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Introduction. Let p be an odd prime number, K a finite extension of
the field of rational numbers QQ, Ok the ring of integers of K, and Ej its
group of units. Let N be the set of natural numbers, and Z and Z, be the
ring of rational integers and the ring of p-adic integers, respectively.

We define

Ex(p")={u€ Fx:u=1modp"}, neN.

For each u € Ek(p), we call

——modp (€ O0x/(p))

the Fermat quotient mod p of w. That is, for a unit u = 1 + pxy, z, € Ok,
x,, mod p is the Fermat quotient mod p of u. From now on, we omit “mod p”
for simplicity.

We define a homomorphism ¢: Ex(p) — Ok /(p) by u = 1 + pz, —
x, mod p. Let F(K') denote the set of all Fermat quotients of u € Ex(p) or
the image of 9. Clearly, F(K') forms a subspace of F,-vector space O /(p)
where F,, denotes the field with p elements, and kernel of ¢ is Ex (p?). So,
we have

F(K) = Ex(p)/Ex(p°)

as IFp-vector spaces.

Now, the following two statements are well known: first, if ¢ (uq),...,
1 (us) are linearly independent over ), then wi,...,us € Fk(p) are Z,-
independent, and secondly, the dimension of Ex(p")/Exk(p"*') over F,
equals the Z,-rank of Fx(p) for sufficiently large n (see, Levesque [3] and
Sands [4]). On the other hand, the Leopoldt conjecture states that Z,-rank
of Ex(p) equals Z-rank of E.

The aim of the present article is to study the dimension of F(K) over
F,, when K is a cyclotomic field.

(335]
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1. Notations and results. Let ¢, = exp(27mi/n) for n € N, and let
m € N be odd, square free, 3 < m and prime to p. We let K = Q((np) and
let Ex(p™), F(K) and v be as in the introduction.

Since Ox = Z[(mp) = Z[¢m][1 — (] and m is square free, the set

{G,(1-¢)":1<r<m, (rrm)=1,v=0,1,...,p—2}
forms a Z-basis of Og. As is well known,
dimg, (Z[¢myp]/ (P)) = [Q(Gmyp) = Q] = @(mp),
where ¢ denotes the Euler function. Therefore, the set
{G,(1 =) modp:1<r<m, (rrm)=1,v=0,1,...,p—2}

forms an IF,-basis of Og /(p).
Representing each x mod p € O /(p) in this basis, we have

r=co+ci(l—¢p)+ca(l— Cp)2 +.Fpa(l— Cp)p_2 mod p

with ¢; € Z[¢n] (1 =0,1,...,p —2), determined uniquely modulo p.
Let 7 denote 1 — ¢, and let

Ex(pr) ={u € Ex :u=1mod pr'} (i=1,...,p—2).
Since
Ex(p) D Ex(pn) D ... D Ex(pnP~2) D Ex(p?),
and u? € Ek (p?) for all u € Ex(p), we have
F(K) = (Exc(p)/Exc(pm) & ... & (Exc(pn*) [ Exc(pr*?) @ ..
o ® (Ex(pn?™?)/Ex (p?)).
Thus
dimp, F(K) = dimp, (Ex (p)/Ex (pm)) + . ..
— dimFP(EK(pﬂk+1)/EK(p7rk+2)) +...
...+ dimg, (Ex (pn?"%)/Ex(p*)), -1<k<p-3.
We define subsets Vi, (k= —1,0,1,...,p—3) of F(K) by
Vie = {xy, mod p e F(K) : u € Ex(p),
co=c1=...=cp=0modp, cxr1 Z 0mod p},
where u =1+ pry and 2y = co + (L= () + ...+ cpa(l - ¢p)P~2 mod p,
and V}, be the subspace generated by all elements in V}, over IF,,. Of course,

FIK)=V_,uVWUuViU...UV,_3U{0mod p}  (disjoint union).
For each k (—1 < k < p — 3), we define a mapping 7 : Vi — Z[Cm]/(p)

>~

by z, modp +— cy1 modp and let Vi = mp(Vi). Then, since Vi
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Erx (prkt1) /B (pr**2) for —1 < k < p — 3, we have
dimg, F(K) = ) dimg, V5.

We now take polynomials S;(X) € Q[X], Z > ¢t > 0, such that Si(n) =
1t 4+ 2t 4+ ...+ n! for all n € N. For example,

So(X) =X, S1(X)=3X(X+1), S(X)=:X(X+1)(2X+1), etc.

As is well known, (k+1)!S,(X) € Z[X], deg Sk(X) = k+1, and Si(—1) =0
for k> 1.
We define

- l
Ik(n):Z/Sk<_n>C£w nggp_QanENa
=1

where 27:/1 denotes the sum taken over all [ = 1,...,n that are prime to n.

Let G be the Galois group of Q((,,) over Q and G its character group. As
is well known, G is isomorphic to (Z/mZ)* (the multiplicative group of all
residue classes prime to m) by assigning o, : ¢, — (4 to g mod m.

Note that ¢ is a Gal(K/Q)-homomorphism. We now state our results,
Theorems 1-4.

