On characterization of Dirichlet L-functions

by
Takeo Funakura (Okayama)

1. Introduction. Let $L(s, f)$ denote the Dirichlet series $\sum_{n=1}^{\infty} f(n) / n^{s}$. If f is purely recurring, then $L(s, f)$ is absolutely convergent for $\operatorname{Re}(s)>1$ and

$$
L(s, f)=\frac{1}{N^{s}} \sum_{n=1}^{N} f(n) \zeta(s, n / N),
$$

where N is a period of f and

$$
\zeta(s, x)=\sum_{n=0}^{\infty} \frac{1}{(x+n)^{s}}
$$

is the Hurwitz zeta function. We know that $L(s, f)$ can be extended analytically to the whole plane as a meromorphic function of order one and has only a simple pole with residue $(f(1)+\ldots+f(N)) / N$ at $s=1$ unless $f(1)+\ldots+f(N)=0$, in which case there exists no pole in the whole plane and $L(s, f)$ is convergent for $\operatorname{Re}(s)>0$. We call f even (resp. odd) modulo N if, extending it periodically to all integers, $f(-x)=(-1)^{d} f(x)$ with $d=0$ (resp. $d=1$). Schnee [6] showed the functional equation

$$
\left(\frac{N}{\pi}\right)^{s / 2} \Gamma\left(\frac{s+d}{2}\right) L(s, f)=i^{-d}\left(\frac{N}{\pi}\right)^{(1-s) / 2} \Gamma\left(\frac{1-s+d}{2}\right) L\left(1-s, T_{N} f\right),
$$

where

$$
T_{N} f(x)=\frac{1}{\sqrt{N}} \sum_{n=1}^{N} f(n) \exp \left(\frac{2 \pi i n x}{N}\right) .
$$

We list some of the above properties of $L(s, f)$ as
(A) The Dirichlet series expansion of $L(s, f)$ is absolutely convergent for $\operatorname{Re}(s)>1$.
(B) $L(s, f)$ can be continued into the whole plane to a meromorphic function of finite order with a finite number of poles.
(C) For a non-negative integer d and a positive number N a functional equation holds in the form

$$
\left(\frac{N}{\pi}\right)^{s / 2} \Gamma\left(\frac{s+d}{2}\right) L(s, f)=\left(\frac{N}{\pi}\right)^{(1-s) / 2} \Gamma\left(\frac{1-s+d}{2}\right) L(1-s, g)
$$

where $L(s, g)$ is convergent in a half-plane.
In Section 2 we shall prove that (A), (B), and (C) characterize Dirichlet series with recurrent coefficients, following Chandrasekharan-Narashimhan [3] and modifying Siegel's proof [7] of Hamburger's theorem [4] on the Riemann zeta function. In Section 3 we characterize Dirichlet L-functions without using Euler products. We shall use Dirichlet L-functions in Section 4 to give a characterization of finite Dirichlet series in a way different from Toyoizumi's results in [8]. In Section 5 we shall extend the concept of equivalence and conductors of Dirichlet characters to general periodic functions.

The author expresses his thanks to the referee for valuable advice and kindly support.

2. Characterization of recurring coefficients

Lemma 2.1. For functions $f \neq 0$, properties (A), (B) and (C) imply that N is a positive integer, the number d is 0 or $1, f$ is purely recurring, even or odd modulo N according as $d=0$ or 1 , and $g=i^{-d} T_{N} f$.

Proof (for more details see Chandrasekharan-Narashimhan [3]). We put

$$
\phi(s)=(2 N)^{s} L(2 s-d, f), \quad \psi(s)=(2 N)^{s} L(2 s-d, g)
$$

The given functional equation becomes

$$
(2 \pi)^{-s} \Gamma(s) \phi(s)=(2 \pi)^{s-\delta} \Gamma(\delta-s) \psi(\delta-s)
$$

where $\delta=d+1 / 2$.
Let α, β be positive numbers such that

$$
\sum_{n=1}^{\infty} \frac{f(n)}{n^{2 \alpha-d}}, \quad \sum_{n=1}^{\infty} \frac{g(n)}{n^{2 \beta-d}}
$$

converge absolutely. By (A) we may choose $\alpha<1+d$ (in fact, any $\alpha>$ $(1+d) / 2$ would do).

