective of the present paper is to study the number BD(x) of
primitive lattice points in

√
xD, i.e.,

BD(x) = #{u = (u1, u2) ∈ Z2
∗ : Q(u) ≤ x, gcd(u1, u2) = 1}.

By a usual device (which is sometimes attributed to Vinogradov),

(1.4) BD(x) =
∑

m∈N
µ(m)AD

(
x

m2

)
,

where µ(m) denotes the Möbius function. By an elementary convolution
argument, one can derive from the bound

(1.5)
∑

m≤Y
µ(m)� Y ω(Y )

(see Ivić [12], p. 309), combined with (1.4) and a crude version of (1.1), the
result

(1.6) BD(x) =
6
π2 a(D)x+O(x1/2ω(x)),

where
ω(x) = exp(−c(log x)3/5(log log x)−1/5)

with c > 0, is a factor familiar from the Prime Number Theorem. (1.5) and
(1.6) contain the strongest information available to date concerning zero-free
regions of the Riemann zeta-function. At the present state of art, it is not
possible to reduce the exponent 1/2 of x in the order term of (1.6). This will
be evident from Lemma 1 below (with y = 1), in view of the fact that ζ(s)
could have zeros with real part arbitrarily close to 1.

It is therefore natural to look for stronger estimates assuming the truth
of the Riemann Hypothesis (henceforth quoted as RH).
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In this sense, we want to point out first that, for the case that D is the
unit disk D0, say, a sharp conditional result is essentially contained in the
recent literature, namely: Under RH,

(1.7) BD0(x) =
6
π
x+O(x3/8+ε) (ε > 0).

In fact, Baker [2] studied the summatory function of d(2)(n), the number of
square-free (positive) divisors of n ∈ N, which is generated by (ζ(s))2/ζ(2s).
Conditionally under RH, he proved that

(1.8)
∑

n≤x
d(2)(n) = Res

s=1

(
(ζ(s))2

ζ(2s)
xs

s

)
+O(x3/8+ε) (ε > 0).

Baker used and elaborated a method which has its origin in a well-known
paper of Montgomery and Vaughan [15] (who dealt with the distribution
of square-free numbers) and has been applied meanwhile to a large class of
arithmetic functions: cf. [19] and [20]. Baker’s main original ingredient was
the use of the truncated Voronöı formula

∑

n≤x
d(n) = x log x+ (2γ − 1)x+

x1/4

π
√

2

∑

n≤N

d(n)
n3/4

cos
(

4π
√
nx− π

4

)

+O(x1/2+εN−1/2)

(where d(n) is the usual divisor function and N = N(x) = o(x)), along with
a deep result due to Heath-Brown [4] to estimate exponential sums which
contain the Möbius function.

It is easy to see that Baker’s argument can be readily modified to han-
dle BD0(x): The corresponding generating function now reads ζQ0(s)/ζ(2s),
where ζQ0 is the Epstein zeta-function of the quadratic form Q0(u1, u2) =
u2

1 + u2
2. One can thus combine the argument in [19], proof of Theorem 1,

with Baker’s reasoning; an analog of the Voronöı formula, with d(n) replaced
by r(n), may be found in Ivić [12], p. 373. Of course, the result may be gen-
eralized immediately to the case that D is a rational ellipse disk, i.e., Q is a
positive definite binary quadratic form with rational coefficients.

For general D, however, a perfect extension of this analysis is not in
sight, for the following two reasons: On the one hand, the zeta-function of
the convex set D does not satisfy a functional equation as ζQ0 does. On the
other hand, it is not easy to see how to adapt the Fouvry–Iwaniec monomial
result for the general situation.

Nevertheless, we shall show here that the core of the Montgomery–
Vaughan method can be applied to the general problem. Our ultimate goal
is to prove the following.
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Theorem. If RH is true,

BD(x) =
6
π2 a(D)x+O(x5/12+ε),

for a large real variable x and arbitrary fixed ε > 0.