THEOREM 1. (1) There exist units ay € Ex(p), 1 <k < p—3, such that
T (Y(ek)) = I(m) mod p.
(2) For k =0, there exists ag € Ex(p) such that
mo(¢Y(ap)) = (1 — o) Io(m) mod p.
(3) For k = —1, there exist 5, € Ex(p), 2 <v <m/2 and (v,m) =1,
such that
T2 ($(B)) = (1 = 0y)Ip—2(m) mod p.

(4) If Br+1 # Omod p for some k = 1,3,...,p — 4, then there exists
ug € Ex(p) such that

Tk (1 (ur)) = 1 mod p,
where B,, denote the Bernoulli numbers (the definition will be given in
Section 4).

For any a € Z, let M(a) € Z denote the non-negative minimal residue
of a mod m, that is, a = M(a) modm and 0 < M(a) < m — 1. When
b € Z is prime to m, we let M(1/b) € Z be the integer such that b x
M(1/b) = 1modm and 0 < M(1/b) < m — 1. Also, we take M (a/b) for
M(M(a) x M(1/b)).
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For any 0, € G and k (0 < k <p—2),

m)ar:élsk(_ri)dr Z S, ( 5/7“)><z

We then define for each k, 0 < k < p — 2, the matrix

Aj(m) = <5k < - MSL/T)>> 1<ri<m

(r,m)=(l,m)=1

where we index the rows by r, and the columns by [. Since I(m)7-! =
(—=1)**1(m) for 1 < k < p — 2 (see Lemma 3.2), we have rank Aj(m) <
3¢(m) for such k.

In addition, we define

B = (5:(-2U0)) L oskepoa

(rm)=(l,m)=1
THEOREM 2. For each k (1 <k <p—3), we have
¢(m)/2

det By (m) <2‘m1,€) SRECOI | ) (RSO
id.;é(f:fven i
([T = a5 = m(m)),
qlm

if k is odd, and

p(m)/2
det Bx(m) = (2731’“) M(_k) H H(l_Xl(q)qk),

+ ~
CQ(Cm) Gox:odd qlm

if k is even. Moreover, if det Bi(m) # 0 mod p, then
dimp, Vi, > 5¢(m).

Here (g(¢,.) and (g(c,,)+ denote the Dedekind zeta functions of Q((m)
and Q(¢n)* (the maximal real subfield of Q((,,)), respectively, and x; the
primitive Dirichlet character associated with x. Also, [] denotes the
product taken over all distinct primes ¢ which divide m.

B (m) is, in some sense, a generalization of matrices defined by Carlitz
[1] and Tateyama [5].

Let f be the order of the element p mod m in (Z/mZ)*,and g = p(m)/f.
Let g(m) and g+ (m) denote the number of distinct prime ideals which divide
m in Q(¢) and Q((n) ™, respectively. We write h™ (Q((,,,)) for the relative
class number of Q((,,). By the theorem of Tateyama [5], we can prove

qlm
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THEOREM 3. Assume g(m) = g*(m) and p does not divide h™ (Q((m))-
Then

w(m) if p does not decompose in Q(Cm)/Q(Cm)™T,
(p(m) —g) if p decomposes in Q((m)/Q(Cn) ™
Note that when the right-hand side in the inequality above is not positive,

or p = 1 mod m, our theorem says nothing. Finally, by the same calculation
as in the proof of Theorem 2 we obtain:

dimg, Vo > {

N[ N[

THEOREM 4. We have

IO )
deth_2(m):<2mp_z) e - I TI0—xa(@e?)
g am
id.#x:even
< (TI0 - = mr=(m))
qlm

and if det B,_o(m) # 0 mod p, then
dimp, V_i> %gp(m) —1.

The rest of the article will be devoted to the proofs of the theorems
stated above. In Section 2, we discuss some elementary properties of the
Fermat quotient of cyclotomic units. The main result here is Lemma 2.5. In
Section 3, introducing I, (m), we prove Theorem 1(1). In Section 4, we prove
Theorem 2 and the first part of Theorem 4. In Section 5, discussing Io(m)
and the rank of Ag(m), we prove Theorem 1(2) and Theorem 3. In Section
6, by the argument in Q((,,), we prove Theorem 1(3) and the second part of
Theorem 4. Finally, the proof of Theorem 1(4), which is obtained essentially
in Washington [6], will be given in Section 7.

Before concluding this section, we classify typical generators of cyclo-
tomic units (in the sense of Sinnot) into three types:

L1-¢iCp (L#d|m),
II. 1 — ¢4 (1 # d|m, dis composite),

17 v
74‘1 (g|m, qisaprime, 2<v<g-—1),
1-¢,
1_ v
I11. Cp 2<v<p-1).
1-¢

We shall use cyclotomic units of type I to prove Theorem 1(1), (2), type
IT (units in Q((,)) to prove Theorem 1(3), and type III (units in Q((,)) to
prove Theorem 1(4).

Also, see Leopoldt [2] for units of type II.
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2. Fermat quotient of units of type I. We first prove a preliminary
lemma:

LEMMA 2.1. For each v € N, we have

, . b1 X2 X (p—1)p
1-X)P ' =1-X7 —p(Xp gt

v—1
.+ > mod p?.