We see from (B) and the functional equation that $\phi(s)$ has at most a finite number of poles r, all in the strip $\delta-\beta<\operatorname{Re}(r)<\alpha$.

We start off from the integral

$$
\frac{1}{2 \pi i} \int_{(\alpha)} \Gamma(s) \phi(s) x^{-s} d s \quad(x>0)
$$

over the vertical line (α) with real point α. By the formula

$$
\frac{1}{2 \pi i} \int_{(\alpha)} \frac{\Gamma(s)}{y^{s}} d s=e^{-y} \quad(y>0)
$$

putting in the series representation of $L(s, f)$, it is, on the one hand,

$$
\sum_{n=1}^{\infty} f(n) n^{d} e^{-n^{2} x /(2 N)}
$$

The series representations and the functional equation together with the Phragmén-Lindelöf principle, $L(s, f)$ being of finite order, imply in a standard way that $|\phi(s)|$ can be estimated by a power of $|\operatorname{Im}(s)|$ in any given vertical strip. This enables one, on the other hand, to push the line of integration to $(\delta-\beta)$.

Using the functional equation,

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{(\delta-\beta)} \Gamma(s) \phi(s) x^{-s} d s & =\frac{1}{2 \pi i} \int_{(\delta-\beta)} \Gamma(\delta-s) \psi(\delta-s)(2 \pi)^{2 s-\delta} x^{-s} d s \\
& =\frac{1}{2 \pi i} \int_{(\beta)} \Gamma(s) \psi(s)(2 \pi)^{\delta-s} x^{s-\delta} d s \\
& =\left(\frac{2 \pi}{x}\right)^{\delta} \sum_{n=1}^{\infty} g(n) n^{d} e^{-2 \pi^{2} n^{2} /(N x)}
\end{aligned}
$$

by a similar calculation in the last step as above.
It remains to collect the residues of $\Gamma(s) \phi(s) x^{-s}$. At any given pole r of order q the residue is of the form

$$
x^{-r} P_{r}(\log x),
$$

where P_{r} is a polynomial of degree $\leq q$ with constant coefficients. Denoting by $P(x)$ their (finite) sum,

$$
P(x)=\sum_{r} x^{-r} P_{r}(\log x),
$$

we get
(*) $\quad \sum_{n=1}^{\infty} f(n) n^{d} e^{-n^{2} x /(2 N)}$

$$
=\left(\frac{2 \pi}{x}\right)^{d+1 / 2} \sum_{n=1}^{\infty} g(n) n^{d} e^{-2 \pi^{2} n^{2} /(N x)}+P(x) .
$$

Following Siegel's idea, we multiply $(*)$ throughout by $x^{d} e^{-s^{2} x /(2 N)}$ first with $s>0$, and integrate with respect to x over $(0, \infty)$. The left hand side
becomes

$$
F_{1}(s)=(2 N)^{d+1} \Gamma(d+1) \sum_{n=1}^{\infty} \frac{f(n) n^{d}}{\left(s^{2}+n^{2}\right)^{d+1}}
$$

and using the formula

$$
\int_{0}^{\infty} \frac{e^{-(a x+b / x)}}{\sqrt{x}} d x=\sqrt{\frac{\pi}{a}} e^{-2 \sqrt{a b}} \quad(a, b>0)
$$

the first term on the right becomes

$$
F_{2}(s)=(2 \pi)^{d+1} \sqrt{N} \sum_{n=1}^{\infty} s^{-1} g(n) n^{d} e^{-2 \pi n s / N}
$$

both the resulting series being absolutely convergent.
Finally, the second term on the right becomes

$$
F_{3}(s)=\int_{0}^{\infty} x^{d} P(x) e^{-s^{2} x /(2 N)} d x
$$

The latter is a finite linear combination of integrals, absolutely convergent by $\operatorname{Re}(d-r)>d-\alpha>-1$, of the type

$$
\int_{0}^{\infty} x^{d-r}(\log x)^{m} e^{-s^{2} x /(2 N)} d x=\int_{0}^{\infty}\left(\frac{y}{s^{2}}\right)^{d-r}(\log y-2 \log s)^{m} e^{-y /(2 N)} \frac{d y}{s^{2}}
$$

with integers $m \geq 0$. This is $s^{2 r-2 d-2}$ multiplied by a polynomial in $\log s$ and we see that $F_{3}(s)$ can be extended to a single-valued regular function in the whole plane with the non-positive real axis deleted.