The sharpest conditional results of this type known so far is due to
Moroz [16], Theorem 1, who obtained the error term O(x41/91+ε) (if one in-
corporates Huxley’s bound (1.1)). Numerically, 41/91 = 0.450549 . . . , while
5/12 = 0.41666 . . . We remark parenthetically that Hensley [5] has recently
written a paper on the subject, too, apparently unaware of Moroz’s work.
His approach was original in method but failed to sharpen the estimate.

It should be emphasized that our result does not depend on the very
deep estimate (1.1) but only on an easy version thereof (with the exponent
1/3), and on the mean-value bound (1.3).

Before going into technical details (which we postpone to Sections 2–4),
we outline the essential ideas of the proof. Let

Q1 := min
u∈Z2∗

Q(u).

Then it is clear that we may restrict the sum in (1.4) to 1 ≤ m ≤
√
x/Q1,

and split it up as

(1.9) BD(x) =
∑

m≤y
µ(m)AD

(
x

m2

)
+
∑
m>y

µ(m)AD

(
x

m2

)
=: S1 + S2,

where y = y(x) <
√
x/Q1 is a parameter remaining at our disposition. Let

S1 = a(D)x
∑

m≤y

µ(m)
m2 +

∑

m≤y
µ(m)PD

(
x

m2

)
(1.10)

=: a(D)x
∑

m≤y

µ(m)
m2 + S∗1 .

Then the first important step is to prove the following.

Proposition 1. The sum S∗1 defined in (1.10) satisfies the estimate

S∗1 � y + x1/4y1/2 + x5/12

for large real parameters x and y with 1 ≤ y � x1/2.

To deal with S2, an obvious possibility is to use the classic conditional
bound (valid under RH)

(1.11)
∑

m≤Y
µ(m)� Y 1/2+ε′ (ε′ > 0).
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Applying summation by parts repeatedly and observing that AD(w) is
monotone and � w, one obtains

S2 � xε
′
y1/2 x

y2 .

(See Moroz [16], formula (8).)
The second key step of the present paper is to improve this elementary

estimate by a contour integration technique in the spirit of Montgomery and
Vaughan [15].

Proposition 2. If the Riemann Hypothesis is true,

S2 =
∑
m>y

µ(m)AD

(
x

m2

)

= a(D)x
∑
m>y

µ(m)
m2 +O(x1/3+ε′) +O

(
xε
′
y1/2

(
x

y2

)3/4)
(ε′ > 0),

for large real parameters x and y with 1 ≤ y � x1/2.

We combine this result with (1.10) and Proposition 1, noting that the
two O-terms are of the same order (apart from ε’s) for

(1.12) y = x1/3.

This choice of y readily yields the assertion of our theorem.

2. Proof of Proposition 1. Since AD(w) is increasing,

PD(u)− PD(v) ≥ −a(D)(u− v)

for any positive reals u ≥ v. Therefore, if V is some positive number and
t > 0 a value for which |PD(t)| ≥ V , there exists an interval I of length
V/(2a(D)) containing t such that

|PD(u)| ≥ V/2 for u ∈ I.
For positive real parameters M � x1/2 and V , let

M(M,V ) := {m ∈ N,M < m ≤ 2M : |PD(x/m2)| ≥ V },
R(M,V ) := #M(M,V ).

For any m ∈M(M,V ), by the above consideration there exists an interval

J ⊆
[

x(
m+ 1

2

)2 ,
x(

m− 1
2

)2
]

of length |J | � min(V, x/M3), such that |PD(u)| ≥ V/2 for u ∈ J . As a
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trivial consequence,

V 2R(M,V ) min
(
V,

x

M3

)
�

x(M−1/2)−2\
0

(PD(u))2 du� x3/2

M3 ,

by an appeal to (1.3). In other words,

R(M,V )� x3/2

M3V 2

(
1
V

+
M3

x

)
=

x3/2

M3V 3 +
x1/2

V 2 .

By a familiar device,
∑

M<m≤2M

∣∣∣∣PD
(
x

m2

)∣∣∣∣�M +
∑

V=2j , j∈N
V R(M,V )

�M +
∑

V=2j , j∈N
min

(
MV,

x3/2

M3V 2 +
x1/2

V

)

�M + x1/2M−1/3 +M1/2x1/4.