5 + .. P
Proof. We have

1- X7 =1-Xx7" +p§_: (i) (—X).
Since )
(P —=1)...(p¥ —i+1)

(1 —1)!

= (-1)""! mod p*,

we have

)

v -1 1—1 )
(p‘ ) = ( ) p¥ mod p?* =% foralli=1,...,p" — 1
i i

where ord, 7 denotes the exact exponent of the power of p dividing i. Now,
we have 2v —ord,i > 2v — (v — 1) > 2 and ord,(p”/i) > v — (v —1) = 1.
So, (p;) # 0 mod p? if and only if ord,i = v — 1, i.e. i = jp”~! for some j
(1<j<p-1).Ifi=jp" ' (1<j<p-—1),then

v ) -1 i—1 ) w1
<pZ >(_X)l ( j) p(—X)' = —gX”’ mod p2.

This completes the proof.

We define
1 X2 xp-1
X) = X+ —4+... X).
100 = g (X4 4 ) earn)

Using Lemma 2.1, we have

opf (p—1)p”
(1-— Cme)pﬁl =1- C%Hl P(Cfnf + ng +...+ T;_1>

- e ¢
_1_C£1_p<<m+2+...+p_1>
= (1= ¢2)(1 = pf(Gm)) mod p2,
2 +2 —1 —1
(1= CmGp)P =1 2, —p<<m<p+ Cfp - C";_Cpl)
= (1= ) (1 = pf(CmCy)) mod p?,

and so
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(1 - Cme)pH_l_p =1 _p(f(Cm) - f(Cme)) HlOd p2-

Consequently, f(¢m)—f(¢m(p) mod p belongs to F(K'). Note that (O /(p))*
(the multiplicative group of Ox/(p)) has the exponent p/*! — p. We first
prove the existence of a “canonical” element in F(K), a linear combination
over [F,, of conjugates of f((p) — f(¢m(p) mod p (see Lemma 2.3), and next
determine the coefficients modp of its image by 7 (see Lemma 2.5). From
¢l = ((¢ — 1)+ 1)7, it can be easily seen that

- ¢ = Zij() D (1= G

Hence

1) f(Gm) = F(Cmp) = Z

|
[S—
| =
N
kS
b
7N
. o,
~_~
—
—
~
+
—
—
&

that is,
e = 1) =1 3 (E Ve ) v o,

where (1) =0 if j < i.

LEMMA 2.2. For each v =1,...,p— 1 we have

1 2 L 4 .
) = F6n6)) = 1= 3 (5 6k ) (-1 - ) mod .
Proof. Taking ¢, for ¢, in both sides of (1), we get

-1 ]
Zﬂ —CV]
j=1

We denote by P(a) (a € Z) the non-negative minimal residue of a mod p
and use it similarly to M (a) introduced in the previous section. Then

f(Cm) - f(CmCV =
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p—1
Ch (g oy
Jj=1 J
p—1 C:;(J/V) )
= (1-¢)
Jj=1 iv
p—1 g(j/l/) . p—1 nlz(j/V) J j - )
=v) (1) =v> <Z(.>(—1)H (1_§p)l>
j=1 J j=1 J im1 \!

p—1

= VZ (Z ) ”W’) (=1)"(1 = ¢,) mod p.

Now (z) = (”P(z?/”)) mod p, as vP(j/v) = j mod p. It follows that
p—1 (j) PG/ p—1 1(VP(j/l/)) PG/ — p—1 1(VP(j/l/)) PG/Y)
[ J/v v /v v J/v
= om ]Zl ilv m ]Zl P(j/v) m
p—1 1

—Z C] mod p.

We then have

This completes the proof.

Let g;(X) (1 <i < p—1) be a polynomial with coefficients in F,, such
that ¢;(0) = 0 and of degree < i. We define a map 7, (1 < v < p—1)
from F,,[X] into itself by 7, (g(X)) = g(vX) for all g(X) € F,[X]. Let N;
(1 <i<p-—1) be the i x i matrix

11 .1
2t 2i-l  2

N,=|° T T T,
il

where each component represents a corresponding residue class mod p. Then
it is clear that

1 0 1 1 .1
2 gi—1 9i=2 1]
N; = - : : . -



Fermat quotient of cyclotomic units 343

therefore det N; # 0, and

ai?i_l 71(9:(X))
N, ai—I. _ T2 (gl(X)) 7
X 7(9:(2))

where ¢;(X) = a; X  +a; 1 X" +... + a1 X.
Let (¢i1 ¢i2 ... ¢ i) be the first row of N;l. Then
a; X" = ¢;171(9i(X)) + i0T2(gi(X)) + - + ciiTi(9:(X)).
Letting C; = CiaT1 + ...+ ¢iiTi, we write a; X" = éi(gi(X)), that is
e /0 if deg g;(X) < 1,
Cilg:(X)) = {aiXi if deg g;(X) = i.

Now we take (z ), 1 <i<p-—2, for a polynomial in an indeterminate j
with coefficients in F,,.

