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0. Let K be a totally real algebraic number field. In his paper [20],
Siegel obtained explicit arithmetic expressions of the values of a zeta func-
tion of K at negative integers by using the method of restricting Hilbert–
Eisenstein series for SL2(O) to a diagonal, O denoting the ring of inte-
gers of K. Let us consider Hilbert–Eisenstein series of higher level whose
0th Fourier coefficients are special values of L-functions. Then a modified
method of Siegel’s gives formulas for the values of L-functions at integers,
which is one of the purposes of the present paper. Such Eisenstein series have
been considered for example in Shimura [18] and Deligne–Ribet [7]. How-
ever, for our purpose it is desirable that the Eisenstein series have many
0 as their 0th coefficients at cusps except for a specific cusp. After con-
structing such Eisenstein series, we give formulas for values of L-functions
of K at integers. As a particular case, they turn out to be formulas for rel-
ative class numbers of totally imaginary quadratic extensions of K, where
the exact form of fundamental units is not necessary. We also give several
numerical examples of special values of L-functions and relative class num-
bers.

Our result is twofold. After Section 5, we take as K a real quadratic
field. Under some condition on a character we obtain an elliptic modular
form whose 0th coefficient is a product of two L-functions over Q and whose
higher coefficients are elementary arithmetic. These modular forms can be
applied to the investigation of numbers of representations of a natural num-
ber by a positive quadratic form with odd number of variables. We obtain
a relation between special values of L-functions and numbers of represen-
tations by some such quadratic forms. For example, Gauss’ three-square
theorem is an easy consequence of our theorem.
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1. Let H denote the upper half plane {z ∈ C : Im z > 0}. For N ∈ N, we
put

Γ1(N) :=
{(

a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1, c ≡ 0 (mod N)

}

and

Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Let χ0 be a Dirichlet character modulo N . Let k ∈ N, and let Γ be Γ0(N)
or Γ1(N). A holomorphic function f on H is called a modular form for
Γ of weight k if it satisfies (i) f |A = f for A ∈ Γ , where (f |A)(z) =
(cz + d)−kf(Az) with A =

(
a b
c d

)
and Az = az+b

cz+d , and (ii) f is holomorphic
also at cusps. Let Mk,χ0(N) denote the space of modular forms f for Γ0(N)
of weight k with character χ0, that is, modular forms f for Γ1(N) which
satisfy f |A = χ0(d)f for any A ∈ Γ0(N). If χ0 is trivial, we denote it by
Mk(N), which is the space of modular forms for Γ0(N).

We set e(z) = exp(2π
√−1 z). A modular form f for Γ1(N) has the

Fourier expansion f(z) =
∑∞
n=0 ane(nz) at the cusp

√−1∞. An operator
Ul (l ∈ N) on Fourier series is defined by

Ul(f)(z) =
∞∑
n=0

alne(nz);

it maps Mk(N) to itself if any prime divisor of l is a factor of N (Atkin–
Lehner [2]). We also consider a function for which the holomorphy condition
in (ii) is replaced by meromorphy. Such a function is called a meromorphic
modular form; its weight is not necessarily positive.

Let M∞
k,χ0

(N) (resp. M0
k,χ0

(N), resp. M∞,0
k,χ0

(N)) denote the subspace of
Mk,χ0(N) consisting of modular forms which vanish at all cusps but

√−1∞
(resp. 0, resp.

√−1∞ and 0). All of them coincide if N = 1, and the spaces
Mk,χ0(N) and M∞,0

k,χ0
(N) coincide if N is prime.

Since M∞,0
k,χ0

(N) is of finite dimension, there are nontrivial linear relations
satisfied by the 0th Fourier coefficient at 0 and first several coefficients at√−1∞, of arbitrary modular forms in M∞,0

k,χ0
(N). Let N > 1. We define

LRk,χ0(N) to be the set consisting of ordered sets {c0, c′0, c−1, . . . , c−n0}
where ci’s and c′0 are constants such that the equality c′0a

(0)
0 +

∑n0
n=0 c−nan

= 0 holds for the 0th Fourier coefficient a(0)
0 at 0 and first n0 + 1 coefficients

a0, . . . , an0 at
√−1∞ of any modular form f in M∞,0

k,χ0
(N). Here we note that

a
(0)
0 is a complex number so that limz→∞ z−kf(−1/z) = a

(0)
0 . If the modular

form is in M∞
k,χ0

(N) (resp. M0
k,χ0

(N)), then the equality
∑n0
n=0 c−nan = 0

(resp. c′0a
(0)
0 +

∑n0
n=1 c−nan = 0) holds. Similarly for N ≥ 1, LR′k,χ0

(N) is



Values of L-functions 361

defined to be the set consisting of {c0, c−1, . . . , c−n0} for which the equality∑n0
n=0 c−nan = 0 holds for any modular form in M∞,0

k,χ0
(N). If χ0 is trivial,

then we omit χ0 from M∞,0
k,χ0

(N), LRk,χ0(N) etc., for example LRk(N) :=
LRk,χ0(N).

Elements of LRk,χ0(N), LR′k,χ0
(N) can be obtained by the following

method initially employed by Siegel [20] in the case N = 1. Cusps of Γ0(N)
are represented as i/M (i,M ∈ N, (i,M) = 1, M |N), and two such cusps
i/M , i′/M ′ are equivalent if and only if M equals M ′, and i′ is congruent
to i modulo M or modulo N/M . The cusp

√−1∞ (resp. 0) is equivalent
to 1/N (resp. 1/1). A local parameter at a cusp i/M is e((M2, N)/N ×Az),
where A ∈ SL2(Z) maps i/M to

√−1∞.

Lemma 1. Let k ∈ N. Let h(z) =
∑∞
n=−n0

cne(−nz) be a meromorphic
modular form for Γ0(N) of weight −k + 2 with character χ−1

0 having the
only pole at

√−1∞. Let c(i/M)
0 be the 0th Fourier coefficient at the cusp

i/M . Let f(z) ∈Mk,χ0(N), f(z) =
∑∞
n=0 ane(nz), and let a(i/M)

0 be its 0th
coefficient at i/M . Then

∑

M,i

(N/(M2, N))c(i/M)
0 a

(i/M)
0 +

n0∑
n=0

c−nan = 0,

where the first summation is taken over a complete set of representatives of
cusps of Γ0(N).

P r o o f. By the assumption, f(z)h(z) dz is a meromorphic differential
form on the compactified modular curve for Γ0(N) with poles only at cusps.
Then by the residue theorem, the residue of the differential form, which is
(2
√−1π)−1 times the left hand side of the equality in the lemma, is equal

to 0. This shows our assertion.

Corollary. Let h and cn be as in the lemma. Let c(0)
0 denote the 0th

Fourier coefficient of h at the cusp 0. Then {c0, Nc(0)
0 , c−1, . . . , c−n0} ∈

LRk,χ0(N). If c(0)
0 = 0, then {c0, c−1, . . . , c−n0} ∈ LR′k,χ0

(N).

For a prime p, denote by vp the p-adic valuation. For a proper divisor
M of N , LRk(N) is not a subset of LRk(M) in general since M∞,0

k (M) 6⊂
M∞,0

k (N) in general. Suppose that vp(N) ≥ 2. Then by Atkin–Lehner [2],
Up(f) is in Mk(N/p) for f ∈ Mk(N). It is easy to show that Up(f) ⊂
M∞,0

k (N/p) if f ∈ M∞,0
k (N), and that Up(f) has pk−1a

(0)
0 as its 0th co-

efficient at the cusp 0, a(0)
0 being the 0th coefficient of f at 0. We also

have Up(M∞
k (N)) ⊂ M∞

k (N/p) and Up(M0
k(N)) ⊂ M0

k(N/p). If
{c0, c′0, c−1, . . . , c−n0} ∈ LRk(N/p), then {c0, pk−1c′0, (p − 1 times 0), c−1,
(p− 1 times 0), . . . , c−n0} is in LRk(N). This implies that some elements in
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LRk(N) are obtainable from LRk(
∏
p|N p). Similarly, if {c0, c−1, . . . , c−n0} ∈

LR′k(N/p), then {c0, (p − 1 times 0), c−1, (p − 1 times 0), . . . , c−n0} is in
LR′k(N). We note that the inclusion M0

k(M) ⊂ M0
k(N) holds for M |N if

vp(M) ≥ 1 for any prime factor p of N .
Hecke [11] investigated Eisenstein series of higher level (see also [22]). If

N and k are sufficiently small, the spaces of modular forms are spanned by
their linear combinations. In that case, elements of LRk,χ0(N), etc., can be
obtained from their Fourier coefficients through simple calculation. In the
present paper we need several elements of LRk,χ0(N), etc. However, we omit
the detail of getting them.

2. Let K be a totally real algebraic number field of degree g. We denote
by O, dK and DK the ring of integers, the different and the discriminant
respectively. Let N be an integral ideal. Let EN denote the group of units
ε � 0 congruent 1 mod N, where ε � 0 means that ε is totally positive.
We denote by CN the narrow ray class group modulo N, and by C∗N the
character group. Although CN denotes an integral ideal class group, we
evaluate its character also at fractional ideals by the obvious extension.
We call a character ψ ∈ C∗N even (resp. odd) if ψ(µ) = 1 (resp. ψ(µ) =
sgn(Nm(µ))) for all µ 6= 0, µ ≡ 1 (mod N). The conductor of ψ is denoted
by fψ. For an ideal M such that N ⊂M ⊂ fψ, we denote by ψM the character
in C∗M satisfying ψ(A) = ψM(A) for any A relatively prime to N.

Let Hg denote the product of g copies of H. For z = (z1, . . . , zg) ∈
Hg, Nm(γz + δ) stands for

∏g
i=1(γ(i)zi + δ(i)), where γ(1), . . . , γ(g) denote

conjugates of γ. Let N, N′ be integral ideals. Let A be an ideal relatively
prime to NN′. Let k ∈ N. For γ0 ∈ Ad−1

K , δ0 ∈ N−1Ad−1
K , an Eisenstein

series on Hg is defined by setting

Ek,A(z, γ0, δ0; N′,N) := Nm(A)k
∑′

γ,δ

Nm(γz + δ)−k|Nm(γz + δ)|−s|s=0,

where the summation is taken over all (γ, δ) 6= (0, 0), γ ≡ γ0 (mod N′Ad−1
K ),

δ ≡ δ0 (mod Ad−1
K ) which are not associated under the action of ENN′ :

(γ, δ)→ (εγ, εδ), ε ∈ ENN′ .
Let ψ ∈ C∗N and ψ′ = C∗N′ . Suppose that ψψ′ ∈ C∗NN′ has the same

parity as k. Then we put

λ̃ψ
′

k,ψ(z) :=
(

(k − 1)!
(2
√−1π)k

)g
D
−1/2
K Nm(N)−1[EN : ENN′ ]−1

∑

A∈CN

ψ(A)

×
∑

γ0∈Ad−1
K
/N′Ad−1

K
, γ0�0

ψ′(γ0A
−1dK)

∑

δ0∈N−1Ad−1
K
/Ad−1

K

e(tr(δ0))

× Ek,A(z,−γ0, δ0; N′,N),
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where A is a representative relatively prime to N′. This is a modular form
for

Γ0(NN′)K :=
{(

α β
γ δ

)
∈ SL2(O) : γ ≡ 0 (mod NN′)

}

of weight k with a character. In case K = Q and k = 2 we assume that
either N 6= O or at least one of ψ, ψ′ is nontrivial. The Fourier expansion
of λ̃ψ

′

k,ψ(z) at the cusp
√−1∞ is given as

λ̃ψ
′

k,ψ(z) = C+2g
∑

ν∈d−1
K
, ν�0

( ∑

O⊃B⊃νdK

ψ′(νB−1dK)ψ(B) Nm(B)k−1
)

e(tr(νz))

with a constant C, where B runs over integral ideals containing νdK . If
N′ = O and ψ′ is trivial, we denote the modular form by λ̃k,ψ(z). Similarly
λ̃ψ
′

k (z) is also defined. We can obtain C and the 0th Fourier coefficients

of λ̃k,ψ(z) and λ̃ψ
′

k (z) at other cusps by a similar computation to that in
Shimura [18].

