On values of L-functions of totally real algebraic number fields at integers

by
Shigeaki Tsuyumine (Tsu)
Dedicated to Professor H. Shimizu
on the occasion of his 60th birthday

0. Let K be a totally real algebraic number field. In his paper [20], Siegel obtained explicit arithmetic expressions of the values of a zeta function of K at negative integers by using the method of restricting HilbertEisenstein series for $\mathrm{SL}_{2}(\mathcal{O})$ to a diagonal, \mathcal{O} denoting the ring of integers of K. Let us consider Hilbert-Eisenstein series of higher level whose 0th Fourier coefficients are special values of L-functions. Then a modified method of Siegel's gives formulas for the values of L-functions at integers, which is one of the purposes of the present paper. Such Eisenstein series have been considered for example in Shimura [18] and Deligne-Ribet [7]. However, for our purpose it is desirable that the Eisenstein series have many 0 as their 0th coefficients at cusps except for a specific cusp. After constructing such Eisenstein series, we give formulas for values of L-functions of K at integers. As a particular case, they turn out to be formulas for relative class numbers of totally imaginary quadratic extensions of K, where the exact form of fundamental units is not necessary. We also give several numerical examples of special values of L-functions and relative class numbers.

Our result is twofold. After Section 5, we take as K a real quadratic field. Under some condition on a character we obtain an elliptic modular form whose 0 th coefficient is a product of two L-functions over \mathbb{Q} and whose higher coefficients are elementary arithmetic. These modular forms can be applied to the investigation of numbers of representations of a natural number by a positive quadratic form with odd number of variables. We obtain a relation between special values of L-functions and numbers of representations by some such quadratic forms. For example, Gauss' three-square theorem is an easy consequence of our theorem.

1. Let \mathfrak{H} denote the upper half plane $\{z \in \mathbb{C}: \operatorname{Im} z>0\}$. For $N \in \mathbb{N}$, we put

$$
\Gamma_{1}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): a \equiv d \equiv 1, c \equiv 0(\bmod N)\right\}
$$

and

$$
\Gamma_{0}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0(\bmod N)\right\}
$$

Let χ_{0} be a Dirichlet character modulo N. Let $k \in \mathbb{N}$, and let Γ be $\Gamma_{0}(N)$ or $\Gamma_{1}(N)$. A holomorphic function f on \mathfrak{H} is called a modular form for Γ of weight k if it satisfies (i) $f \mid A=f$ for $A \in \Gamma$, where $(f \mid A)(z)=$ $(c z+d)^{-k} f(A z)$ with $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $A z=\frac{a z+b}{c z+d}$, and (ii) f is holomorphic also at cusps. Let $\mathbf{M}_{k, \chi_{0}}(N)$ denote the space of modular forms f for $\Gamma_{0}(N)$ of weight k with character χ_{0}, that is, modular forms f for $\Gamma_{1}(N)$ which satisfy $f \mid A=\chi_{0}(d) f$ for any $A \in \Gamma_{0}(N)$. If χ_{0} is trivial, we denote it by $\mathbf{M}_{k}(N)$, which is the space of modular forms for $\Gamma_{0}(N)$.

We set $\mathrm{e}(z)=\exp (2 \pi \sqrt{-1} z)$. A modular form f for $\Gamma_{1}(N)$ has the Fourier expansion $f(z)=\sum_{n=0}^{\infty} a_{n} \mathrm{e}(n z)$ at the cusp $\sqrt{-1} \infty$. An operator $U_{l}(l \in \mathbb{N})$ on Fourier series is defined by

$$
U_{l}(f)(z)=\sum_{n=0}^{\infty} a_{l n} \mathrm{e}(n z)
$$

it maps $\mathbf{M}_{k}(N)$ to itself if any prime divisor of l is a factor of N (AtkinLehner [2]). We also consider a function for which the holomorphy condition in (ii) is replaced by meromorphy. Such a function is called a meromorphic modular form; its weight is not necessarily positive.

Let $\mathbf{M}_{k, \chi_{0}}^{\infty}(N)\left(\right.$ resp. $\mathbf{M}_{k, \chi_{0}}^{0}(N)$, resp. $\left.\mathbf{M}_{k, \chi_{0}}^{\infty, 0}(N)\right)$ denote the subspace of $\mathbf{M}_{k, \chi_{0}}(N)$ consisting of modular forms which vanish at all cusps but $\sqrt{-1} \infty$ (resp. 0, resp. $\sqrt{-1} \infty$ and 0). All of them coincide if $N=1$, and the spaces $\mathbf{M}_{k, \chi_{0}}(N)$ and $\mathbf{M}_{k, \chi_{0}}^{\infty, 0}(N)$ coincide if N is prime.