Since (7) = (1/i!)j’+ (polynomial with degree < i — 1), for k (0 < k <
p — 3) we have

0 ifi<k+1,
~ )
Ck+1<i>— (k+1)!] ifi=Fk+1,

* ifi>k+1,

where * means some polynomial in [, [j], irrelevant for our purpose.

Let 7, (1 <v <p—1) be an automorphism of Q((,,,) over Q such that
T i G Gy and 7, 1 G = G, and C; (1 <@ < p —1) be the element
ciiT + CioTo + ... + ¢ ;7 of the group ring of Gal(Q((myp)/Q) over F), (we
write its action on F(K') additively). Then we obtain the following:

LEMMA 2.3. For each k, 0 < k < p— 3, we have

Crr1(f(Gm) — f(CmCp))

1 ( 1 pzljkcj )(_1)k(1 ¢ )k—l—l
(k+DI\T =G 7 :

p=2 ,pzl A () 4 ;
i 5 (B Eng) o e

™ i=k+2 Nj=1 J

Proof. By Lemma 2.2,
TV(f(Cm) - f(Cme)) = f(gm) - f(CmCZ)

n2p iz (9 , ,
1 —1Cp Z <Z ll(l)Cﬁn) (1" (1 = )" mod p.

i1 \j=
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Consequently,

CkJrl(f(Cm) - f(Cme))

= L S (R ) cyma oy

M oi=1 \j=1 J
1 Cry1(,7,)
El_%<; = @)( (1 = )

(X 1)!3"“@@) (1)1 - )

1 2 e
1_Cp Z < k+1( )Cj )( )l+1(1_<~p) rnodp,
i=k+2 Nj=
as desired.

We define, for k =0,1,...,p — 2 and n (€ N) prime to p,
1 =
Ji(n) = - ijC,{ whenn >2 and Ji(1) =0.

We can deduce that

1 1 1
Jo(n) =

TP el St Of wavon

and

Ji(n)7 = (=11 J(n) mod p
for n > 2 by easy calculation, where o_; denotes the automorphism which
sends ¢, to ¢, L.

LEMMA 2.4. For each k (1 <k <p —2) we have

m—1 p—1

)= ( Z Jk)dn mod p.

I=1 j=1,M(/p)>M(j/p)#0

Proof. From the equality —m/(1 — () = S ' ¢k, we obtain

m—1
I
=1
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and
m—1 m—1

—m(J A .
M NI = Y a1 <p-t,
=1 =1

1— G

where M (x) is the same as in Section 1. Now, since M ((M(lp + j) — j)/p)
=l and

{M(lp+37):l=1,...,m—1} ={0,1,...,m — 1}\{M(y)},

we obtain

i,
o LM
=

W)C%upm — TS:IM(T)C&

=0

‘j)<;+M<‘j)<—cm )

Therefore
J L~ —mg,
k(m) —m]z:l 1-¢h,
s (50 - (3))e)
mi3 1=1 p p ")
that is,
o =SS5 - (F)) Je
k =—— — ) = — m
mao=D U p p

It is clear that

L=\ _ [ M(l/p) — M(j/p) if M(1/p) > M(j
M( p >_{M ) — M(j (

and

M(l_j) —M(_‘j> - { %El( —j)/p) - {m — M(j/p)}
P P = M((I~ §)/p) + M(j/p) —m if M(j) #0.

For these reasons,

()4(3)
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Substituting this in (2), we have

p—1

Tum) = - =37 > ) -m)

I=1 j=1,M(/p)>M(j/p)#0

p—1
+ > FEM(/P) G
J=1,M(l/p)<M(j/p) or M(j)—O
m— p—1

;lz{ (1/p) 23 > A

= Jj=1,M(/p)>M(j/p)#0

The result follows from a well known fact that Zp ! % = 0 mod p.

LEMMA 2.5. We have

m—1
l
’“ZSk(—m)dnmodp, 1<k<p-2
=1

Proof. It is sufficient to prove

p—1 I
ko k
3) ) j* = (=m) sk(— m) mod .
J=1,M(/p)>M((j/p)#0

We deal first with the case where m < p. Let x; = P(—i/m) and y; =
(i+x;m)/p € Z for each i (1 < i < p—1), where P(x) is the same as in the
proof of Lemma 2.2. Then we have 1 < y; < m.

Suppose that z; < x; for ¢ # j, 1 < 4,7 < p—1. Then, as j — ¢ =
(y; —yi)p — (x; — z;)m and —(p — 2) < j — i, we have

—(p—2 2
“p=24+m_ . om+
b

Yi —Yi = > —1.