Our formula for $F_{2}(s)$ extends $s F_{2}(s)$ to a function regular and periodic with period $i N$ for $\operatorname{Re}(s)>0$.

Finally, the series representation of $F_{1}(s)$ does, in fact, converge for all complex $s \neq \pm i n(n=1,2, \ldots)$ representing a meromorphic function in the whole plane with poles of order $d+1$ at $\pm i n$ only (unless $f(n)=0$).

From the periodicity of $s F_{1}(s)-s F_{3}(s)=s F_{2}(s)$ we see that N is a positive integer and

$$
\lim _{s \rightarrow i n} F_{1}(s) s(s-i n)^{d+1}=(-i)^{d} N^{d+1} \Gamma(d+1) f(n)
$$

is periodic in n with period N.
Denote by f_{E} and f_{O} the even and the odd part of f modulo N, respectively. Using $L(s, f)=L\left(s, f_{\mathrm{E}}\right)+L\left(s, f_{\mathrm{O}}\right)$ in (C), the functional equations for $L\left(s, f_{\mathrm{E}}\right)$ and $L\left(s, f_{\mathrm{O}}\right)$ and the formula

$$
\frac{\Gamma(s / 2)}{\Gamma((1-s) / 2)}=\frac{2^{1-s}}{\sqrt{\pi}} \Gamma(s) \cos \frac{s \pi}{2}
$$

we get

$$
L\left(s, T_{N} f_{\mathrm{E}}\right) \cos \frac{s \pi}{2}-i L\left(s, T_{N} f_{\mathrm{O}}\right) \sin \frac{s \pi}{2}=G(s) L(s, g) \cos \frac{(s-d) \pi}{2}
$$

where

$$
G(s)= \begin{cases}\prod_{j=0}^{d-1} \frac{s+j}{s-d+1+2 j} & \text { if } d>1 \\ 1 & \text { if } d=0 \text { or } 1\end{cases}
$$

Putting $s=4 r+1+d$ for any positive integer r large enough, we get $L(4 r+$ $1+d, h)=0$, where $h=-\sin (d \pi / 2) T_{N} f_{\mathrm{E}}-i \cos (d \pi / 2) T_{N} f_{\mathrm{O}}$, implying $h=0$. Therefore, $T_{N} f_{\mathrm{E}}=0$ or $T_{N} f_{\mathrm{O}}=0$ according as $d \equiv 1$ or $0 \bmod 2$ and

$$
L\left(s, g-i^{-d} T_{N} f\right)=(1-G(s)) L(s, g)
$$

The rational function $1-G(s)$ is thus the quotient of two Dirichlet series. Such a quotient or its reciprocal tends to a finite limit with an exponential speed, $O\left(e^{-a s}\right)$ as $s \rightarrow+\infty$, a speed a non-constant rational function cannot produce. Our $G(s)$ is only constant, $G(s) \equiv 1$ if $d=0$ or 1 , implying also $g-i^{-d} T_{N} f=0$. The proof of Lemma 2.1 is complete.
3. Characterization of Dirichlet L-functions. Apostol ([1], [2]) characterizes Dirichlet L-functions corresponding to primitive characters by functional equation and Euler product. We replace the latter by an algebraic condition.

Proposition 3.1. Let $f \neq 0$ satisfy (A), (B) and (C), the latter with $g=W \bar{f}$, where W is a constant. By Lemma 2.1, N is an integer and assume that $f(n)=0$ if $(n, N)>1$ and that the field Q_{f} generated by the values $f(n)$ is algebraic over the rationals and is linearly disjoint from the Nth cyclotomic field C_{N}. Then f is a constant multiple of a primitive character $\bmod N$.

Proof. By Lemma 2.1 we also know that f is purely recurring with $\operatorname{period} N$ and $T_{N} f=i^{d} W \bar{f}$.

Our algebraic assumption means that for any m relatively prime to N there is an automorphism τ_{m} of the composite field $Q_{f} C_{N}$ such that τ_{m} leaves Q_{f} invariant and $\tau_{m}\left(e^{2 \pi i / N}\right)=e^{2 \pi i m / N}$.