Proposition 1. Let A =
(
α β
γ δ

) ∈ SL2(O). Let k ∈ N and let ψ ∈ C∗N
and k have the same parity.

(1) In case K = Q and k = 2, assume that N 6= O or ψ is nontrivial.
Then the 0th Fourier coefficient of λ̃k,ψ(z)|A is equal to

sgn(Nm(δ))k−1ψ(δ)
∏

P|N
P - (γ,N)

(1−Nm(P)−1)LK(1−k, ψ(γ,N)) ((γ,N) ⊂ fψ)

+ (
√−1π)−gD−1/2

K ψ(γ)LK(1, ψ) (k = 1 and (γ,N) = O),

where ψ(0) = 1 in case N = O.
(2) In case K = Q and k = 2, assume that ψ is nontrivial. Then the 0th

Fourier coefficient of λ̃ψk (z)|A is equal to
(

2(k − 1)!
(2
√−1π)k

)g
D
k−1/2
K ψ(γ)LK(k, ψ) ((γ,N) = O)

+ ψ(α)−1
∏

P|N
P - (γ,N)

(1−Nm(P)−1)LK(0, ψ(γ,N)) (k = 1 and (γ,N) = fψ).

3. We put λψ
′

gk,ψ(z) := λ̃ψ
′

k,ψ(z, . . . , z). Let N ∈ N ∩ NN′, and let χ0 be
an element of the group (Z/N)∗ of characters mod N such that χ0(i) =
ψ(i)ψ′(i). Then λψ

′

gk,ψ(z) is in Mgk,χ0(N). We have the Fourier expansion

λψ
′

gk,ψ(z) = C + 2g
∞∑
n=1

fψ
′

k−1,ψ(n)e(nz)
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with

fψ
′

k−1,ψ(n) :=
∑

ν∈d−1
K
, ν�0

tr(ν)=n

∑

O⊃A⊃νdK

ψ′(νA−1dK)ψ(A) Nm(A)k−1.

If ψ′ (resp. ψ) is trivial, then we write fψ
′

k−1,ψ as fk−1,ψ (resp. fψ
′

k−1). Further,

we put λgk,ψ(z) := λ̃k,ψ(z, . . . , z) and λψgk(z) := λ̃ψk (z, . . . , z). By Proposi-
tion 1, we have the following:

Proposition 2. Let ψ be as in Proposition 1. Let N ∈ N ∩N, and let
χ0 ∈ (Z/N)∗ be such that χ0(i) = ψ(i). Let M ∈ N be a divisor of N . The
modular forms λgk,ψ and λψgk are in Mgk,χ0(N). The 0th Fourier coefficient
of λgk,ψ at a cusp i/M (i ∈ N, (i,M) = 1) is

χ0(i)−1
∏

P|N
P - (M,N)

(1−Nm(P)−1)LK(1− k, ψ(M,N)) ((M,N) ⊂ fψ)

or 0 (otherwise), and there is an additional term (
√−1π)−gD1/2

K χ0(M)
× LK(1, ψ) if k = 1 and (M,N) = O. Let k > 1. Then the 0th Fourier
coefficient of λψgk at i/M is

(
2(k − 1)!

(2
√−1π)k

)g
D
k−1/2
K χ0(M)LK(k, ψ) ((M,N) = O)

or 0 (otherwise).

Corollary. Suppose that ψ is a primitive character with fψ = N. Let N
be the least element in N ∩N. Then λgk,ψ ∈M∞

gk,χ0
(N), λψgk ∈M0

gk,χ0
(N)

for k > 1, and λg,ψ ∈M∞,0
g,χ0

(N) for k = 1.

Let W (ψ) be the root of unity appearing in the functional equation of
the L-function LK(s, ψ) in Hecke [12]. It is written as a Gauss sum, in the
form

W (ψ) = wNm(N)−1/2ψ(%NdK)
∑

µ∈O/N, µ�0

ψ(µ)e(tr(%µ)),

where w equals 1 or
√−1

−g
according as ψ is even or odd and where

% ∈ K, % � 0, is such that %NdK is an integral ideal relatively prime
to N. Then the additional term in the above proposition is written as√−1

−g
ψ(M)W (ψ) Nm(N)−1/2L(0, ψ), ψ being the complex conjugate of ψ.

By the Corollary to Lemma 1 and Proposition 2 we obtain the following:

Theorem 1. Let k ∈ N. Let ψ be a primitive character with conductor
N and with the same parity as k, and let N be the least element in N ∩N.
Let χ0 ∈ (Z/N)∗ be such that χ0(i) = ψ(i). Assume that N 6= O if k = 1.
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(1) We have the identity

c0LK(1− k, ψ) = −2g
n0∑
n=1

c−nfk−1,ψ(n)

where {c0, ∗, c−1, . . . , c−n0} ∈ LRgk,χ0(N) (N > 1, k > 1), and
{c0, c−1, . . . , c−n0} ∈ LR′g,χ0

(N) (N = 1 or k = 1). Let k = 1 and sup-
pose that LK(0, ψ) ∈ R. Then

{c0 +
√−1

−g
W (ψ) Nm(N)−1/2c′0}LK(0, ψ) = −2g

n0∑
n=1

c−nf0,ψ(n)

with {c0, c′0, c−1, . . . , c−n0} ∈ LRg,χ0(N).
(2) Let k > 1. Then

c′0LK(k, ψ) = −
(

(2
√−1π)k

(k − 1)!

)g
D
−k+1/2
K

n0∑
n=1

c−nf
ψ
k−1(n)

with {∗, c′0, c−1, . . . , c−n0} ∈ LRgk,χ0(N) (N > 1), and {c′0, c−1, . . . , c−n0} ∈
LR′g,χ0

(1) (N = 1).

Consider the case k = 1 and N = O. The existence of an odd character
ψ of CO implies that g is even. Then W (ψ) is equal to (−1)g/2ψ(dK). Let
P be a prime ideal of K with ψ(P) 6= 1, and let ψ′ be a character mod P
such that ψ′P = ψ. Then by Proposition 2,

λg,ψ′(z) = (1− ψ(P))LK(0, ψ) + 2g
∞∑
n=1

f0,ψ,P(n)e(nz)

with

f0,ψ,P(n) :=
∑

ν∈d−1
K
, ν�0

tr(ν)=n

∑

O⊃A⊃νdK
(A,P)=O

ψ(A)

is in Mg(p), where p is a rational prime in P. Hence for {c0, c−1, . . . , c−n0} ∈
LR′g(p), we have

c0LK(0, ψ) = −2g(1− ψ(P))−1
n0∑
n=1

c−nf0,ψ,P(n).

However, in the next proposition we obtain a formula which may be better
in the sense that n0 is possibly smaller.

Proposition 3. Let P be a prime ideal of K with ψ(P) 6= 1 and let
p ∈ N be a prime in P.
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(1) Suppose that LK(0, ψ) ∈ R and ψ(dK) 6= −1. Then

c0LK(0, ψ) = −2g(1 + ψ(dK))−1
n0∑
n=1

c−nf0,ψ(n)

for {c0, . . . , c−n0} ∈ LR′g(1).
(2) Suppose that LK(0, ψ) ∈ R and ψ(dK) = −1. Then

{c0 −Nm(P)−1c′0}LK(0, ψ) = −2g(1− ψ(P))−1
n0∑
n=1

c−nf0,ψ,P(n)

for {c0, c′0, c−1, . . . , c−n0} ∈ LRg(p), where p is the rational prime in P.
(3) We have the identity

{c0 −Nm(P)−1c′0}LK(0, ψ)

= 2g(1− ψ(P))−1

×
{

(1− ψ(P) Nm(P)−1)c′0d
−1
0

m0∑
n=1

d−nf0,ψ(n)−
n0∑
n=1

c−nf0,ψ,P(n)
}

for {d0, . . . , dm0} ∈ LR′g(1) with d0 6= 0, and for {c0, c′0, c−1, . . . , c−n0} ∈
LRg(p).

P r o o f. Since λg,ψ(z) = C+ 2g
∑∞
n=1 fk−1,ψ(n)e(nz) with C = LK(0, ψ)

+ ψ(dK)LK(0, ψ), is in Mg(1), the assertion (1) follows immediately. The
0th Fourier coefficient of λg,ψ′ ∈ Mg(p) at 0 is (1 − ψ(P) Nm(P)−1)
×ψ(dK)LK(0, ψ) + (1−Nm(P)−1)LK(0, ψ), which is equal to −(1−ψ(P))
×Nm(P)−1LK(0, ψ) under the assumption of (2). Then the equality in (2)
follows.

Consider the case (3). By Proposition 2 the 0th coefficient of λg,ψ′ at 0
is calculated to be (1− ψ(P)) Nm(P)−1LK(0, ψ) + (1− ψ(P) Nm(P)−1)C,
and C is equal to −2gd−1

0
∑m0
n=1 d−nf0,ψ(n). Since

c0(1− ψ(P))LK(0, ψ)

+ c′0{−(1− ψ(P)) Nm(P)−1LK(0, ψ) + (1− ψ(P) Nm(P)−1)C}

= − 2g
n0∑
n=1

c−nf0,ψ,P(n),

our assertion follows.

Let F be a totally imaginary quadratic extension of a totally real field K.
Let H and h denote the class numbers of F and K respectively. Let D be the
relative discriminant and let ψ ∈ C∗D be the character associated with the
extension in the sense of class field theory. Then the relative class number
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is given by

H/h =
w(F )RK

2RF
LK(0, ψ),

where w(F ) denotes the number of roots of unity in F and RF , RK denote
the regulators of F , K respectively. Since W (ψ) is trivial in this case, we
have the following formulas for the relative class numbers as a corollary of
Theorem 1 and of Proposition 3, where the exact form of fundamental units
is not necessary.