Therefore, y; > y; if x; > x;.
Foreach ! (1 <l <m—1),let
Ar={j:1<j<p—-1,M(/p) = M(j/p) # 0}.
Since y; #m, or 1 <y, <m —1, and M(j/p) = M(y;), we have
Ar={j:1<j<p-1 M(y) > M(y;) # 0}

={j:1<j<p-1, M(y) > M(y;), y; #m}
={j:1<j<p-1, y =y}

Ifm<i<p-—1, we have i — m = y;p — (z; + 1)m; therefore z;_,, = z; + 1

and y;_,, = ;. For that reason, any index ¢, with common value y;, can be

represented in the form ¢ = j +mv (1 < j <m, Z > v > 0) and, for such
t’s, the maximal value of x; equals x;.
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Consequently,
Ai={j:1<j<p-1, z; <z}

and

p—1 . k
. J
> et (S L) =emr T
Jj=1,M(l/p)>M((j/p)#0 JEAL JEA;
(—m)k(lk +2F 4.+ xf) = (—m)kSk(azl)

(s - o) modp

as desired.

Next we consider the case where p < m. Let again z; = P(—i/m) and
yi = (i+ax;m)/p € Zfori (0 <i<m-—1). Since 0 < y;p =i+ z;m <
m—14+(p—1)m = pm — 1, we have 0 < y; < m — 1/p, that is, 0 <
yi < m — 1.1t is clear that {z; : 0 <i <p—1} ={0,1,...,p — 1}. Since
i—j=wi—y)p— (x; —z;)m for 0 < i,j < m —1, we see that z; = x;
if and only if ¢ = j mod p, and that y; < y; if z; < x;. There exist ig and
v; (0<ip<p-—1,1<y;) such that i =ip+v;p for each i (p <i <m—1).
Since @ = y;,p — Tiym + vip = (Yi, + Vi)p — xi,m, we have y; = y;, + v; and
Ti = Ty -

Consequently, for [ (1 <! <m — 1), we have

Ai={j:1<j<p—-1LM(I/p)2M@G/p)}={j:1<j<p—-1y >vy;}
={j:1<j<p—-Liy, >y} ={j:1<j<p—1,m, > x5}

Now, clearly, —I/m = —ly/m = z;, mod p. Hence
p—1
2 i'= >
JEA J=lx;<m,
p—1 j k p—1
k — k k
=t Y (g) =t Y
Jj=1lz; <z, j=lz;<zy,

= (—m)k(lk +ok 4 wé“o) = (—m)kSk(fclo)
(—m)* Sy, ( - nﬁ) mod p.

We have just completed the proof of Lemma 2.5.

3. I (m) as a partial sum of Ji(m). For any divisor d of m we define

Md:{l:l:i;y, 1<v<d, (V,d)zl}.
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It is clear that ¢(d) = § My (the cardinality of My), My = {m}, {1,2,...,m}
= Udjm Ma (disjoint union), and My = {l:1 <1 <m,(l,m) =m/d}. Now

we have, from Lemma 2.5, for k=1,...,p — 2,
Jk E Zsk<_ )Cl ZZ Sk( )C(m/d)y
dlm v=1
k ! v v
- Skl — = d

m) %z (- )t mod .

where Z _, is the same as in Section 1. So, we have
(—m ka ka ) mod p.
dlm

By the Mo6bius inversion formula, it follows that
m) =Y {u(m/d)(~d)"*Jy(d)} mod p
d|m

for k (1 <k < p—2), where p is the Mobius function. Each Ji(d) mod p
(d|m) belongs to Vi, by the definition, so is Ij(m) mod p.
We have thus proved Theorem 1(1).

LEMMA 3.1. For all k € N, we have
Sp(—X) = (—1)*1S (X —1).

Proof. From the definition of Sy(X), we have Si(n +1) = (n + 1)* +
Sk(n) for all n € N. Hence

Se(X +1) = (X + 1)* 4+ 54(X),
Using this formula, we see that
Sk(=n) = =(=n+1)" + Sp(—n + 1)
=—(-n+1)* = (—n+2)" + Sp(-n+2)
= . =—(—n+ D —(—n+2)F - - (—DF+ Sk(-1)
= (—D)FR 2k 4 (= DR} = (D) S(n — 1),
for all n € N. This proves our lemma.

The next two lemmas, on properties of Iy (m), will be used in the follow-
ing section.

LEMMA 3.2. For all k (1 <k <p—2), we have
()7 = (<) Ii(m).
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Proof.
iy I " m—1
B =3 s (- e =X s (- e,
=1 =1
S ST P S
=1 =1

= (=1 i (m).
LEMMA 3.3. For k=0, we have
Io(m)?=t 4+ Ip(m) = —p(m).
Proof.

m m

a(my =3 (= )l = > (-~

~

=1
m m
B ZI <l B ZI
m
=1 =1

This completes the proof of the lemma.

7N

)cin = —u(m) — To(m).

4. Determinant of By (m). Let Ai(m) and Bi(m) (0 <k <p—2) be
as in Section 1. Recall that
G = Gal(Q((n) Q) = (Z/mZ)* = {07 G = Gy 1< 7 <, (rym) = 1}
we shall identify G with {{:1 <[l <m, (I,m)=1}.

Let H = Gal(Q(¢m)1/Q) = (Z/mZ)* J{£1}; we shall identify H with
{l:1<l<m/2, (I,m)=1}. By Lemma 3.1,

(4) Sh, < — mm_l> = (—=1)F*1s, ( — 72) keN.