We get

$$
\begin{aligned}
\tau_{m}\left(\sqrt{N}\left(T_{N} f\right)(k)\right) & =\tau_{m}\left(\sum_{n=1}^{N} f(n) e^{2 \pi i n k / N}\right) \\
& =\sum_{n=1}^{N} f(n) e^{2 \pi i m n k / N}=\sqrt{N}\left(T_{N} f\right)(m k)
\end{aligned}
$$

and by the identity $T_{N} f=i^{d} W \bar{f}$,

$$
\sqrt{N} i^{d} W \overline{f(m k)}=\tau_{m}\left(\sqrt{N} i^{d} W \overline{f(k)}\right)=\tau_{m}\left(\sqrt{N} i^{d} W\right) \overline{f(k)} .
$$

Putting $k=1$ here we get

$$
\sqrt{N} i^{d} W \overline{f(m)}=\tau_{m}\left(\sqrt{N} i^{d} W\right) \overline{f(1)} .
$$

This shows that $f(1) \neq 0$, otherwise $f=0$, a contradiction. We may assume $f(1)=1$ and dividing the last two equations we have

$$
f(m k)=f(m) f(k) .
$$

If $(m, N)>1$ then this holds trivially, both sides vanishing. Hence f is a character $\bmod N$ satisfying $\left(T_{N} f\right)(1)=i^{d} W \overline{f(1)}=i^{d} W$, i.e. $\left(T_{N} f\right)(n)=$ $\left(T_{N} f\right)(1) \cdot \overline{f(n)}$. Such a character is known to be primitive (see e.g. [1], Lemma 1 or [5]) and the proof is complete.

We remark that Dirichlet characters do not always satisfy the algebraic condition, but Proposition 3.1 enables us to characterize e.g. the Legendre symbol by assuming f to be rational-valued.

4. Characterization of finite series. If in

$$
F(s)=\sum_{n=1}^{\infty} \frac{c_{n}}{n^{s}}
$$

$c_{n}=0$ for n large enough and $\chi(n)$ is any Dirichlet character, then

$$
L(s, f)=F(s) L(s, \chi)
$$

has the purely recurring coefficients

$$
f(n)=c_{n} * \chi(n)=\sum_{d \mid n} c_{d} \chi(n / d) .
$$

Conversely, we have
Theorem 4.1. If for each Dirichlet character χ there is an N such that $f(n+N)=f(n)$ for n large enough, then $F(s)$ is a finite series.

Proof. Denoting by μ the Möbius function we see that

$$
F(s)=\frac{L(s, f)}{L(s, \chi)}=L(s, f) L(s, \mu \chi)
$$

is a Dirichlet series absolutely convergent for $\operatorname{Re}(s)>1$, representing a meromorphic function of order ≤ 1 in the whole plane.

We first claim that for any given complex number $s(\neq 1)$ there is a Dirichlet character χ such that $L(s, \chi) \neq 0$. Since $L(s, f)$ can only have a first order pole at $s=1$ as its only singularity, it will follow that $F(s)$ is regular for $s \neq 1$. Using the zeta function, $\zeta(s)=L(s, \chi)$ with $\chi=1$, having
the same singularity at $s=1$, we shall even find that $F(s)$ is an entire function.

To prove the claim we first note that $\zeta(s, x)(0<x<1)$, also a regular function in s in the whole plane with the exception of $s=1$, satisfies

$$
\begin{aligned}
\frac{\partial^{m} \zeta(s, x)}{\partial x^{m}} & =(-1)^{m} s(s+1) \ldots(s+m-1) \zeta(s+m, x) \\
& =(-1)^{m} s(s+1) \ldots(s+m-1) \sum_{n=0}^{\infty} \frac{1}{(x+n)^{s+m}}
\end{aligned}
$$

for $\operatorname{Re}(s+m)>1$, implying

$$
\left|\frac{\partial^{m} \zeta(s, x)}{\partial x^{m}}\right| \sim \frac{|s(s+1) \ldots(s+m-1)|}{(x+1)^{\operatorname{Re}(s+m)}} \rightarrow \infty
$$

as $m \rightarrow \infty$, provided that $s \neq 1,0,-1,-2, \ldots$ Hence $\zeta(s, x)$ cannot vanish identically in x for such an s and there exists a rational number $x=p / q$, $0<p<q,(p, q)=1$, such that $\zeta(s, p / q) \neq 0$. Now,

$$
\frac{1}{q^{s}} \zeta\left(s, \frac{p}{q}\right)=\sum_{n=0}^{\infty} \frac{1}{(n q+p)^{s}}=\sum_{\substack{k=1 \\ k \equiv p(\bmod q)}}^{\infty} \frac{1}{k^{s}}
$$

can be represented as a linear combination of Dirichlet L-functions $\bmod q$, showing that at least one of them does not vanish.