Corollary. Let N be the minimum of D ∩ N, and let χ0 ∈ (Z/N)∗ be
such that χ0(i) = ψ(i). If D 6= O, then

{c0 +
√−1

−g
Nm(D)−1/2c′0}H/h = −2g−1w(F )RKR−1

F

n0∑
n=1

c−nf0,ψ(n)

with {c0, c′0, c−1, . . . , c−n0} ∈ LRg,χ0(N). Suppose that D = O. If g ≡ 0
(mod 4), then

c0H/h = −2g−2w(F )RKR−1
F

n0∑
n=1

c−nf0,ψ(n)

with {c0, . . . , c−n0} ∈ LR′g(1). Let P and p be as in Proposition 3. Then if
g ≡ 2 (mod 4), then

{c0−Nm(P)−1c′0}H/h = −2g−1w(F )RKR−1
F (1−ψ(P))−1

n0∑
n=1

c−nf0,ψ,P(n)

with {c0, c′0, c−1, . . . , c−n0} ∈ LRg(p).

4. We give some examples to illustrate the results of Section 3. First we
show the following:

Lemma 2. Let K be a real quadratic field of discriminant DK . If ψ′ψ
has the same parity as k, then

fψ
′

k−1,ψ(n) =
∑

|m|<n√DK
m≡nDK (mod 2)

∑

O⊃A⊃((m+n
√
DK )/2)

ψ′
(
m+ n

√
DK

2
A−1

)

× ψ(A) Nm(A)k−1.

Let P be a prime ideal and let ψ ∈ C∗O be odd. Then

f0,ψ,P(n) = −ψ(P)
∑

|m|<n√DK
m≡nDK (mod 2)

∑

O⊃A⊃P−1((m+n
√
DK )/2)

ψ(A).

P r o o f. A totally positive number in d−1
K with trace n ∈ N is of the

form (m + n
√
DK )/2

√
DK with m ≡ nDK (mod 2) and |m| < n

√
DK .
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Then the first equality follows immediately. Consider the second one. Since
λ2,ψ ∈M2(1) = {0}, its nth Fourier coefficient f0,ψ(n) is equal to 0. Then

f0,ψ,P(n) = −(f0,ψ(n)− f0,ψ,P(n)) = −
∑

ν∈d−1
K
, ν�0

tr(ν)=n

∑

P⊃A⊃νdK

ψ(A).

This shows our assertion.

Example 1. Let K = Q(
√

79 ). The class number h is 3, and the narrow
ideal class group CO is a cyclic group of order six. There are six characters
of CO, three odd ones and three even ones. Let P7 = (7, 3 +

√
79 ). It

is a prime ideal with norm 7 and the class containing P7 generates CO.
Let ψi (0 ≤ i ≤ 6) be a character such that ψi(P7) = e(i/6), where the
parity of ψi is the same as i. Since {−1, 4} ∈ L′2(7), by the formula before
Proposition 3 and by Lemma 2 we have

4LK(0, ψi) = − 4e
(
i

6

)(
1− e

(
i

6

))−1

×
∑

|m|<√79

∑

O⊃A⊃P−1
7 (m+

√
79 )

ψi(A) (i = 1, 3, 5).

The inclusion P7 ⊃ (m +
√

79 ) (|m| < √79 ) holds only for m = 3,−4,
and decompositions of m +

√
79 into products of primes are 3 +

√
79 =

(9 +
√

79 )(5, 3 +
√

79 )P7 and 4 +
√

79 = (3, 2 +
√

79 )2P7. Hence if we put
ω = ψi(P7), then

LK(0, ψi) = −(1− ω)−1ω{(1 + 1 + ω2 + ω2) + (1 + ω + ω2)}.
By substituting e(1/6),−1, e(5/6) for ω, we obtain LK(0, ψ1) = LK(0, ψ5)
= 4 and LK(0, ψ3) = 5/2.

Let ψ ∈ C∗O and let ω = ψ(P7). Considering the prime decompositions
of (m+

√
79 ) (|m| ≤ 8), we obtain

fk−1,ψ(1) = 17 + 8 · 2k−1

+ (6 · 3k−1 + 3 · 6k−1 + 2 · 7k−1 + 14k−1 + 15k−1)(ω + ω5)

+ (4 · 5k−1 + 2 · 9k−1 + 2 · 10k−1 + 13k−1 + 18k−1 + 21k−1

+ 25k−1 + 26k−1)(ω2 + ω4)

+ {4 · 15k−1 + 2(27k−1 + 30k−1 + 35k−1 + 39k−1 + 43k−1

+ 54k−1 + 63k−1 + 70k−1 + 75k−1 + 78k−1) + 79k−1}ω3.

From this and the fact that {240,−1} ∈ LR4(1), {504, 1} ∈ LR6(1),
{480,−1} ∈ LR8(1) and {264, 1} ∈ LR10(1) (Siegel [20]), we obtain
LK(−1, ψ2) = LK(−1, ψ4) = 16, LK(−1, ψ0) = ζK(−1) = 28; LK(−2, ψ1)
= LK(−2, ψ5) = 544, LK(−2, ψ0) = ζK(−2) = 496; LK(−3, ψ2) =
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LK(−3, ψ4) = 34960, LK(−3, ψ0) = ζK(−3) = 182558/5; LK(−4, ψ1) =
LK(−4, ψ5) = 4412992, LK(−4, ψ3) = 4362400.

Let F be a totally imaginary extension of a totally real field of K. Let
QF/K denote the unit index of Hasse, that is, QF/K = [ẼF : ΩF ẼK ], where
ẼF and ẼK denote the groups of all units in F and K respectively and ΩF de-
notes the group of roots of unity in F . Then RK/RF is equal to 2−g+1QF/K .
The index is 1 or 2, and is readily obtained (Hasse [10], Okazaki [16]). Let
F = K(

√−ν ) with a totally positive integer ν in K. Let D be the relative
discriminant of the extension, and let ψ ∈ C∗D be the associated charac-
ter. Let A be an ideal with (A,D) = O. If A is relatively prime to 2, then
ψ(A) is equal to

(−ν
A

)
K

where
( )

K
is the quadratic residue symbol in K.

If (A, 2) 6= O, then we take another integral ideal B relatively prime to
2D which is of the form B = %C2A for some % ∈ K, % � 0 multiplica-
tively congruent 1 mod D and for a fractional ideal C. The computation of
ψ(A) is reduced to that of ψ(B). Let χ0 be the character on Z defined by
χ0(i) = ψ(i). Obviously χ0(−1) = 1, that is, χ0 is even.

Suppose that K is real quadratic. Then if P is of degree one, then
(−ν

P

)
K

is written as
(
n
p

)
, where

( )
denotes the usual Jacobi–Legendre symbol and

p = Nm(P), n ∈ Z, n ≡ −ν (mod P). If P is of degree two, then it is
written as

(Nm(ν)
p

)
, where p is a prime in P.

ForD a discriminant of a quadratic field, we denote by χD the Kronecker–
Jacobi–Legendre symbol.

Example 2. Let K be a real quadratic field where 2 is not inert and its
prime factor P2 is a principal ideal (ν) with ν � 0. A necessary condition
for this is that DK is free from a prime factor congruent to 3 or 5 mod 8.
Let F = K(

√−ν ). We show that the relative class number of F over K is
given by

H/h = c
∑

|m|<√DK
m≡DK (mod 2)

∑

O⊃A⊃((m+
√
DK )/2)

ψ(A)

where c = 1/7 (DK ≡ 1 (mod 8) and tr(ν) ≡ 1 (mod 4)), and c = 1/3
(otherwise).

The conductor D of the extension is P3
2 or 4P2, where the former is the

case when c = 1/7. The character χ0 is in (Z/8)∗. For p prime, χ0(p) =
(

2
p

)
or 1 according as p is decomposed in K or not, and hence χ0 = χ8. Since
{2, 32

√
2, 1} ∈ LR2,χ8(8), and since w(F ) = 2 and RK/RF = 1/2, we have

H/h = {16
√

2 Nm(D)−1/2 − 1}−1f0,ψ(1) by the last corollary in Section 3,
which shows our formula.

There are nine real quadratic fields K with DK < 100 having ν satisfying
the condition, to which we apply the formula.
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Let K = Q(
√

2 ) and F = Q(
√
−2−√2 ). Then

H/h =
1
3

∑

|m|<√2

∑

A⊃(m+
√

2 )

ψ(A) =
1
3

(1 + 1 + 1) = 1.

Thus the class number of F is 1.
Let K = Q(

√
17 ) and F = K(

√−ν ) with ν = (5 +
√

17 )/2. Put P2 =
(ν). In this case the conductor is P3

2. We note that ψ(P2) = ψ(7) = 1
because ν ≡ 7 (mod P3

2). Then

H/h =
1
7

∑

|m|<√17
m odd

∑

A⊃((m+
√

17 )/2)

ψ(A) =
1
7

(5 + 2ψ(P2)) = 1.

Let K = Q(
√

7 ) and F = K(
√
−3−√7 ). Then

H/h =
1
3

∑

|m|<√7

∑

A⊃(m+
√

7 )

ψ(A)

=
1
3

{
5 +

(−3−√7√
7

)

K

+ 2
(−3−√7

−2 +
√

7

)

K

+ 2
(−3−√7

2 +
√

7

)

K

}

=
1
3

{
5 +

(−3
7

)
+ 2
(

2
3

)
+ 2
(

1
3

)}
= 2.

Let ε = 8 + 3
√

7 a fundamental unit of K, let F ′ = K(
√

(−3−√7 )ε ), and
let H ′ be the class number. Then H ′ = 2.

By similar computations we get the following class numbers:

2 (F = Q(
√

(−7−
√

41 )/2 )), 2 (F = Q(
√
−4−

√
14 )),

1 (F = Q(
√

(−9−
√

73 )/2 )), 3 (F = Q(
√

(−217− 23
√

89 )/2 )),

2 (F = Q(
√
−5−

√
23 )), 3 (F = Q(

√
(−69− 7

√
97 )/2 )).

Example 3. Let K be a real quadratic field where 13 = P13P13 in K and
P13 is a principal ideal (ν) with ν � 0. Here P13 is the conjugate of P13. Let
F = K(

√−ν ). Assume that the relative discriminant of F over K is P13.
The character χ0 is equal to χ13. Since {1, 13

√
13, 1} ∈ LR2,χ0(13), we have

H/h =
1
6

∑

|m|<√DK
m≡DK (mod 2)

∑

O⊃A⊃((m+
√
DK )/2)

ψ(A).
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If K = Q(
√

13 ), then our conditions are satisfied, and

F = K(
√
−
√

13 ε ) with ε =
3 +
√

13
2

,

and

H/h =
1
6

∑

|m|≤3
m odd

∑

A⊃((m+
√

13 )/2)

ψ(A)

=
1
6

{
4 +

( −√13 ε

(1 +
√

13 )/2

)

K

+
( −√13 ε

(−1 +
√

13 )/2

)

K

}

=
1
6

{
4 +

(−5
3

)
+
(−8

3

)}
= 1.