Now, let us prove Theorem 2 and the first part of Theorem 4. First we
assume k (1 < k < p —2) is odd. Then, by means of (4), we can take
Sk(—=1/m) for a function on H. Then it is easily verified, by a result on the
group determinant, that

l
det Br(m) = [] Zsk(— m>’<(l)'
veh el
Moreover, by (4),

i - =3 s (- o

led leGq
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for all x € H (the set of all even characters in @) Therefore,

(5) det By, (m) = <;)w(m)/2 11 Zsk(— ;)X(Z).

aaxzeven leG

Next we assume k is even. We fix an arbitrary odd character £ in G.
Then, from (4), we have

(=) s(-2)

so that Si(—{/m)&(l) can be regarded as a function on H. Hence, similarly
to the case of k£ odd, we have

der (s = M0 e (ar <l>>>lH

S IOICTEEIEUNG

XeﬁleH

-~ (- s

X leG

:(i)mw T X )eon

leG
1\ #(m)/2
- (3)

On the other hand, as £&(M(1/r)) = £(D)E(r™1),

aax:even

Z Sk < - Tf@)X(U-

69x:odd leG

(A (u(2) -

rleH

= {(T_l) Sk< W) 0
) ven ; ) en
rleH
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Consequently,

1 p(m)/2 l
©  demm=(5) I (o)
G3x:odd leG
We recall the Bernoulli numbers and polynomials defined by

t > n - n n—i
et_lzz;)Bnt /n!  and Bn(X)=Z<i)BiX ;

=0

respectively. It is well known that

1
Sp(X —1) = m(BkJrl(X) — Bi41) for any k € N.
Since
l l —1)k+1 l
Sk < - m) = (=1)Ft1s, <m - 1) = (G A —i)- 1 {Bk—i—l <m> - Bk+1}7
we have

Z&(— ;)x(l)

leG
IR D
=N "Bia | — |x() - = Bi1 >_x(
k + 1 — k“l‘l m X( ) k + 1 k“l‘l — X( )7

for any x € CAJ, where x is understood to be a Dirichlet character defined
modulo m. Clearly, By11 Y ,~, x(I) # 0 if and only if k is odd and x is the
principal character 1,, € G, where 1) =11if (I,m) =1, and 1,,(I) = 0 if
(I,m) > 1. Moreover, in that case, By+1 Y -, X(1) = Bry1p(m).

We also recall the generalized Bernoulli numbers defined by

Bn - n-1 BTL g N €
» X m ‘;X(a) <m>7 ne ) X€G7

satisfying

By,
L(]' - n, X) = _Txu

where L(s, x) denotes the L-function attached to y. By elementary results
on L-functions, we have, for k (1 < k <p— 2),

L(=k,x) = L=k, x1) [[(1 = xa(9)g"),
qlm

where ], and x; are as in Section 1. It follows that
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- l 1 k+1
;BkJrl <m>X(Z) = WBHLX =R L(—k, x)

_k+1

=~ L—k.x) [[0 = xa(@)d")
qlm
= Biy1y, ¥ % 1 - xi(0)d").
qlm

Now we assume that k£ (1 < k < p — 2) is odd. Then we have, using
assertions stated above,

det B (m)
1\ #0m)/2 m z
-(3) I X5
an:even =1
1 p(m)/2 (_1)k+1 m I
p— —_— B o
(2> AH { Pl ’““(m)X(l)
G>x:even =1
(1,
k+1 B’““;X(l)
1\ #(m)/2 (_1)k+1 b1
=15 -1 L 1— k
<2> R e OO K ko) [ (= xa(a)g )}
GO x#1lm:even alm

SEEES m ()0 - C Bt}

=1
p(m)/2 _
= <;> 11 {miL(k,xl)H(l Xl(Q)qk)}
aax;élm:even qlm
A S Lk Mo -)- (1L Oplm) |
NSO/, g #lm)/2
T
G>x:even
< I 0@ [To-d) - e}
aaxilm:evenq‘m qlm

where x" denotes the primitive character with conductor 1.
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Using the expression
G (k)= JI L=k xa),
asxzeven
we can obtain the case of k odd in Theorem 2 and the first part of Theorem 4.
Next we assume that k£ (1 < k < p — 2) is even. Then

det By(m) = (;)w(mw 25k< — ) ()

G3x:0dd =1
1 p(m)/2 (_1)k+1 m l
= (2) H {k—l— 1 ZBk—i-l (m)X(l)}
aax:odd =1

N R (=R,

2 kE+1 mk
<[] - xl(q)q’“)}

aax:odd

qlm
L\ e/ )
~(50) Ttk I TI0-x@d)
aax:odd aax:odd qlm

Therefore the expression

C m
ootem= I Lk
Q) aaxzodd

concludes the proof of the case of k even in Theorem 2.