As to the remaining cases $s=0,-1,-2, \ldots$, we have $\zeta(s) \neq 0(s=$ $0,-1,-3, \ldots)$ and $L(s, \chi) \neq 0(s=-2,-4, \ldots)$ for any odd character χ.

For the rest of the proof we fix our Dirichlet L-function e.g. as $\zeta(s)$ and use the single relation

$$
F(s) \zeta(s)=L(s, f)
$$

f, being ultimately recurring, can be written as $f_{\infty}+f_{\mathrm{E}}+f_{\mathrm{O}}$; here $f_{\infty}(n)$ vanishes for n large enough, f_{E} and f_{O} are purely recurring with period N, even and odd, respectively.

From the respective functional equations we have

$$
\zeta(-k)=L\left(-k, f_{\mathrm{E}}\right)=0
$$

for even, positive integers k, implying

$$
0=L(-k, f)=L\left(-k, f_{\infty}\right)+L\left(-k, f_{\mathrm{O}}\right)
$$

From the functional equation of f_{O} we see that

$$
\left|L\left(-k, f_{\mathrm{O}}\right)\right|>e^{\frac{1}{2} k \log k}
$$

for even k large enough, unless $T_{N} f_{\mathrm{O}}=0, f_{\mathrm{O}}=0$. The finite series $L\left(s, f_{\infty}\right)$ also tends to infinity but at a smaller rate, only exponentially, as $s \rightarrow-\infty$, unless it is a constant.

We conclude first that $f_{\mathrm{O}}=0$ and then $f_{\infty}=0$. Hence $f=f_{\mathrm{E}}$ and

$$
F(s)=\frac{L\left(s, f_{\mathrm{E}}\right)}{\zeta(s)} .
$$

By the respective functional equations

$$
F(s)=N^{1 / 2-s} \frac{L\left(1-s, T_{N} f_{\mathrm{E}}\right)}{\zeta(1-s)}
$$

implying for $\operatorname{Re}(s) \leq-1$

$$
|F(s)| \leq c N^{1 / 2-\operatorname{Re}(s)} .
$$

An entire function of finite order, representable by a Dirichlet series for $\operatorname{Re}(s)>1$ and satisfying an estimate like this is a finite series. A proof of this standard fact runs e.g. as follows.

By the Phragmén-Lindelöf principle $F(s)$ is bounded in any fixed vertical strip. The coefficient formula,

$$
c_{n}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{\sigma-i T}^{\sigma+i T} F(s) n^{s} d s,
$$

valid first for $\sigma>1$, but by the above boundedness for any σ, implies

$$
\left|c_{n}\right| \leq c N^{1 / 2-\sigma} n^{\sigma} \quad(\sigma \leq-1),
$$

and letting $\sigma \rightarrow-\infty$ gives $c_{n}=0(n>N)$. (This proof even allows for a finite number of singularities, compare with Toyoizumi [8].)
5. An equivalence relation. In the set of all convergent Dirichlet series, we define the equivalence $L(s, f) \sim L(s, g)$ if there exist two nonzero finite series $L\left(s, h_{1}\right)$ and $L\left(s, h_{2}\right)$ such that $L\left(s, h_{0}\right)=L(s, f) L\left(s, h_{1}\right)-$ $L(s, g) L\left(s, h_{2}\right)$ is a finite series. If D_{i} is the least common multiple of integers d such that $h_{i}(d) \neq 0$, then this means

$$
\sum_{d \mid\left(n, D_{1}\right)} f(n / d) h_{1}(d)-\sum_{d \mid\left(n, D_{2}\right)} g(n / d) h_{2}(d)=0
$$

for n large enough. The conductor of $L(s, f)$ can be defined as the minimum of the primitive period of g for which $L(s, g) \sim L(s, f)$ and g is purely recurring.

Theorem 5.1. Our conductor of a Dirichlet L-function coincides with the ordinary conductor of the associated character.