Let K = Q(
√

17 ). Then 13 = (9 + 2
√

17 )(9 − 2
√

17 ), and if we put
F = K(

√
−9− 2

√
17 ), then our conditions are satisfied. We have a decom-

position 2 = P2P2 in K. Since

ψ(2) = ψ(14)ψ(7) = 1 ·
(−9− 2

√
17

7

)

K

=
(

13
7

)
= −1,

we have {ψ(P2), ψ(P2)} = {±1}. Then

H/h =
1
6

∑

|m|≤3
m odd

∑

A⊃((m+
√

17 )/2)

ψ(A)

=
1
6
{4 + 2ψ(P2) + 2ψ(P2) + ψ(P2)2 + ψ(P2)2} = 1.

Let K = Q(
√

29 ). Then we have 13 =
(

9+
√

29
2

)(
9−√29

2

)
. Let F =

K(
√

(−9−√29 )/2 ). Then a similar calculation gives H/h = 1
6 · 6 = 1.

Let K = Q(
√

69 ). Then 13 = (17 + 2
√

69 )(17 − 2
√

69 ). Let F =
K(
√
−17− 2

√
69 ). Then H/h = 1

6 · 12 = 2.

The class numbers of some of the fields in Examples 2 and 3 have already
been computed in Okazaki [16], where Shintani’s formula [19] is employed.
Our results are compatible with his. Grundman [9] obtained numerical ex-
amples of values of zeta functions of totally real cubic fields also by adapting
Shintani’s method.

Example 4. Let K be a totally real cubic field, and let ε � 0 be a
unit. Let F = K(

√−ε ). Then the conductor D of the extension is a factor
of 4, and w(F ) = 4, QF/K = 1 for ε = 1 or w(F ) = 2, QF/K = 2 for
ε 6∈ (K×)2 (see for example Okazaki [16], Sect. 3). The character χ0 is equal
to χ−4, namely χ−4(n) = (−1)(n−1)/2 for n odd. Since {1, 32

√−1, 1/4} ∈
LR3,χ−4(4), by the last corollary of Section 3 we have a formula for the
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relative class number H/h = (32 Nm(D)−1/2 − 1)−1f0,ψ(1). If the absolute
discriminant of K is odd, then D = (4) and we have

H/h =
1
3

∑

ν∈d−1
K
, ν�0

tr(ν)=1

∑

O⊃A⊃νdK

ψ(A).

Here we take as K a totally real nonabelian cubic field of discrimi-
nant 257, whose class number h is 1. We have K = Q(θ), where θ is a
root of x3 − x2 − 4x + 3 = 0. Because the above polynomial is equal to
x(x2− x− 1) mod 3, (x+ 1)(x2− 2x− 2) mod 5, (x+ 3)(x2 + x+ 1) mod 7,
there are decompositions of 3, 5 and 7 into primes as 3 = P3P

′
3, 5 = P5P

′
5

and 7 = P7P
′
7, where Pi’s are of degree 1 and P′i’s are of degree 2. There

are seven µ ∈ d−1
K with µ � 0 and tr(µ) = 1, and the ideals µdK are equal

to P3 for three of them, to P5 for two µ’s, to P7 for one µ and to P′3 for
one µ. This computation was made by Cohen [5], Sect. 7. Let F = K(

√−1 ).
Then

H/h =
1
3

{
7 + 3

(−1
P3

)

K

+ 2
(−1

P5

)

K

+
(−1

P7

)

K

+
(−1

P′3

)

K

}

=
1
3

{
7 + 3

(−1
3

)
+ 2
(−1

5

)
+
(−1

7

)
+ 1
}

= 2

where
(−1

P′3

)
K

= 1 since −1 is a square in F9. Thus the class number of F

is 2. Let F ′ = K(
√−ε ) with ε = 2 + θ � 0. Then if H ′ is the class number

of F ′, then

H ′/h =
1
3

{
7 + 3

(−ε
P3

)

K

+ 2
(−ε

P5

)

K

+
(−ε

P7

)

K

+
(−ε

P′3

)

K

}
.

From the above factorizations of x3 − x2 − 4x+ 3 modulo 3, 5, 7, it follows
that −ε ≡ 1 (mod P3), −ε ≡ 4 (mod P5), −ε ≡ 1 (mod P7) and that −ε
(mod P′3) is not a square in F9. Therefore

H ′/h =
1
3

{
7 + 3

(
1
3

)
+ 2
(

4
5

)
+
(

1
7

)
− 1
}

= 4.

Example 5. Let K be a totally real quartic field, and let F be its totally
imaginary quadratic unramified extension. Since {−240, 1} ∈ LR′4(1) (Siegel
[20]), by the last corollary in Section 3 we have

H/h =
1

480
w(F )QF/K f0,ψ(1).

Let K = Q(
√

5,
√

6 ) and let F = Q(
√−2,

√−3,
√

5 ), where F is an
unramified extension of K. Then h = 2, dK = (2

√
30 ), w(F ) = 6, and

QF/K = 2. There are 22 numbers µ ∈ d−1
K with µ � 0 and tr(µ) = 1,
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and µdK ’s are the ideals generated by (±1 +
√

5 )(±√5 +
√

6 )/2 (norm 1),
(±1 +

√
5)(±2 +

√
6 )/2 (norm 4), {±(3 +

√
5 ) +

√
6 +
√

30}/2, {±(3 −√
5 ) − √6 +

√
30}/2, {±2 ± √6 +

√
30}/2 (norm 19), (±1 +

√
5 )(±1 +√

6 )/2 (norm 25), (±√6 +
√

30 )/2 (norm 36). In K we have the prime
decompositions 2 = P2

2, 3 = P2
3, 5 = P2

5P
′2
5 and 19 = P19P

′
19P

′′
19P

′′′
19,

where P2 = (2 +
√

6 ), P2
5 = (1 +

√
6 ) and P′25 = (1 −√6 ). Since P2 and

P2
5 are in the same class of CO, we have ψ(P2) = 1. Therefore

H/h =
1
40

{
4 + 4(1 + ψ(P2)) + 8

(
1 +

(−2
19

))

+ 4
(

1 +
(−2

5

)
+ ψ(P2

5)
)

+ 2(1 + ψ(P2))
(

1 +
(−2

P3

))}

= 1.

Example 6. Let K be a totally real quartic field, and let F be a totally
imaginary quadratic extension of K with conductor D. Let ψ = C∗D be
the character associated with the extension. Suppose that D = (4). Then
χ0 = (Z/4)∗ is trivial. Since {0,−256, 1} ∈ LR4(4), we have

H/h =
1
16
w(F )QF/K f0,ψ(1).

Next, suppose that 7 is the least element in N ∩D and that χ0 ∈ (Z/7)∗ is
trivial. Since {1,−74, 1, 1} ∈ LR4(7), we have

H/h = w(F )QF/K(74 Nm(D)−1/2 − 1)−1{f0,ψ(1) + f0,ψ(2)}.
Let K = Q(θ) with θ a zero of f(x) := x4 − 8x3 + 20x2 − 17x+ 3. It is

a nonabelian totally real quartic field of discriminant 1957 (= 19 · 103) and
its Z-basis is provided by 1, θ, θ2, θ3 (Godwin [8]). The ideal (2) remains
prime at K. There are decompositions 3 = P3P

′
3 and 7 = P7P

′
7, where P3,

P7 are primes of degree 1 and P′3, P′7 are of degree 3. The inverse different
d−1
K = (1/f ′(θ)) has 1, θ, θ2, 1

1957 (θ3 + 691θ2 − 350θ − 42) as its Z-basis.
With the aid of a computer, we can show that there are seven totally positive
elements µ in d−1

K with trace 1. The ideals µdK ’s are equal to O for four
elements and to P3 for two and to P7 for one. Let F = K(

√−1 ). Then
D = (4), w(F ) = 4, QF/K = 1, and H/h = 1

4

{
7 + 2

(−1
3

)
+
(−1

7

)}
= 1. Let

ε = −θ3 + 5θ2 − 7θ + 2, which is a totally positive unit. Let F = K(
√−ε ).

Then D = (4), w(F ) = 2, QF/K = 2 and

H/h =
1
4

{
7 + 2

(−ε
P3

)

K

+
(−ε

P7

)

K

}
=

1
4

{
7 + 2

(
1
3

)
+
(−1

7

)}
= 2.

Let F = K(
√−7 ). Then D = (7), w(F ) = 2, QF/K = 1. We have

χ0(3) = ψ(3) =
(−7

P3

)

K

(−7
P′3

)

K

= (−1) · (−1) = 1
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since −7 is not a square in F3 and in F33 . Since 3 is a generator of (Z/7)×, χ0

is trivial. Then H/h = 1
24{f0,ψ(1) + f0,ψ(2)}. It can be shown that there are

58 totally positive elements in d−1
K with trace 2. By a similar computation

to the above, we obtain H/h = 1
24 · 48 = 2.

5. Hereafter we consider exclusively the case where K is a real quadratic
field. Let χK denote the Kronecker–Jacobi–Legendre symbol of K. For an
ideal A, A denotes its conjugate in K. If ψ ∈ C∗N is invariant under conjuga-
tion, that is, ψ(A) = ψ(A) for any A, then there is a completely multiplica-
tive function χ on N such that ψ(A) = χ(Nm(A)) for any ideal A. Indeed,
ψ obviously gives a completely multiplicative function χ on the subset of N
consisting of norms of ideals. The desired χ is constructed by assigning to
χ(p) any square root of χ(p2), for each prime p which is inert. In particular,
χ is not uniquely determined.

For completely multiplicative functions χ, χ′, we define σχ
′

k−1,χ by setting

σχ
′

k−1,χ(m) :=
∑

0<d|m
χ′(m/d)χ(d)dk−1

for m ∈ N, and σχ
′

k−1,χ(m) := 0 for m 6∈ N ∪ {0}. In the sequel we denote

it by σk−1,χ (resp. σχ
′

k−1) if χ′ (resp. χ) is trivial. The value σk−1,χ(0) is

defined to be 1
2L(1 − k, χ). The value σχ

′

k−1(0) is defined to be 0 if χ′ 6= 1.
For later use we present the following lemma. The proof is parallel to that
of Theorem 3.4 in Cohen [5].

Lemma 3. (1) Let m,n ∈ N. Then

σχ
′

k−1,χ(m)σχ
′

k−1,χ(n) =
∑

d|(m,n)

χ′(d)χ(d)dk−1σχ
′

k−1,χ

(
mn

d2

)
.

(2) Let n ∈ N. Then
n∑

m=0

σk−1,χ(m)σk−1,χ(n−m) =
∑

d|n
χ(d)dk−1

∑

m∈Z
σk−1,χ

(
(n/d)2 −m2

4

)
.

(3) Suppose that χ′ 6= 1. Then
n∑

m=0

σχ
′

k−1(m)σχ
′

k−1(n−m) =
∑

d|n
χ′(d)dk−1

∑

m∈Z
σχ
′

k−1

(
(n/d)2 −m2

4

)
.