Since $\mathbf{M}_{k, \chi_{0}}^{\infty, 0}(N)$ is of finite dimension, there are nontrivial linear relations satisfied by the 0th Fourier coefficient at 0 and first several coefficients at $\sqrt{-1} \infty$, of arbitrary modular forms in $\mathbf{M}_{k, \chi_{0}}^{\infty, 0}(N)$. Let $N>1$. We define $\mathrm{LR}_{k, \chi_{0}}(N)$ to be the set consisting of ordered sets $\left\{c_{0}, c_{0}^{\prime}, c_{-1}, \ldots, c_{-n_{0}}\right\}$ where c_{i} 's and c_{0}^{\prime} are constants such that the equality $c_{0}^{\prime} a_{0}^{(0)}+\sum_{n=0}^{n_{0}} c_{-n} a_{n}$ $=0$ holds for the 0th Fourier coefficient $a_{0}^{(0)}$ at 0 and first $n_{0}+1$ coefficients $a_{0}, \ldots, a_{n_{0}}$ at $\sqrt{-1} \infty$ of any modular form f in $\mathbf{M}_{k, \chi_{0}}^{\infty, 0}(N)$. Here we note that $a_{0}^{(0)}$ is a complex number so that $\lim _{z \rightarrow \infty} z^{-k} f(-1 / z)=a_{0}^{(0)}$. If the modular form is in $\mathbf{M}_{k, \chi_{0}}^{\infty}(N)\left(\right.$ resp. $\left.\mathbf{M}_{k, \chi_{0}}^{0}(N)\right)$, then the equality $\sum_{n=0}^{n_{0}} c_{-n} a_{n}=0$ (resp. $c_{0}^{\prime} a_{0}^{(0)}+\sum_{n=1}^{n_{0}} c_{-n} a_{n}=0$) holds. Similarly for $N \geq 1, \operatorname{LR}_{k, \chi_{0}}^{\prime}(N)$ is
defined to be the set consisting of $\left\{c_{0}, c_{-1}, \ldots, c_{-n_{0}}\right\}$ for which the equality $\sum_{n=0}^{n_{0}} c_{-n} a_{n}=0$ holds for any modular form in $\mathbf{M}_{k, \chi_{0}}^{\infty, 0}(N)$. If χ_{0} is trivial, then we omit χ_{0} from $\mathbf{M}_{k, \chi_{0}}^{\infty, 0}(N), \operatorname{LR}_{k, \chi_{0}}(N)$ etc., for example $\operatorname{LR}_{k}(N):=$ $\mathrm{LR}_{k, \chi_{0}}(N)$.

Elements of $\mathrm{LR}_{k, \chi_{0}}(N), \mathrm{LR}_{k, \chi_{0}}^{\prime}(N)$ can be obtained by the following method initially employed by Siegel [20] in the case $N=1$. Cusps of $\Gamma_{0}(N)$ are represented as $i / M(i, M \in \mathbb{N},(i, M)=1, M \mid N)$, and two such cusps $i / M, i^{\prime} / M^{\prime}$ are equivalent if and only if M equals M^{\prime}, and i^{\prime} is congruent to i modulo M or modulo N / M. The cusp $\sqrt{-1} \infty$ (resp. 0) is equivalent to $1 / N$ (resp. 1/1). A local parameter at a cusp i / M is e $\left(\left(M^{2}, N\right) / N \times A z\right)$, where $A \in \mathrm{SL}_{2}(\mathbb{Z})$ maps i / M to $\sqrt{-1} \infty$.

Lemma 1. Let $k \in \mathbb{N}$. Let $h(z)=\sum_{n=-n_{0}}^{\infty} c_{n} \mathrm{e}(-n z)$ be a meromorphic modular form for $\Gamma_{0}(N)$ of weight $-k+2$ with character χ_{0}^{-1} having the only pole at $\sqrt{-1} \infty$. Let $c_{0}^{(i / M)}$ be the 0 th Fourier coefficient at the cusp i / M. Let $f(z) \in \mathbf{M}_{k, \chi_{0}}(N), f(z)=\sum_{n=0}^{\infty} a_{n} \mathrm{e}(n z)$, and let $a_{0}^{(i / M)}$ be its 0 th coefficient at i / M. Then

$$
\sum_{M, i}\left(N /\left(M^{2}, N\right)\right) c_{0}^{(i / M)} a_{0}^{(i / M)}+\sum_{n=0}^{n_{0}} c_{-n} a_{n}=0
$$

where the first summation is taken over a complete set of representatives of cusps of $\Gamma_{0}(N)$.

Proof. By the assumption, $f(z) h(z) d z$ is a meromorphic differential form on the compactified modular curve for $\Gamma_{0}(N)$ with poles only at cusps. Then by the residue theorem, the residue of the differential form, which is $(2 \sqrt{-1} \pi)^{-1}$ times the left hand side of the equality in the lemma, is equal to 0 . This shows our assertion.

Corollary. Let h and c_{n} be as in the lemma. Let $c_{0}^{(0)}$ denote the 0 th Fourier coefficient of h at the cusp 0 . Then $\left\{c_{0}, N c_{0}^{(0)}, c_{-1}, \ldots, c_{-n_{0}}\right\} \in$ $\mathrm{LR}_{k, \chi_{0}}(N)$. If $c_{0}^{(0)}=0$, then $\left\{c_{0}, c_{-1}, \ldots, c_{-n_{0}}\right\} \in \operatorname{LR}_{k, \chi_{0}}^{\prime}(N)$.