Proof. Assume that $L(s, \chi) \sim L(s, f)$, that is, for n large enough

$$
\sum_{d \mid\left(n, D_{1}\right)} \chi(n / d) h_{1}(d)=\sum_{d \mid\left(n, D_{2}\right)} f(n / d) h_{2}(d) .
$$

Let M denote the primitive period of f. By putting $r n$ as n in the above identity, where $r \equiv 1(\bmod M)$ and $\left(r, D_{1} D_{2}\right)=1$, the right hand side is invariant and the left hand side is multiplied by $\chi(r)$. There exist infinitely many n such that the left hand side is not zero, otherwise $L(s, \chi) L\left(s, h_{1}\right)$ would be a finite series. Therefore $\chi(r)=1$.

If χ belongs to the modulus q and $a_{1} \equiv a_{2}(\bmod (q, M)),\left(a_{1}, q\right)=$ $\left(a_{2}, q\right)=1$, then we can find an r with the above properties such that in addition $r a_{1} \equiv a_{2}(\bmod q)$. This implies $\chi\left(a_{1}\right)=\chi\left(a_{2}\right)$, i.e. χ can be defined $\bmod (q, M)$ and the conductor of χ is $\leq(q, M) \leq M$.

The rest is obvious.
Two characters are said to be equivalent if their corresponding primitive characters are the same.

Corollary 5.2. Dirichlet L-functions are equivalent if and only if their associated characters are equivalent.

Proof. Assume in the identity in Theorem 5.1 that f is also a character. Putting $r n$ as n with $\left(r, D_{1} D_{2}\right)=1$, the left and right hand sides are multiplied by $\chi(r)$ and $f(r)$, respectively. Since the two sides are not identically zero, we have $\chi(r)=f(r)$ for $\left(r, D_{1} D_{2}\right)=1$, so that χ and f are equivalent.

Proposition 5.3. Any positive integer N except for 2 is the conductor of a Dirichlet series.

Proof. According to Corollary 5.2 there exists a Dirichlet series with conductor N if $N \equiv 0,1$ or $3 \bmod 4$. We show that the conductor of the Dirichlet series

$$
L(s, f)=\sum_{\substack{k=1 \\ k \equiv 1(\bmod N)}}^{\infty} \frac{1}{k^{s}}
$$

is N if $N \equiv 2(\bmod 4)$. Assume that $L(s, f) \sim L(s, g)$, where g is purely recurring with primitive period $M<N$. We have

$$
\sum_{d \mid\left(n, D_{1}\right)} f(n / d) h_{1}(d)=\sum_{d \mid\left(n, D_{2}\right)} g(n / d) h_{2}(d)
$$

for n large enough, but both sides being purely recurring, in fact for all n. This means

$$
L(s, g) / L(s, f)=L\left(s, h_{1}\right) / L\left(s, h_{2}\right) .
$$

The left hand side is an ordinary Dirichlet series $\sum_{n=1}^{\infty} a(n) / n^{s}$ because $f(1) \neq 0$ and we see from the right hand side that $a(n)=0$ if $\left(n, D_{1} D_{2}\right)=1$. Let d_{1} be the least integer such that $a\left(d_{1}\right) \neq 0$.

In any case except $2 M=N$ we can find an integer (even a prime) q satisfying $q \equiv 1(\bmod M), q \not \equiv 1(\bmod N)$ and $\left(q, D_{1} D_{2}\right)=1$. From the
identity

$$
g(n)=\sum_{d \mid n} a(d) f(n / d)
$$

we get

$$
\begin{aligned}
g\left(d_{1}\right) & =a\left(d_{1}\right) f(1)=a\left(d_{1}\right) \neq 0 \\
g\left(d_{1} q\right) & =a\left(d_{1}\right) f(q)=a\left(d_{1}\right) \cdot 0=0
\end{aligned}
$$

contradicting the fact that by $d_{1} \equiv d_{1} q(\bmod M), g\left(d_{1}\right)=g\left(d_{1} q\right)$.
In the exceptional case $2 M=N$ we have M odd since $N \equiv 2(\bmod 4)$ and we can find an integer q satisfying $2 q \equiv 1(\bmod M),\left(q, D_{1} D_{2}\right)=1$. We get $g\left(2 d_{1} q\right)=g\left(d_{1}\right) \neq 0$ as established above, contradicting the fact that

$$
g\left(2 d_{1} q\right)=a\left(d_{1}\right) f(2 q)+a\left(2 d_{1}\right) f(q)=0
$$

since $2 q \not \equiv 1(\bmod N), N$ being even and $q \equiv(M+1) / 2 \not \equiv 1(\bmod N)$, provided that $M>1$.