Now we let M run through the sequence y/2, y/4, . . . to conclude that

(2.1)
∑

M=y2−j , j∈N
M>x1/4

∑

M<m≤2M

∣∣∣∣PD
(
x

m2

)∣∣∣∣� y + x1/4y1/2 + x5/12.

On the other hand, an easy and classic version of (1.1), namely

(2.2) PD(w)� w1/3,

implies that

(2.3)
∑

m�x1/4

∣∣∣∣PD
(
x

m2

)∣∣∣∣� x1/3
∑

m�x1/4

m−2/3 � x5/12.

Together with (2.1) this completes the proof of Proposition 1.

3. Some lemmas. The zeta-function ZD(s) of the convex set D is de-
fined, for Re s > 1, by the absolutely convergent Dirichlet series

ZD(s) =
∑

m∈Z2∗

(Q(m))−s.

According to Hlawka [8], ZD(s) possesses an analytic continuation to the
whole complex plane, with the exception of one simple pole at s = 1 with
residue a(D).

We define further, for real y ≥ 1 and a complex variable s,

(3.1) fy(s) =
1
ζ(s)

−
∑

m≤y

µ(m)
ms

.
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This is regular in every s ∈ C which is not a zero of the Riemann zeta-
function.

Lemma 1. For a large real variable x,

S2 =
∑
m>y

µ(m)AD

(
x

m2

)

=
1

2πi

3+ix5\
3−ix5

ZD(s)fy(2s)
xs

s
ds+O(x1/3+ε) (ε > 0),

uniformly in 1 ≤ y � √x.

P r o o f. This clearly is a type of truncated Perron’s formula. It is hard
to find an explicit reference in the literature, although the argument runs
on familiar lines:

Let us write the values attained by Q(m), as m runs through Z2
∗, in form

of a strictly increasing sequence (λk)k∈N. Put further

µy(m) =
{
µ(m) if m > y,
0 else.

Then it follows by the homogeneity of Q that, for Re s > 1,

(3.2) ZD(s)fy(2s) =
∑

n∈Z2∗

γ(n)(Q(n))−s =
∞∑

k=1

αkλ
−s
k

with

γ(n) :=
∑

m|n
µy(m)� ‖n‖ε′ (ε′ > 0), αk :=

∑

n:Q(n)=λk

γ(n).

Here m|(n1, n2) means that m| gcd(n1, n2), and ‖ · ‖ denotes the Euclidean
norm throughout. Obviously,

(3.3) S2 =
∑
m>y

µ(m)
( ∑

Q(n)≤x/m2

1
)

=
∑

m,n:Q(mn)≤x
µy(m) =

∑

k:λk≤x
αk.

It is well known that, for a > 0, a 6= 1, and T sufficiently large,

1
2πi

3+iT\
3−iT

as

s
ds =




χ(a) +O

(
a3

T |log a|
)
, (∗)

O(a3), (∗∗)
where χ is the characteristic function of the interval ]1,∞[. Of this formula,
(∗) may be found in Apostol [1], p. 243, while (∗∗) is immediate by taking as
a path of integration the boundary of the domain {s ∈ C : |s| ≤ T, Re s ≤ 3}
if a > 1, resp., of {s ∈ C : |s| ≤ T, Re s ≥ 3} if a < 1 (cf. Prachar [21],
p. 379).



278 M. N. Huxley and W. G. Nowak

Therefore, by (3.2) and (3.3),

(3.4)
1

2πi

3+ix5\
3−ix5

ZD(s)fy(2s)
xs

s
ds

= S2 +
∑

k: |λk−x|≥1

O

( |αk|
λ3
kx

2|log λk − log x|
)

+
∑

k: |λk−x|<1

O(|αk|).