5. On Ip(m) mod p. Let Md, d|m, be the same as in Section 3. Then

m

z;;czn zz /92 msare zz e,

dlm v=1 d|m v=1

Hence, by the Mobius inversion formula,

m d
"I m Vv
=1 dlm v=1
Since
d—1
KC” = forall d > 1
d> T 1-¢y ’

N
Il
—
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it follows that

7=1 1#£d|m
m 1 m
-2 (i) 2l
1#£d|m d|m
. H<m) !
1#£d|m d)1- Cd
From definitions of Ji(n) and I;(m), we obtain
m
@ (1= aptatm) = (% ) (@
dlm

This proves Theorem 1(2).
Recall that

= 2(o(1) ., me =3,

The theorem of Tateyama [5] tells us that

(0o

— { (=m) #2129 = (Q(G)) i g(m) = g7 (m),

0 it g(m) £ g+ (m).
Let h = 3¢(m) and let 7; (1 < i < 2h) be natural numbers such that
ri<rjifi<jand {l:1<l<m, (I,m)=1}={ry,rs,...,ran}. We shall
index the rows and the columns of Ay(m) and Bg(m) by i = 1,...,2h and
i=1,...,h, respectively.

LEMMA 5.1. Assume that g(m) = g (m) and that p does not divide
h™(Q(¢m)). Then

{Zo(m)? modp:r=r1,....rp41}
is a linearly independent system in Z[(y]/(p) over Fp.

Proof. It is easy to see that r, = (m — 1)/2, M(r;') = m — 2,
rhe1 = (m + 1)/2, and M(rh_H) = 2. Therefore the (h 4+ 1)th row in
(M(r;/ri))1<ij<on is

(2r1 2rg ... 2rp M(2rpg1) M(2rpa2) % ... %).
Add (—2) x (the first row) to the (h+1)th row in (M (7;/r;))1<i,j<2n. Then
the (h + l)th row becomes

(0...01=2rp41 % ... x)=(0...0 —m % ... x).
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Consequently, by our assumptions,
det(M(r;j/ri))i<ij<ntr = (=m) x det(M(r;/ri))1<ij<n
= (—m)Pm298M 1= (Q((,0)) # 0 mod p.
This proves our assertion.
Let W, be the subspace of Z[(,,]/(p) generated by
{Io(m)°" mod p:7r=r1,72,..., hi1}
LEMMA 5.2. W, is a G-subspace.
Proof. Take any Io(m)° (r = r1,...,7h41) and o5 € G. If M(sr) <
m/2, then we have M (sr) € {r1,...,r,} and thus
{Io(m)?"}?* mod p = Iy(m)7™ =) mod p € W,,.
Next suppose m/2 < M(sr). Then M(—sr) = m — M(sr) < m/2. Since
Thy1 =m — 1 and o, , = 0_104,, we have, by Lemma 3.3,
{o(m)™ )7 = To(m) ™) = {Ty(m) =)o
={—Io(m) — p(m)}7¥=n
= —Io(m)7M ) — p(m)
= o(m)7H ) 4 To(m) 7+ To(m) 7.
Therefore, {Io(m)°"}?* mod p € W,,, and the proof is complete.
From the equation
Io(m)7m+t = —{Io(m)7 + p(m)/2} — p(m)/2,
we can take
{1 mod p, I(m)?" + pu(m)/2 modp:r=ry,...,rp}

for another set of generators of W,,.

Let e, = (14+0_1)/2 and e_ = (1 —0_1)/2; these are orthogonal idem-
potents in F,[G]. Let W/ be the subspace of W,,, generated by {1 mod p}
and W) the subspace of W,,, generated by {Iy(m)°" 4+ p(m)/2mod p : r =
T1,...,Th}. 1t is easy to see that €4 (1 mod p) = 1 mod p, e_(1 mod p) = 0,
e+ (To(m) + p(m)/2 mod p) = 0, and e (Io(m)”* + p(m)/2 mod p) =
Io(m)?" + u(m)/2 mod p. Therefore,

Wy, =W, W' W =eW,, and W) =e_W,,.
Note that dimp, W) = 1.

Now, we prove Theorem 3. The mapping 1 — o), is linear from Z[(,,]/(p)
into itself. Let a mod p be any element of Ker(1 — o). Then, since a’» =
a mod p, we have a’? = amod g; (1 =1,...,g), where p1,...,p, are the

primes of Q((,,) which divide p. We know o, is the Frobenius automorphism
for p. Hence, there exist a; € Z (i =1, ...,¢g) such that @ = a; mod p; (i =
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1,...,g). Consequently, dimg, Ker(1—0,) < g. On the other hand, let Z and
Oz be the decomposition field of p and its ring of integers, respectively. Then
it is clear that Ker(1—o,) D Oz/(p). Since dimg, Oz /(p) = [Z : Q] = g, we
have
Ker(1 —op) = Oz/(p).
Suppose first that p does not decompose in Q(¢,,)/Q(¢n) ™. Then since

—1 mod m belongs to the subgroup of (Z/mZ)* generated by p mod m,
(71 = for all 8 € Ogz. Therefore,

£+(0z/(p)) = Oz/(p), e-(0z/(p)) =0,
and
Ker(1 - 0,) = £+ (07/(p)).