The identity

$$
a+\frac{b}{2^{s}}+\frac{a}{3^{s}}+\frac{b}{4^{s}}+\ldots=\left(a-\frac{a-b}{2^{s}}\right) \zeta(s)
$$

shows that no series has conductor $N=2$.
Proposition 5.4. Let f and g be purely recurring with period N, such that $f(n)=g(n)=0$ for $(n, N)>1$. If $L(s, f) \sim E(s, g)$ and $g \neq 0$, then $f=\vartheta g$ with a constant ϑ.

Proof. Let χ run over the characters $\bmod N$. Under our assumption we have the representations

$$
f=\sum_{\chi} c_{\chi} \chi, \quad g=\sum_{\chi} d_{\chi} \chi
$$

with constants c_{χ}, d_{χ}.
The relation

$$
L(s, f) L\left(s, h_{1}\right)-L(s, g) L\left(s, h_{2}\right)=L\left(s, h_{0}\right)
$$

can be rewritten as

$$
\sum_{\chi}\left(c_{\chi} L\left(s, h_{1}\right)-d_{\chi} L\left(s, h_{2}\right)\right) L(s, \chi)=: \sum_{\chi} L\left(s, h_{\chi}\right) L(s, \chi)=L\left(s, h_{0}\right)
$$

$\left(L\left(s, h_{*}\right)\right.$ all denoting finite series) or, in terms of the coefficients,

$$
\sum_{\chi} \sum_{d \mid n} h_{\chi}(d) \chi(n / d)=0
$$

for n large enough.
Assuming that not all $h_{\chi}=0$, let q be the least value such that there is a χ with $h_{\chi}(q) \neq 0$. Applying the identity for $n=p q$ with a prime p large
enough, we get

$$
\sum_{\chi} h_{\chi}(q) \chi(p)=\sum_{\chi} \sum_{d \mid p q} h_{\chi}(d) \chi(p q / d)=0
$$

Since large primes p represent all reduced residue classes $\bmod N$, it follows that $\sum_{\chi} h_{\chi}(q) \chi=0$ and $h_{\chi}(q)=0$ for all χ, a contradiction. We infer that $L\left(s, h_{\chi}\right)=L\left(s, h_{0}\right)=0$ for all χ.

We get $c_{\chi} L(s, f)-d_{\chi} L(s, g)=0$ for any χ and, since not all $d_{\chi}=0$, the statement follows.

References

[1] T. M. Apostol, Dirichlet L-functions and primitive characters, Proc. Amer. Math. Soc. 31 (1972), 384-386.
[2] -, A note on periodic completely multiplicative arithmetical functions, Amer. Math. Monthly 83 (1975), 39-40.
[3] K. Chandrasekharan and R. Narashimhan, Hecke's functional equation and arithmetical identities, Ann. of Math. 74 (1961), 1-23.
[4] H. Hamburger, Über die Riemannsche Funktionalgleichung der ζ-Funktion, Math. Z. 10 (1921), 240-254; ibid. 11 (1921), 224-245; ibid. 13 (1922), 283-311.
[5] H. Joris, On the evaluation of Gaussian sums for nonprimitive Dirichlet characters, Enseign. Math. 23 (1977), 13-18.
[6] W.Schnee, Die Funktionalgleichung der Zeta-Funktion und der Dirichletschen Reihen mit periodischen Koeffizienten, Math. Z. 31 (1930), 378-390.
[7] C. Siegel, Bemerkungen zu einem Satz von Hamburger über die Funktionalgeichung der Riemannschen Zetafunktion, Math. Ann. 86 (1922), 276-279.
[8] M. Toyoizumi, On certain infinite products, Mathematika 30 (1983), 4-10; II, ibid. 31 (1984), 1-11; III, Acta Arith. 51 (1988), 221-231.

Faculty of Liberal Arts and Science
Okayama University of Science
1-1 Ridai-cho, Okayama, 700 Japan
Present address:
Department of Computer Science and Mathematics
Kurashiki University of Science and Arts
Tsurajima, Kurashiki, 712 Japan
E-mail: funakura@kusa.ac.jp