Proposition 4. Let K be a real quadratic field.

(1) Let ψ, ψ′ be as in Section 2 and let k be a natural number with
the same parity as ψ′ψ. Suppose that there are completely multiplicative
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functions χ, χ′ with ψ = χ ◦Nm, ψ′ = χ′ ◦Nm. Then

fψ
′

k−1,ψ(n) =
∑

0<d|n
χK(d)χ′(d)χ(d)dk−1

∑

m∈Z
σχ
′

k−1,χ

(
(n/d)2DK −m2

4

)
.

(2) Let ψ = χ ◦ Nm ∈ C∗O be odd. Let p be a rational prime which is
not inert. Suppose that χ(p) = −1 if χK(p) = 1. If P is a prime factor of p
in K, then

f0,ψ,P(n) = − χ(p)
1 + χK(p)

∑

0<d|n
(d,p)=1

χK(d)χ(d)
∑

m∈Z
σ0,χ

(
(n/d)2DK −m2

4p

)
.

P r o o f. (1) Let N(d,A,K) denote the number of integral ideals of K
dividing A whose norms are d. By Lemma 2, fψ

′

k−1,ψ(n) is equal to

∑

|m|<n√DK
m≡nDK (mod 2)

∑

0<d|(n2DK−m2)/4

χ′
(
n2DK −m2

4d

)

× χ(d)dk−1N

(
d,
m+ n

√
DK

2
,K

)
.

It has been shown in Cohen [5] that

N

(
d,
m+ n

√
DK

2
,K

)
=

∑

0<e|gcd(m,n,d,(n2DK−m2)/4)

χK(e).

Then

fψ
′

k−1,ψ(n) =
∑

|m|<n√DK
m≡nDK (mod 2)

∑

0<e|gcd(m,n,(n2DK−m2)/4)

×
∑

0<d1|((n/e)2DK−(m/e)2)/4

χK(e)χ′(e)

× χ′
(

(n/e)2DK − (m/e)2

4d1

)
χ(ed1)ek−1dk−1

=
∑

0<d|n
χK(d)χ′(d)χ(d)dk−1

∑

m∈Z
σχ
′

k−1,χ

(
(n/d)2DK −m2

4

)
.

(2) First suppose χK(p) = 0, that is, p is ramified atK. If d | ((n/d)2DK−
m2)/(4p) and if P−1

(
m+n

√
DK

2

)
is integral, then

N

(
d,P−1

(
m+ n

√
DK

2

)
,K

)
= N

(
d,
m+ n

√
DK

2
,K

)
.
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By Lemma 2 and by the same argument as in (1),

f0,ψ,P(n) = −χ(p)
∑

0<d|n
χK(d)χ(d)

∑

m∈Z
σ0,χ

(
(n/d)2DK −m2

4p

)
.

Now suppose that χK(p) = 1, that is, p is decomposed at K, and that
χ(p) = −1. Let v(m,n) (resp. v(m,n)) denote the P-adic (resp. P-adic)
valuation of (m + n

√
DK )/2, and let vp(m) denote the p-adic valuation of

m ∈ Z. Then by Lemma 2,

f0,ψ,P(n)

=
∑

|m|<n√DK
m≡nDK (mod 2)

(1 + χ(p) + . . .+ χ(p)v(m,n)−1)

× (1 + χ(p) + . . .+ χ(p)v(m,n))

×
∑

0<d|(n2DK−m2)/(4p)
(d,p)=1

χ(d)N
(
d,
m+ n

√
DK

2
,K

)

=
∑

|m|<n√DK
m≡nDK (mod 2)

v(m,n) odd, v(m,n) even

∑

0<d|(n2DK−m2)/(4p)
(d,p)=1

χ(d)N
(
d,
m+ n

√
DK

2
,K

)
.

A necessary condition that v(m,n) be odd and v(m,n) be even is that
vp((n2DK −m2)/4) be odd. Under this condition, v(m,n) and v(m,n) have
the above properties only for one of ±m ( 6= 0) for a fixed n. Hence since

N

(
d,
m+ n

√
DK

2
,K

)
= N

(
d,
−m+ n

√
DK

2
,K

)
,

it follows that

f0,ψ,P(n)

=
∑

0<m<n
√
DK

m≡nDK (mod 2)
vp((n2DK−m2)/4) odd

∑

0<d|(n2DK−m2)/(4p)
(d,p)=1

χ(d)N
(
d,
m+ n

√
DK

2
,K

)
.

If vp((n2DK−m2)/4) is even, then
∑
m∈Z σ0,χ

( (n/d)2DK−m2

4p

)
vanishes. Then

by the same argument as in (1) it is shown that

f0,ψ,P(n) =
1
2

∑

0<d|n
(d,p)=1

χK(d)χ(d)
∑

m∈Z
σ0,χ

(
(n/d)2DK −m2

4p

)
.

This shows our assertion.
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Let χ be a completely multiplicative function on N and suppose that
ψ := χ◦Nm ∈ C∗(N). Let M be a divisor of N contained in the conductor fψ.
Then ψ(M) ∈ C∗(M) (see Section 2 for the notation) is also invariant under
conjugation, and in particular there is a completely multiplicative function
χ(M) on N such that ψ(M) = χ(M) ◦Nm.

Since there is an identity

LK(s, ψ) = L(s, χ)L(s, χχK),

by Propositions 2 and 4 we have the following:

Theorem 2. Let k,N ∈ N with kN 6= 1. Let K be a real quadratic field
and let C(N) be its narrow ideal class group modulo N . Let χ be a completely
multiplicative function on N such that ψ := χ ◦ Nm ∈ C∗(N) has the same
parity as k. Let χ0 be such that χ0(i) = χ(i2).

(1) We have the identity

λ2k,ψ(z) = L(1− k, χ)L(1− k, χχK)

+ 4
∞∑
n=1

∑

0<d|n
χK(d)χ(d)dk−1

×
∑

m∈Z
σk−1,χ

(
(n/d)2DK −m2

4

)
e(nz),

which is in M2k,χ0(N). For M with M |N , the 0th Fourier coefficient at a
cusp i/M , (i,M) = 1, is equal to 0 if M 6∈ fψ, and to

χ0(i)−1
∏

p|(N/M)

(1− p−1)(1− χK(p)p−1)L(1− k, χ(M))L(1− k, χ(M)χK)

otherwise, and there is an additional term −π−2D
1/2
K L(1, χ)L(1, χχK) at a

cusp 0 if k = 1. Suppose that N is the least element in N ∩ fψ. Then the
modular form is in M∞

2k,χ0
(N) (k > 1) or in M∞,0

2,χ0
(N) (k = 1).

(2) Let k > 1 and N > 1. Then

λψ2k(z) = 4
∞∑
n=1

χK(d)χ(d)dk−1
∑

m∈Z
σχk−1

(
(n/d)2DK −m2

4

)
e(nz)

is in M0
2k,χ0

(N). The 0th Fourier coefficient at the cusp 0 is equal to

4(−1)k
(

(k − 1)!
(2π)k

)2

D
k−1/2
K L(k, χ)L(k, χχK).

Let N ∈ N, N > 1, and let χ ∈ (Z/N)∗. Then χ is said to be even
or odd according as χ(−1) = 1 or −1. Let N be an integral ideal of K
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containing N so that N | Nm(N) and tr(N) ⊂ NZ. Put ψ := χ ◦ Nm. We
show that ψ ∈ C∗N. If α ≡ β (mod N) with α, β ∈ O relatively prime to N,
then Nm(α) ≡ Nm(β) (mod N). Indeed, putting α/β = 1 + ξ/β, ξ ∈ N, we
have

Nm(α)
Nm(β)

= 1 +
1

Nm(β)
(tr(βξ) + Nm(ξ)) ∈ 1 +

N

Nm(β)
Z,

where we note that (Nm(β), N) = 1. Then ψ(αA) = ψ(A) for α � 0,
α ≡ 1 (mod N), which implies that ψ ∈ C∗N. For α ≡ β (mod N), we
have |Nm(α)| ≡ sgn(Nm(α/β))|Nm(β)| (mod N) and so ψ is even or odd
according as χ is even or odd.

Now let N = (N). The above argument shows that for χ ∈ (Z/N)∗,
ψ := χ ◦ Nm is a character in C∗(N). However, it is sometimes possible
that even if χ is in (Z/N ′)∗ with N |N ′, N ′ > N , ψ is still a character in
C∗(N). For example, suppose that 4 |DK and 2 |N . Then 2N | Nm(N) and
2NZ ⊂ tr(N), that is, 2N plays the same role as N in the above argument.
Hence χ ∈ (Z/2N)∗ gives a character ψ of the group C(N). Later for a
Dirichlet character χ we obtain the minimal N ∈ N for which ψ ∈ C∗(N).

Let χ be a Dirichlet character in (Z/N)∗ with the same parity as k.
Consider the case K = Q in Section 2, where we have constructed a modular
form λ̃ψ

′

k,ψ. Put Gk,χ := λ̃k,χ ∈Mk,χ(N) (k 6= 2 or N 6= 1), and Gχk := λ̃χk ∈
Mk,χ(N) (k 6= 2 or χ is nontrivial). For k ≥ 2, we have the expansions

Gk,χ(z) = L(1− k, χ) + 2
∞∑
n=1

σk−1,χ(n)e(nz)

and

Gχk (z) = 2
∞∑
n=1

σχk−1(n)e(nz).

This holds also for k = 1, except possibly for the constant term. Let θ(z) :=∑∞
n=1 e

(
1
2n

2z
)

be a thetanullwerte. Then

θ(2z)Gk,χ(4z) = L(1− k, χ) + 2
∞∑
n=1

∑

m∈Z
σk−1,χ

(
n−m2

4

)
e(nz)

and

θ(2z)Gχk (4z) = 2
∞∑
n=1

∑

m∈Z
σχk−1

(
n−m2

4

)
e(nz)

are modular forms for Γ1(4N) of weight k + 1/2 with character χ. Then
θ(2z)Gk,χ(4z) and λ2k,ψ(z), or θ(2z)Gχk (4z) and λψ2k(z) give an example of
Shimura correspondence between noncusp forms of half-integral and integral
weight. In a later paper we shall investigate a Shimura correspondence by
using this fact.
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The following lemma is easily verified. Here we denote by i (i ∈ Z) the
class of Z/8Z containing i.

Lemma 4. (1) Let p be an odd prime. Then the map of O (⊂ K) to Z/pZ
defined by α → Nm(α) (mod p), α ∈ O, is surjective if p -DK . If p |DK ,
then the image is the set of squares in Z/pZ.

(2) The image of the map α → Nm(α) (mod 8) from {α ∈ O : (α, 2) =
O} to (Z/8Z)× is (Z/8Z)× (DK ≡ 1 (mod 4)), {1, 5} (DK ≡ 4 (mod 8)),
{1, 1−DK/4} (DK ≡ 0 (mod 8)).