It follows that W, NKer(1 —o,) = W/ Ney(0z/(p)), and so

dimg, (W, N Ker(1 —o,)) = 1.
Hence, by Lemma 5.1,

dimp, (1 — 0,,)Wy, = dimp, Wy, — dimg, (W,, N Ker(1 —o,))
= 3¢(m) +1-1= 50(m).

Recalling that Jo(m)?-! = —Jo(m) mod p (from Section 2), we see that
dimg, Vo < 3¢(m). Since (7) means that (1 — 0,)W,, C Vj, we have
dimg, Vo = 3¢(m) as desired.

Next suppose that p decomposes in Q((n)/Q(Cm)T. Let ZT = Q(¢n)™
N Z. Then, by our assumption, Z is a quadratic extension over Z*. We have

1+(0z/(p)) = Oz+/(p), because Oz+/(p) = e1.(0z+/(p)) C +(0z/(p)) C
Oz+/(p), and dimyp, £, (0z/(p)) = dimp,e_(Oz/(p)) = g/2, because
[Z1 : Q] = g/2. From this and the decomposition

Wy = W, @ W,  (dimg, W, = 1),

we obtain dimg, (W,, NKer(1 —o,)) < g/2 + 1.
We have thus proved, using Lemma 5.1, that

dimp, Vo > dimp, (1 — 0,,) Wy, = dimp, Wy, — dimp, (W,, N Ker(1 —o},))
1 g 1 g
> — — — = — — =
> 2@(m)+1 <2+1> 2(,0(m) 5

The proof of Theorem 3 is complete.

6. Fermat quotient of units of type II. It is clear that the (p/ —1)th
power of any unit of type II is congruent to 1 modulo p, where f is the same
as in Section 1. Letting X = (¥, and v = f in Lemma 2.1, we have

f 2 Cpfl 9
(1-cny :1—gg—p(¢m+;+...+pﬁl> mod o7,
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and then
8) (1= ¢2)P 1 =1 - pf(Gn) mod p*.

Therefore, f((,,) mod p is the Fermat quotient of (1 — Cﬁl)lﬂ’f if m is com-
posite, and

1

1 p—1 ‘ p—1 ‘
FGm) = 7= 0 G =—= > 3" 2¢, = Jp-2(m) mod p.
L= 1=

From the fact proved in Section 3, we have

0 tyeatm) = 3 () (-0 a()f mod p

dlm

We remark that J,_2(d) = f(¢4) mod p is the Fermat quotient of some unit
if d is composite, and is not if d is prime, because 1 — (¥ is not a unit.
Now let d = ¢ (a prime number dividing m). Then

v fo1

is a unit with the Fermat quotient f((,) — f(¢/) mod p. Therefore, in this
case, (1 — 0,)Jp—2(q) mod p is the Fermat quotient of some unit.

For each v (2 < v < m, (v,m) = 1), since (v,q) = 1 for any prime
q|m, it follows that (1 —0,)Jp—2(q) mod p is a Fermat quotient for such g.
Consequently, by (9), we see that (1—o,)I,_2(m) mod p is a Fermat quotient
for each v (2 <v <m, (v,m)=1). This proves Theorem 1(3).

Now we shall prove the second part of Theorem 4. Note that (1 —
0,)I,—2(m) mod p belongs to V_; for each v (2 < v < m, (v,m) = 1).
If det B,_2(m) # 0 mod p, then it follows, by the definition, that

{ovIp—2(m)mod p:1<v<m/2 (v,m)=1}

is a linearly independent system over [F),, and further, so is
{1 —=0,)Ip—2(m)modp:2<v<m/2 (v,m) =1}
This proves dimg, V_1 > $p(m) — 1.

7. Fermat quotient of units of type III. Units of type III belong to
Q(¢p)- From Washington [6], we easily see that, for each eveni (2 < i < p—3)

and sufficiently large N € N, there exists a unit EZ-(N) satisfying
Ei(N) = qa; + b;(1 — Cp)i+(p—1)vp(Lp(1,wi)) mod (1 — Cp)i+2+(10—1)vp(13p(Lwi))7
where a;,b; € Z with a;b; Z 0 mod p, v, is the p-adic valuation normalized

by v,(p) = 1, w is the Teichmiiller character, and L,(s,w") is the p-adic
L-function attached to w’.



358 T. Shimada

The proof of Theorem 1(4) is the following. Note that our assumption
By41 # 0 mod p is equivalent to v,(Ly,(1,w 1)) = 0. Then, from above,

N — -1 -2
{Ei(€+i}p P=ap - o bk (- G)
=1_ ai;?bk—&-l(l _ Cp)k+1 mod (1 _ Cp)k+3'

So there exists an integer zx11 € Z[(p] such that

(EMP Y = 1 4 {=al 2 bigr + 2pg1 (1= G) 2 H(1 = G)F T

Moreover, there is an integer z; , € Z[(p] such that
(B = T plaf b (1= G 4 2 (1 6) ) mod o7
Let uy be the (—ak41/bk+1)th power of {E,gN) 1P(P=1) Then

wp = 14 p{(1=G)" " + 21, (1= )"} mod p?,
with some 2, | € Z|[(p], thus mp(¢(uy)) = 1 mod p. The proof is complete.
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