By the mean-value theorem,

|log λk − log x|−1 ≤ max(λk, x)
|λk − x| �

λkx

|λk − x| ,

thus the first order term sum here is

� 1
x

∞∑

k=1

|αk|λ−2
k � 1,

since the series in (3.2) converges absolutely for Re s > 1. Further,

|αk| ≤
∑

n:Q(n)=λk

|γ(n)| � λε
′
k

∑

n:Q(n)=λk

1,

thus the second order term sum in (3.4) is

� xε
′ ∑

n: |Q(n)−x|<1

1� xε
′
(AD(x+ 1)−AD(x− 1))� x1/3+ε′ ,

in view of (2.2). This proves Lemma 1.

The key point to prove Proposition 2 will be to have at hand the follow-
ing estimates for the growth of the complex function ZD(s) in the vertical
direction.

Lemma 2. (i) For any σ1 > 1/4 and any ε′ > 0,

ZD(σ + it)� |t|(4/3)(1−σ)+ε′ ,

uniformly in σ ≥ σ1, |t| ≥ 1.

(ii) For a real parameter T ≥ 1 and any fixed ε′ > 0,

2T\
T

∣∣ZD
(

3
4 + it

)∣∣ dt� T 1+ε′ .

P r o o f. Let X denote a positive real number which is not attained by
Q(n) as n runs through Z2

∗. Using Stieltjes integral calculus, we conclude
that, for Re s > 1,
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(3.5) ZD(s)−
∑

0<Q(n)≤X
(Q(n))−s

=
∞\
X

w−s d(a(D)w + PD(w))

= a(D)
∞\
X

w−s dw +
∞\
X

w−s dPD(w)

= a(D)
X1−s

s− 1
−X−sPD(X) + s

∞\
X

w−s−1PD(w) dw.

In this identity we choose 0 < X < Q1 and let X → Q1− to obtain

ZD(s) =
a(D)s
s− 1

Q1−s
1 + s

∞\
Q1

w−s−1PD(w) dw.

In view of (1.3), this provides an analytic continuation of ZD(s) to the
half-plane Re s > 1/4 (with the exception of a simple pole at s = 1 with
residue a(D)), and, at the same time, shows that

ZD(σ + it)� |t|,
uniformly in σ ≥ σ1 > 1/4 and |t| ≥ 1. Since, by absolute convergence,
ZD(σ + it) is uniformly bounded in every half-plane σ ≥ σ2 > 1, a Phrag-
mén–Lindelöf argument establishes part (i) of Lemma 2.

To show (ii), we apply the identity derived in (3.5) one more time, with

T 2 ≤ X ≤ 2T 2, s = 3
4 + it, T ≤ t ≤ 2T.

This is clearly justified by analytic continuation. We obtain

(3.6) ZD
(

3
4 + it

)

= SX(t) +O(T−1X1/4) +O(X−3/4+1/3) +O(TX−1/2),

with
SX(t) :=

∑

m∈Z2∗:Q(m)≤X
(Q(m))−3/4−it.

Here we have used (1.3) to estimate the remainder integral in (3.5), and a
simple version of (1.1) (with the exponent 1/3) to bound PD(X). Integration
over T ≤ t ≤ 2T gives

(3.7)
2T\
T

∣∣ZD
(

3
4 + it

)∣∣ dt

�
2T\
T

|SX(t)| dt+O(X1/4) +O(TX−3/4+1/3) +O(T 2X−1/2).
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By Cauchy’s inequality (2),

( 2T\
T

|SX(t)| dt
)2
� T

2T\
T

|SX(t)|2 dt

� T
∑

Q(m)≤Q(n)≤X
(Q(m)Q(n))−3/4

∣∣∣∣
2T\
T

(
Q(n)
Q(m)

)it
dt

∣∣∣∣.

For Q(m) < Q(n), the integrals in this sum can be estimated by

∣∣∣
2T\
T

exp(it(logQ(n)− logQ(m))) dt
∣∣∣≤ 2

logQ(n)− logQ(m)
≤ 2Q(n)
Q(n)−Q(m)

.

Along with the trivial bound, this gives

(3.8)
( 2T\
T

|SX(t)| dt
)2

� T
∑

Q(n)≤X
(Q(n))−3/4

×
( ∑

m:Q(m)≤Q(n)

(Q(m))−3/4
(

max
(

1
T
,
Q(n)−Q(m)

Q(n)

))−1)
.