(3) The image of the same map from {α ∈ O : α ≡ 1 (mod 2)} to
(Z/8Z)× is (Z/8Z)× (DK ≡ 1 (mod 4)), {1, 5} (DK ≡ 4 (mod 8)), {1}
(DK ≡ 0 (mod 8)).

(4) The image of the same map from {α ∈ O : α ≡ 1 (mod 4)} to
(Z/8Z)× is {1, 5} if DK ≡ 1 (mod 4).

Even if the domains of the maps in Lemma 4 are replaced by the subsets
consisting of totally positive elements, the images do not change.

Let D denote the set of integers of the form u2D′ with u ∈ N and D′ the
discriminants of a quadratic field or 1. We note that once an integer is of this
form, such an expression is unique. The set D is closed under multiplication.
If D′ = 1, then χD′ denotes the trivial character, and otherwise it denotes
the Kronecker–Jacobi–Legendre symbol. For D = u2D′ ∈ D, we define χD
to be the character

χD(m) =
{
χD′(m) ((D,m) = 1),
0 ((D,m) 6= 1).

Lemma 5. Let D ∈ D with D = u2D′, where D′ is 1 or a discriminant
and (u,D′) = 1, and let DK be a positive discriminant.

(1) Let N = |D′|∏p|u p (v2(D′DK) ≤ 3), N = 1
2 |D′|

∏
p|u p (v2(D′DK)

= 4, 5) and N = 1
4 |D′|

∏
p|u p (v2(D′DK) = 6). Then χD ◦Nm is in C∗(N).

(2) Let u = 1. Then a necessary and sufficient condition for N to be the
minimal natural number in the conductor of χD ◦Nm is

(i) D and DK have no common odd prime factor , and
(ii) neither v2(DDK) = 4 nor DDK/64 ≡ 1 (mod 4).

P r o o f. (1) It is enough to show the assertion in case u = 1. Let ZN :=
{(µ) : µ ∈ O, µ � 0, µ ≡ 1 (mod N)}. This is the identity element of
C(N). We must show that χD ◦Nm is trivial on ZN . If D is odd, then there is
nothing to prove. Let D ≡ 4 (mod 8). Lemma 4(2), (3) implies that χD◦Nm
is trivial on ZD/4 (DK ≡ 4 (mod 8)), or on ZD/2 (DK ≡ 0 (mod 8)), and
hence χD ◦Nm is trivial on ZN . Let D ≡ 0 (mod 8). For i odd, let i denote
the class in Z/(D) which is congruent to i (mod 8) and to 1 (mod D/8).
Then χD(5) = −1, χD(3) = −(−1)(D/8−1)/2, χD(7) = (−1)(D/8−1)/2. By
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Lemma 4(2)–(4), χD ◦Nm is trivial on ZD/2 (DK ≡ 4 (mod 8)), or on ZD/4
(DK ≡ 0 (mod 8)). Thus χD ◦Nm is trivial on ZN also in this case, which
shows our assertion.

(2) Let p be a prime with p |N . We must show that χ ◦Nm is nontrivial
on ZN/p for any p if and only if D and DK satisfy the condition. Since D is
a discriminant, χD is a primitive character modD. Let p be odd. If p -DK ,
then the image of the map A → Nm(A) (mod p) from ZN/p to (Z/pZ)× is
surjective by Lemma 4, and hence χD is nontrivial on ZN/p by primitiveness.
If p |DK , then χD is trivial on ZN/p again by Lemma 4. Hence (i) follows.
Let p = 2. By a similar argument to (1), we can show that χD ◦ Nm is
nontrivial on ZN/2 except for the case (ii).

Let D = 2wda, DK = 2wda′ (w = 0, 2, 3, 2 - d, 2 - a, 2 - a′, (a, a′) = 1) be
distinct discriminants, where aa′ ≡ 1 (mod 4) if w = 3. We note that a ≡ a′
(mod 4) and that aa′ is a discriminant. Let χ̃ be the multiplicative function
defined by χ̃(p) = χD(p) (p - 2wd) and χ̃(p) = χaa′(p) (p | 2wd). Then χ̃◦Nm
is in C∗(a) and its restriction to C(D) is equal to the character χD ◦Nm. Let

ψ := χD ◦Nm and ψ̃ := χ̃ ◦Nm. Then

LK(1− k, ψ̃) =
∏

P⊃2wd

(1− χaa′(Nm(P)) Nm(P)k−1)−1LK(1− k, ψ).

Hence

L(1− k, χ̃)L(1− k, χ̃χK)

=
∏

p|2wd
(1− χaa′(p)pk−1)−1L(1− k, χD)L(1− k, χDχK)

= L(1− k, χD)L(1− k, χaa′).
More generally, for M ∈ fψ, we have

L(1− k, χ(M))L(1− k, χ(M)χK) = L(1− k, χD)L(1− k, χM2aa′).

Let D ∈ D, and k ∈ N with (−1)kD > 0. Put λ2k,DK ,D := λ2k,χD◦Nm and
λ

(D)
2k,DK := λχD◦Nm

2k for a positive discriminant DK . Further, put λ2k,1,D :=

(Gk,χD )2 (k 6= 2 or D 6= 1), and λ
(D)
2k,1 := (GχDk )2 (k 6= 2 or D is not a

square). In the following corollary we treat the case k > 1. The case k = 1
is considered in Section 7.

Corollary to Theorem 2. Let DK be 1 or the discriminant of a real
quadratic field , and let D ∈ D, u and D′ be as in Lemma 5. Let k > 1
with (−1)kD > 0. Let N be |D′|∏p|u p if DK = 1 and as in Lemma 5(1)
otherwise. Put D′′ := 4D′DK/(D′, DK)2 and E := 2|D′/(D′, DK)| in case
v2(D′DK) = 5 or D′DK/64 ≡ 3 (mod 4), and put D′′ := D′DK/(D′, DK)2

and E := |D′/(D′, DK)| in any other case.



Values of L-functions 381

(1) Suppose that D 6= 1 if k = 2 and DK = 1. Then

λ2k,DK ,D(z) = L(1− k, χD)L(1− k, χDDK )

+ 4
∞∑
n=1

∑

0<d|n
χDDK (d)dk−1

×
∑

m∈Z
σk−1,χD

(
(n/d)2DK −m2

4

)
e(nz)

is in M2k(N). For M with M |N and (M,D′′) = (N,D′′), the 0th Fourier
coefficient at a cusp i/M , (i,M) = 1, is equal to

∏

p|(N/M)

(1− p−1)(1− χDK (p)p−1)L(1− k, χM2D′)L(1− k, χM2D′′).

The modular form is in M∞
2k(N) if D, DK satisfy the conditions in

Lemma 5(2).
(2) Let D 6= 1. Suppose that D is not a square if k = 2 and DK = 1.

Then

λ
(D)
2k,DK (z) = 4

∞∑
n=1

∑

0<d|n
χDDK (d)dk−1

∑

m∈Z
σχDk−1

(
(n/d)2DK −m2

4

)
e(nz)

is in M0
2k(N). The 0th Fourier coefficient at the cusp 0 is

(−1)kE−2k+1
∏

p|u
(1− χD′(p)p−k)

∏

p|(DDK/D′′)
(1− χD′′(p)p−k)

× L(1− k, χD′)L(1− k, χD′′).
P r o o f. First let DK be a discriminant. Then the assertions (1), (2)

follow immediately from Theorem 2 and Lemma 5, except for the 0th Fourier
coefficient at the cusp 0. We have the equality

L(k, χD) =
∏

p|u
(1− χD′(p)p−k)L(k, χD′).

D′′ is a discriminant with D′DK = t2D′′, and

L(k, χDDK ) =
∏

p|(DDK/D′′)
(1− χD′′(p)p−k)L(k, χD′′).

Then the functional equations of L-functions of primitive Dirichlet charac-
ters give our 0th Fourier coefficient. Now letDK = 1. Our Fourier expansions
are obtained by Lemma 3, and the assertions follow from Propositions 1 and
2 in case K = Q.
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6. We give some applications of the Corollary to Theorem 2. Let

Gk(z) := 1 +
(−1)k/22k

Bk

∞∑
n=1

σk−1(n)e(nz) for even k ≥ 4,

where Bk denotes the kth Bernoulli number. This is a normalized Eisenstein
series for SL2(Z) of weight k. The following lemma is elementary.

Lemma 6. (i) There is no nontrivial cusp form in Mk(N) if k < 12 and
N = 1 or if (k,N) = (4, 2), (4, 3), (4, 4), (6, 2).

(ii) Let k ≥ 4 be even. If N is prime, then (1/(Nk − 1))(NkGk(Nz) −
Gk(z)) ∈ M∞

k (N) and (Nk/(Nk − 1))(Gk(z) − Gk(Nz)) ∈ M0
k(N). The

former (resp. the latter) has 1 as its 0th coefficient at the cusp
√−1∞

(resp. 0).

Lemma 7. Let a ∈ N be square-free. Let a∗ be a or 4a according as a ≡ 1
(mod 4) or not. Denote by µ the Möbius function. Let k ≥ 2 be even and
let N be 1 or a prime. Then, up to O(ak/2−1/28+εnk−1+ε),
∑

m∈Z
σk−1,χN2

(
n2a∗ −m2

4

)

=





(−1)k/2BkL(1− k, χa∗)
B2k

∑

d|n
µ(d)χa∗(d)dk−1σ2k−1

(
n

d

)
(N = 1),

(−1)k/2BkL(1− k, χa∗)
B2k(Nk + 1)

∑

d|n
µ(d)χN2a∗(d)dk−1

×
[
{Nk −Nk−1 + 1− χa∗(N)Nk−1}σ2k−1

(
n

d

)

+N2k−2{−N + χa∗(N)(Nk −N + 1)}σ2k−1

(
n

Nd

)]
(N prime)

where there is an additional term − 1
2n

2 if N = 1, a = 1 and k = 2. The
term O(ak/2−1/28+εnk−1+ε) is 0 if k and N are as in Lemma 5(1).

P r o o f. Let a ≡ 1 (mod 4). Suppose N 6= 1 or k 6= 2. Put

c0 := (1−Nk−1)(1− χa(N)Nk−1)ζ(1− k)L(1− k, χa),

c′0 := (1−N−1)(1− χa(N)N−1)ζ(1− k)L(1− k, χa).

Then by the Corollary to Theorem 2, λ2k,a,N2 is in M∞,0
2k (N) with c0

(resp. c′0) as its 0th Fourier coefficient at
√−1∞ (resp. 0). By Lemma 6(ii),

λ2k,a,N2(z) = (c0/(Nk−1))(NkGk(Nz)−Gk(z))+(c′0N
k/(Nk−1))(Gk(z)−

Gk(Nz)) plus some cusp form. Comparing the Fourier coefficients and us-
ing the Möbius inversion formula we obtain the formula. The error term
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vanishes if M2k(N) contains no nontrivial cusp form. A similar argument
works also for other cases except for the case N = 1, a = 1, k = 2 in (1) of
the Corollary to Theorem 2, where nonexistence of λ4,1,1 causes difficulty.
For this, we refer to Cohen [5], Theorem 3.6. The Ramanujan–Petersson
conjecture proved by Deligne and Iwaniec’s result [14] gives the estimate of
the error term.

We give arithmetic expressions for values of L(1 − k, χD) (k = 2, 3, 4)
with D being discriminants of quadratic fields.

Example 1. Let D be a positive discriminant. Then

L(−1, χD) = − 1
5

∑

m∈Z
σ1

(
D −m2

4

)
=

−1
4− χD(2)

∑

m∈Z
σχ4

1

(
D −m2

4

)

=
−2

9− χD(3)

∑

m∈Z
σχ9

1

(
D −m2

4

)
,

L(−3, χD) =
∑

m∈Z
σ3

(
D −m2

4

)
.

These equalities are obtained by substituting n = 1 in Lemma 7. Let D be
a negative discriminant. Then

L(−2, χD) =
1

31 + 4(−1)(D+1)/2

∑

m∈Z
σ2,χ−4(|D| −m2) (2 -D),

−
∑

m∈Z
σ2,χ−4

( |D| −m2

4

)
(v2(D) ≥ 2).

Indeed, let DK = −4D (2 -D), −D/4 (v2(D) = 2), −D (v2(D) = 3).
Then λ6,DK ,−4 is in M6(2), M∞

6 (4), M∞
6 (2) in the respective cases. From

{8,−512,−1} ∈ LR6(2), {8, 0,−1} ∈ LR6(4), {8,−1} ∈ LR′6(2), the formula
follows.

For a positive definite integral quadratic form f , we denote by rf (a) the
number of integral representations of a by f . If f is a sum of k squares,
then we denote it by rk(a). For a square-free a, we can have a formula for
r2k+1(n2a) up to O(ak/2−1/28+εnk−1+ε) (cf. van Asch [1]). However, we treat
several other quadratic forms here.

Let S be a positive even symmetric matrix of size 2k (k ≥ 2) with square
determinant M2 (M ∈ N) with level N , that is, N is the least number in N
such that NS−1 is even. Suppose that k is even and N = 1 or a prime. The
theta series

ΘS(z) =
∑

r∈Z2k

e
(

1
2
trSrz

)
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associated with S is in Mk(N). The theta series takes the value (−1)k/2/M
at the cusp 0 by the inversion formulas for theta series. It is written as a
sum of Eisenstein series in Lemma 6 up to cusp forms. Let g = 1

2
txSx with

tx = (x1, . . . , x2k). By the expression of ΘS , rg(n) (n ∈ N) is shown to be
equal, up to O(n(k−1)/2+ε), to

2k
Bk

σk−1(n) (4 | k, N = 1),

2k
(Nk − 1)Bk

[{M−1N(Nk−1 − 1) + (−1)k/2(N − 1)}

× σk−1(n) +N(M−1 − (−1)k/2)σk−1,χN2 (n)] (2 | k, prime N).

Here we note that for N prime,

σk−1(n/N) = N−k+1(σk−1(n)− σk−1,χN2 (n)),

σ
χN2

k−1 (n) = (1−N−k+1)σk−1(n) +N−k+1σk−1,χN2 (n).

Let f = g + x2
2k+1. Then rf (n) =

∑
m∈Z rg(n − m2). By the above

formulas for rg, rf (n) is written in terms of σk−1(n−m2), σk−1,χN2 (n−m2)
up to O(nk/2+ε). Then Lemma 7 gives a formula for rf . For a square-free
a ∈ N, rg(n2a) is equal, up to O(ak/2−1/28+εnk−1+ε), to

2kL(1− k, χa∗)
B2k

∑

d|n∗
µ(d)χa∗(d)dk−1σ2k−1(n∗/d) (4 | k, N = 1),

(−1)k/22kL(1− k, χa∗)
M(N2k − 1)B2k

∑

N - d|n∗
µ(d)χa∗(d)dk−1[{N2k − (−1)k/2M

− χa∗(N)Nk(1− (−1)k/2M)}σ2k−1(n∗/d)

−Nk−1{Nk+1(1− (−1)k/2M) + χa∗(N)(−N + (−1)k/2

×M(N2k +N − 1))}σ2k−1(n∗/Nd)] (N being prime),

where n∗ denotes 2n or n according as a ≡ 1 (mod 4) or not and where in
the latter formula there is an additional term −240(N−M)M−1(N+1)−1n2

if k = 2 and a = 1.

Example 2. Let g = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x1x2 + x3x4. Then k = 2,

N = M = 3, and

rg(n2a) = 6L(−1, χa∗)
∑

3 - d|n∗
µ(d)χa∗(d)d{(−7 + 3χa∗(3))σ3(n∗/d)

+ 9(3− 7χa∗(3))σ3(n∗/(3d))}.
Since M4(3) contains no nontrivial cusp form, there appears no error
term.
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Example 3. Let A8k (k ∈ N) be a positive even unimodular matrix
of size 8k, and let g = 1

2
txA8kx + x2

8k+1 with tx = (x1, . . . , x8k). For a
square-free integer a ∈ N,

rg(n2a) =
8kL(1− 4k, χa∗)

B8k

∑

d|n∗
µ(d)χa∗(d)d4k−1σ8k−1(n∗/d)

+O(a2k−1/28+εn4k−1+ε).

If k = 1, then

rg(n2a) = −240L(−3, χa∗)
∑

d|n∗
µ(d)χa∗(d)d3σ7(n∗/d),

since there is no nontrivial cusp form in M8(1).

Finally, we give a formula in the case of a quadratic form with nonsquare
discriminant.

Example 4. Let g = x2
1 + x2

2 + x2
3 + x2

4 + 2x2
5. Let a ∈ N be square-free.

Then

rg(n2a) =





− 8L(−1, χ8a)
∑

d|n
µ(d)χ8a(d)d

{
σ3

(
n

d

)
− 16σ3

(
n

4d

)}

(2 - a),

− 8L(−1, χ2a)
∑

d|n
µ(d)χ2a(d)d

{
3σ3

(
n

d

)
− 8σ3

(
n

2d

)}

(a ≡ 6 (mod 8)),

− 8L(−1, χa/2)
∑

d|n
µ(d)χ2a(d)d

{
(19− 6χa/2(2))σ3

(
n

d

)

+ 8(−3 + 2χa/2(2))σ3

(
n

2d

)}

(a ≡ 2 (mod 8)).

Let f denote a quaternary form x2
1 +x2

2 +x2
3 +2x2

4. By a standard argument,
we have rf (n) = 2(4σχ8

1 (n)−σ1,χ8(n)). Since rg(n) =
∑
m∈Z rf (n−m2), we

have

rg(n) = 2
∑

m∈Z
(4σχ8

1 (n−m2)− σ1,χ8(n−m2)).

Let a ≡ 1 (mod 4). By Corollary to Theorem 2, λ4,a,8 ∈M∞
4 (8) and λ(8)

4,a ∈
M0

4(8), and hence their U2-images are in M∞
4 (4) and M0

4(4) respectively.
Now U2(λ(8)

4,a) has −2−6L(−1, χ8a) at its 0th Fourier coefficient at 0. We
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have

2λ(8)
4,a(z)− 1

2
λ4,a,8(z)

= − 1
2
L(−1, χ8)L(−1, χ8a) + 2

∞∑
n=1

∑

d|n
χ8a(d)d

×
∑

m∈Z

(
4σχ8

1

(
(n/d)2a−m2

4

)
− σ1,χ8

(
(n/d)2a−m2

4

))
e(nz)

and so,

U2

(
2λ(8)

4,a −
1
2
λ4,a,8

)
(z)

=
1
2
L(−1, χ8a) +

∞∑
n=1

∑

d|n
χ8a(d)drf ((n/d)2a)e(nz),

which is equal to

2−5L(−1, χ8a)
{

16
15

(16G4(4z)−G4(2z))− 16
15

(G4(z)−G4(2z))
}
.

By comparing Fourier coefficients, we obtain the formula in this case. By a
similar argument we can obtain formulas for a 6≡ 1 (mod 4).

7. In this section we consider a modular form λ2k,ψ in case k = 1. Its
0th coefficient is essentially a product of two class numbers of imaginary
quadratic number fields. Costa’s result [6] has already shown that modular
forms are effective in the study of class numbers. Our purpose is different
and we investigate a relation between ternary forms and class numbers. For
m nonsquare, let h(m) and w(m) denote the class number of Q(

√
m ) and

the number of roots of unity, respectively. Let D be a negative discrimi-
nant. Then L(0, χD) equals 2h(D)/w(D). The number w(D) is 4 (D = −4),
6 (D = −3), or 2 (otherwise).

Let N > 1. Let l ∈ N be a divisor of Nm for some m ∈ N. Let M2(N, l)
denote the subspace consisting of modular forms f in M2(N) for which

(
Ul
∏

p|N
(Up − 1)

)
(f) = 0.

When N is prime, M2(N, 1) denotes the subspace in M2(N) consisting
of modular forms invariant under UN . Obviously if l | l′, then M2(N, l) ⊂
M2(N, l′), and if p2 |N , then Up(M2(N, l)) ⊂ M2(N/p, l/(l, p)). For the
first several prime N , a basis of the space of cusp forms in M2(N, 1) and
their Fourier coefficients are computed in [21].
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Proposition 5. (1) Let the notation be as in Theorem 2. Suppose that
k = 1 and that χ is a real-valued odd Dirichlet character with conduc-
tor N ′. Let l be a natural number such that N ′ | ((l∏p|N p)

2DK) (2 -N ′),
or N ′ | ((l∏p|N p)

2DK/4) (2 |N ′). Then λ2,ψ is in M2(N, l).
(2) Let the notation be as in Proposition 4(2). Let ψ = χ ◦ Nm. If χ is

real-valued , that is, ψ is a genus character , then λ2,ψ is in M2(p, 1).

P r o o f. (1) Put

s(n) =
∑

m∈Z
σ0,χ

(
n2DK −m2

4

)
.

Let c ∈ N be so that χ(c) = −1. In particular, c is not a square. Then σ0,χ(c)
vanishes because for d | c, the equality χ(d) + χ(d′) = 0 holds, d′ being the

complementary divisor. This shows that σ0,χ
( (ln

∏
p|N p)2DK−m2

4

)
vanishes

if (N ′,m) = 1, or if 2 |N ′ and (N ′,m/2) = 1. Thus

s
(
ln
∏

p|N
p
)

=
∑

p1|N
s
(
ln
∏

p 6=p1

p
)
−

∑

p1,p2|N
s
(
ln

∏

p6=p1,p2

p
)

+ . . . ,

where p, pi are primes. Putting a(n) =
∑

0<d|n χK(d)χ(d)s(n/d), we have

a
(
ln
∏

p|N
p
)

=
∑

p1|N
a
(
ln
∏

p6=p1

p
)
−

∑

p1,p2|N
a
(
ln

∏

p 6=p1,p2

p
)

+ . . .