We now keep n ∈ Z2
∗ fixed for the moment and split up the inner sum over

m: First of all,

1
T
>
Q(n)−Q(m)

Q(n)
⇔ Q(m) > Q(n)

(
1− 1

T

)
,

thus the contribution of these m to the inner sum in (3.8) is

� (Q(n))−3/4T

(
AD(Q(n))−AD

(
Q(n)

(
1− 1

T

)))
(3.9)

� (Q(n))1/4 + T (Q(n))1/3−3/4,

by an easy and classic version of (1.1). Furthermore, we define a sequence
(δj)Jj=0 by δj = 2jQ(n)T−1, with J such that 1

8Q(n) < δJ ≤ 1
4Q(n). Then

Q(n)−Q(m) ∈ [δj , 2δj [⇔ Q(n)− 2δj < Q(m) ≤ Q(n)− δj ,
thus the corresponding portion of the inner sum in (3.8) is

� (Q(n))1/4

δj
(AD(Q(n)− δj)−AD(Q(n)− 2δj))

� (Q(n))1/4 + δ−1
j (Q(n))1/4+1/3.

(2) Here and in what follows, m and n denote elements of Z2∗.
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Summing this over j = 0, . . . , J gives

(3.10) O(J(Q(n))1/4) +O(δ−1
0 (Q(n))1/4+1/3)

= O(T ε
′
(Q(n))1/4) +O(T (Q(n))1/3−3/4).

Finally, the portion of the inner sum in (3.8) corresponding to the m’s
with Q(n)−Q(m) ≥ 2δJ is

(3.11) �
∑

m:Q(m)≤Q(n)

(Q(m))−3/4 =
Q(n)\
1/2

u−3/4 dAD(u)� (Q(n))1/4.

We now combine the upper bounds (3.9)–(3.11), and use them in (3.8)
to conclude that

( 2T\
T

|SX(t)| dt
)2

= T
∑

Q(n)≤X
(Q(n))−3/4(O(T ε

′
(Q(n))1/4) +O(T (Q(n))1/3−3/4))

= T 1+ε′
X\

1/2

w−1/2 dAD(w) + O(T 2)� T 1+ε′X1/2 + T 2.

Combining this with (3.7) and recalling that X � T 2, we complete the proof
of Lemma 2.

Lemma 3. If RH is true, the function fy(s) defined in (3.1) satisfies

fy(σ + it)� y1/2−σ+ε′(|t|ε′ + 1) (ε′ > 0 fixed),

uniformly in σ1 ≤ σ ≤ σ2, y ≥ 1, for arbitrary σ2 > σ1 > 1/2.

P r o o f. This key lemma of the Montgomery–Vaughan method is mean-
while well known. See, e.g., Nowak and Schmeier [20], or Baker [2], Lemma 1.

4. Proof of Proposition 2. We start from Lemma 1 and shift the line
of integration to Re s = 3/4, applying the residue theorem. In view of clause
(i) of Lemma 2 and Lemma 3, the horizontal segments contribute

� x−2
3\

3/4

|ZD(σ + ix5)fy(2σ + 2ix5)| dσ � x−2+5ε′+5(1/3+ε′) � 1.

Furthermore, by clause (ii) of Lemma 2 and Lemma 3,
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3/4+ix5\
3/4−ix5

ZD(s)fy(2s)xs
ds

s

� x3/4y1/2−3/2+ε′
(

1 +
∑

T=2−jx5, j=1,2,...

T ε
′−1

2T\
T

∣∣ZD
(

3
4 + it

)∣∣ dt
)

� x3/4+10ε′y−1+ε′ .

Collecting results, we arrive at

S2 = Res
s=1

(
ZD(s)fy(2s)

xs

s

)
+O(x1/3+ε′) +

(
xεy1/2

(
x

y2

)3/4)
.

Since this residue is obviously equal to a(D)xfy(2), this completes the proof
of Proposition 2 and thereby that of our theorem.
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