Since a(n) (n > 0) is the higher Fourier coefficient of λ2,ψ, we have shown
that the modular form is in M2(N, l). Thus our assertion follows.

(2) The higher Fourier coefficient of λ2,ψ is obtained in Proposition 4(2).
If χK(p) = 0, then its nth and pnth coefficients are obviously equal for any
n ∈ N, that is, λ2,ψ is invariant under Up. Suppose χK(p) 6= 0. Let c = prc′

with (c′, p) = 1. Since χ(p) = −1, σ0,χ(c) is equal to 0 if r is odd, and to
σ0,χ(c′) otherwise. So

∑

m∈Z
σ0,χ

(
(pn)2DK −m2

4p

)
=
∑

m∈Z
σ0,χ

(
n2DK −m2

4p

)
,

which shows that λ2,ψ is invariant under Up.

Theorem 3. (1) Let D and D1 be negative discriminants. Let a ∈ N
be square-free. Let a∗ denote a or 4a according as a ≡ 1 (mod 4) or not.
Assume that

(i) there is u ∈ N such that a∗D1 = u2D, and
(ii) χD(p) 6= 1 for any prime factor p of u.

Let t denote the cardinality of {p : p |u, χD(p) = −1}. Let N = |D1|
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(2 - a∗ or 2 -D1), 1
2 |D1| (v2(a∗D1) = 4, 5), 1

4 |D1| (v2(a∗D1) = 6). Then

λ2,a∗,D1(z) = 2t+2h(D1)h(D)/w(D1)w(D)

+ 4
∞∑
n=1

∑

0<d|n
χu2D(d)

∑

m∈Z
σ0,χD1

(
(n/d)2a∗ −m2

4

)
e(nz)

is a modular form in M2(N, l), where l = 2u with the least integer u ≥
max{0, (v2(D1)−v2(a∗))/2}. If D1 and a∗ have no common odd prime factor
and if neither v2(D1a

∗) = 4 nor D1a
∗/64 ≡ 1 (mod 4), then the modular

form is also in M∞,0
2 (N). Suppose otherwise. Let M > 1 be a divisor of N .

Then the 0th coefficient at a cusp i/M , (i,M) = 1, is equal to 0 ((M,D)
6= 1),

2tM+2
∏

p|(N/M)

(1− p−1)h(D1)h(D)/w(D1)w(D) ((M,D) = 1),

where tM denotes the cardinality of {p : p |M, χD(p) = −1}.
(2) Let D and D1 be negative discriminants such that a∗ = DD1 is the

discriminant of a real quadratic field. Let p be a rational prime such that
χD1(p) = −1 and χD(p) = 0 or −1, and let χ be a completely multiplicative
function on N defined by χ(q) = χD1(q) for a prime q with q -D1, and
χ(q) = χD(q) for q dividing D1. Then

4h(D1)h(D)/w(D1)w(D)

+
2

1− χD(p)

∞∑
n=1

∑

0<d|n
(d,pD1)=1

χD(d)
∑

m∈Z
σ0,χ

(
(n/d)2a∗ −m2

4p

)
e(nz)

is a modular form in M2(p, 1).

P r o o f. (1) The 0th Fourier coefficient of λ2,a∗,D1 is L(0, χD1)L(0, χu2D),
which is equal to 2tL(0, χD1)L(0, χD) = 2t+2h(D1)h(D)/(w(D1)w(D)). The
0th coefficients at other cusps are obtained as in the Corollary to Theorem 2.
Thus by Lemma 5, Theorem 2(1) and Proposition 5, our assertion follows.

(2) Let K be a quadratic field with DK = a∗, and let ψ := χ ◦ Nm
be a genus character corresponding to the decomposition a∗ = D ·D1. By
Proposition 5(2), λ2,ψ is in M2(p, 1). Its 0th coefficient is equal to (1 −
ψ(P))LK(0, ψ) = 2L(0, χD)L(0, χD1), and the higher coefficients are given
in Proposition 4(2). Thus 1

2λ2,ψ is the modular form in the theorem.

In Theorem 3, the 0th coefficients at a cusp 0 are not presented. However,
by Lemma 1, they can be obtained from the 0th coefficients at other cusps.

We give an application of Theorem 3(2).

Example. Let r ≡ 3 (mod 8) > 3 be square-free, and let −s be a
negative discriminant with s 6≡ 7 (mod 8) and (s, r) = 1. Let p = 2, D1 =



Values of L-functions 389

−r and D = −s in Theorem 3(2). Then

h(−r)h(−s) +
2

1− χ−s(2)

∞∑
n=1

∑

d|n
(d,2r)=1

χ−s(d)

×
∑

m∈Z
σ0,χ

(
(n/d)2rs−m2

8

)
e(nz) ∈M2(2).

Since {24,−1} ∈ LR′2(2), we have

h(−r)h(−s) =
1

12(1− χ−s(2))

∑

m∈Z
m≡s (mod 2)

σ0,χ

(
rs−m2

8

)
.

If q is the minimal prime with χ(q) = 1, then 0 ≤ σ0,χ(m) ≤ logqm (see the
proof of Proposition 5). Thus we obtain the estimate

h(−r)h(−s) ≤ 1
12(1− χ−s(2))

(
√
rs+ 2) log3(rs)

<
1
12

(
√
rs+ 1)(log |r|+ log |s|).

Note that this cannot be obtained from the usual estimate such as h(−s) <
C
√
|s| log |s| with a constant C (see for example Newman [15]). A similar

argument is possible for some other congruence conditions.

Let D be a discriminant. Then for m ∈ N, σ0,χD (m) is equal to the
number of integral ideals in Q(

√
D ) with norm m. Hence for D < 0,

w(D)σ0,χD (m) is equal to the number of representations of m by positive
definite quadratic forms of discriminant D which form a complete system
of representatives of the proper equivalence classes. It follows that higher
Fourier coefficients of λ2,a∗,D1 in Theorem 3(1) are closely related to repre-
sentations of natural numbers by ternary forms.

We give an application of Theorem 3(1). We examine the case D1 = −4.
Let a be square-free with a 6≡ 7 (mod 8). ThenD = −4a (a ≡ 1, 2 (mod 4)),
D = −a (a ≡ 3 (mod 8)) satisfy the conditions (i), (ii), where t = 0 in the
former, and t = 1 in the latter. Since h(−4) = 1 and w(−4) = 4,

λ2,a∗,−4

= 2th(−a)/w(−a) + 4
∞∑
n=1

∑

d|n
χ−4a(d)

∑

m∈Z
σ0,χ−4

(
(n/d)2a∗ −m2

4

)
e(nz).

Considering the norm form for Q(
√−1 ), we have

r3(n) = 4
∑

m∈Z
σ0,χ−4(n−m2) for n ∈ N.



390 S. Tsuyumine

Here U2(λ2,a∗,−4) (a ≡ 1 (mod 4)) and λ2,a∗,−4 (a 6≡ 1 (mod 4)) are in
M2(2) and they have the expansion

2th(−a)/w(−a) +
∞∑
n=1

{∑

d|n
χ−4a(d)rf ((n/d)2a)

}
e(nz).

Since {24,−1} ∈ LR′2(2), we have shown that for a square-free a > 3,

h(−a) =

{
1
12r3(a) (a ≡ 1, 2 (mod 4)),
1
24r3(a) (a ≡ 3 (mod 8)),

which is known as “Gauss’ three-square theorem”. Since M2(2) is spanned
by G2,χ4(z), comparison of Fourier coefficients leads to

(2t+33h(−a)/w(−a))σ1,χ4(n) =
∑

d|n
χ−4a(d)r3((n/d)2a)

for any n. By the Möbius inversion formula, we obtain

r3(n2a) = (2t+33h(−a)/w(−a))
∑

d|n
µ(d)χ−4a(d)σ1,χ4(n/d),

which is a classical result (Bachmann [3], Bateman [4]).
In this way we can obtain other such formulas by replacing D1 by other

negative discriminants. We state some of them as a corollary.

Corollary. Let m be any natural number. Let m = n2a with a square-
free. Let n∗ be 2n or n according as a ≡ 1 (mod 4) or not.

(1) Then r3(m) = 0 (a ≡ 7 (mod 8)), and r3(m) = δ1(a)h(−a)
× ∑d|n µ(d)χ−4a(d)σ1,χ4(n/d) (otherwise), where δ1(a) = 6 (a = 1),
8 (a = 3), 12 (a ≡ 1, 2 (mod 4), a > 1), 24 (a ≡ 3 (mod 8), a > 3).

(2) Let f = x2 + y2 + 2z2. Then rf (m) = 0 if a ≡ 14 (mod 16). Suppose
otherwise. Then

rf (m) =





δ2(m)h(−2a)
∑

d|n
µ(d)χ−8a(d)σ1,χ4(n/d) (2 | a or 2 -n),

δ2(m)h(−2a)
∑

d|n
µ(d)χ−8a(d)σ1,χ4(n/2d) (2 - a and 2 |n),

where δ2(m) denotes 6 (a = 2), 8 (a = 6), 12 (a ≡ 2 (mod 8), a > 2),
24 (a ≡ 6 (mod 16), a > 6), 4 (2 - a, 2 -n), 12 (2 - a, 2 |n).

(3) Let f = x2 + y2 + yz + z2. Then

rf (m) =





0 (a ≡ 6 (mod 9)),

δ3(a)h(−3a)
∑

d|n∗
µ(d)χ−3a∗(d)σ1,χ9(n∗/d) (otherwise),

where δ3(a) denotes 2 (a = 1), 3 (a = 3), 6(1 + v3(a)) (a 6= 1, 3).
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(4) Let f = x2 + y2 + 3z2. Then rf (m) = 0 if a ≡ 6 (mod 9). Suppose
otherwise. Then

rf (m) =





δ′3(a)h(−3a)
∑

d|n
µ(d)χ−12a(d)σ1,χ9(n/d) (a ≡ 1 (mod 8)),

δ′3(a)h(−3a)
∑

d|n
µ(d)χ−3a(d)σ1,χ9(n/d) (a ≡ 5 (mod 8)),

δ′3(a)h(−3a)
∑

d|n
µ(d)χ−12a(d){σ1,χ9(n/d)

+ 2σ1,χ9(n/(2d))} (a ≡ 2, 3 (mod 4)),

where δ′3(a) = 4 (a = 1), 2 (a = 3), 12(1 + v3(a)) (a ≡ 1 (mod 8), a > 1),
8(1 + v3(a)) (a ≡ 5 (mod 8)), 2(1 + v3(a)) (a ≡ 2, 3 (mod 4), a 6= 3).

(5) Let f = x2 + y2 + yz + 2z2. Then

rf (m) =





0 (a/7 6≡ 3, 5, 6 (mod 7)),
2δ7(a)(1 + v7(a))h(−7a)
×
∑

d|n∗
µ(d)χ−7a∗(d)σ1,7(n∗/d) (otherwise),

where δ7(7) = 1/2, δ7(21) = 1/3 and δ7(a) = 1 (a 6= 7, 21).
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