For a prime p, denote by v_{p} the p-adic valuation. For a proper divisor M of $N, \operatorname{LR}_{k}(N)$ is not a subset of $\mathrm{LR}_{k}(M)$ in general since $\mathbf{M}_{k}^{\infty, 0}(M) \not \subset$ $\mathbf{M}_{k}^{\infty, 0}(N)$ in general. Suppose that $v_{p}(N) \geq 2$. Then by Atkin-Lehner [2], $U_{p}(f)$ is in $\mathbf{M}_{k}(N / p)$ for $f \in \mathbf{M}_{k}(N)$. It is easy to show that $U_{p}(f) \subset$ $\mathbf{M}_{k}^{\infty, 0}(N / p)$ if $f \in \mathbf{M}_{k}^{\infty, 0}(N)$, and that $U_{p}(f)$ has $p^{k-1} a_{0}^{(0)}$ as its 0th coefficient at the cusp $0, a_{0}^{(0)}$ being the 0 th coefficient of f at 0 . We also have $U_{p}\left(\mathbf{M}_{k}^{\infty}(N)\right) \subset \mathbf{M}_{k}^{\infty}(N / p)$ and $U_{p}\left(\mathbf{M}_{k}^{0}(N)\right) \subset \mathbf{M}_{k}^{0}(N / p)$. If $\left\{c_{0}, c_{0}^{\prime}, c_{-1}, \ldots, c_{-n_{0}}\right\} \in \operatorname{LR}_{k}(N / p)$, then $\left\{c_{0}, p^{k-1} c_{0}^{\prime},(p-1\right.$ times 0$), c_{-1}$, $(p-1$ times 0$\left.), \ldots, c_{-n_{0}}\right\}$ is in $\operatorname{LR}_{k}(N)$. This implies that some elements in
$\operatorname{LR}_{k}(N)$ are obtainable from $\operatorname{LR}_{k}\left(\prod_{p \mid N} p\right)$. Similarly, if $\left\{c_{0}, c_{-1}, \ldots, c_{-n_{0}}\right\} \in$ $\operatorname{LR}_{k}^{\prime}(N / p)$, then $\left\{c_{0},(p-1\right.$ times 0$), c_{-1},(p-1$ times 0$\left.), \ldots, c_{-n_{0}}\right\}$ is in $\operatorname{LR}_{k}^{\prime}(N)$. We note that the inclusion $\mathbf{M}_{k}^{0}(M) \subset \mathbf{M}_{k}^{0}(N)$ holds for $M \mid N$ if $v_{p}(M) \geq 1$ for any prime factor p of N.

Hecke [11] investigated Eisenstein series of higher level (see also [22]). If N and k are sufficiently small, the spaces of modular forms are spanned by their linear combinations. In that case, elements of $\mathrm{LR}_{k, \chi_{0}}(N)$, etc., can be obtained from their Fourier coefficients through simple calculation. In the present paper we need several elements of $\mathrm{LR}_{k, \chi_{0}}(N)$, etc. However, we omit the detail of getting them.
2. Let K be a totally real algebraic number field of degree g. We denote by $\mathcal{O}, \mathfrak{o}_{K}$ and D_{K} the ring of integers, the different and the discriminant respectively. Let \mathfrak{N} be an integral ideal. Let $\mathcal{E}_{\mathfrak{N}}$ denote the group of units $\varepsilon \succ 0$ congruent $1 \bmod \mathfrak{N}$, where $\varepsilon \succ 0$ means that ε is totally positive. We denote by $\mathbf{C}_{\mathfrak{N}}$ the narrow ray class group modulo \mathfrak{N}, and by $\mathbf{C}_{\mathfrak{N}}^{*}$ the character group. Although $\mathbf{C}_{\mathfrak{N}}$ denotes an integral ideal class group, we evaluate its character also at fractional ideals by the obvious extension. We call a character $\psi \in \mathbf{C}_{\mathfrak{N}}^{*}$ even (resp. odd) if $\psi(\mu)=1$ (resp. $\psi(\mu)=$ $\operatorname{sgn}(\operatorname{Nm}(\mu)))$ for all $\mu \neq 0, \mu \equiv 1(\bmod \mathfrak{N})$. The conductor of ψ is denoted by \mathfrak{f}_{ψ}. For an ideal \mathfrak{M} such that $\mathfrak{N} \subset \mathfrak{M} \subset \mathfrak{f}_{\psi}$, we denote by $\psi_{\mathfrak{M}}$ the character in $\mathbf{C}_{\mathfrak{M}}^{*}$ satisfying $\psi(\mathfrak{A})=\psi_{\mathfrak{M}}(\mathfrak{A})$ for any \mathfrak{A} relatively prime to \mathfrak{N}.

Let \mathfrak{H}^{g} denote the product of g copies of \mathfrak{H}. For $\mathfrak{z}=\left(z_{1}, \ldots, z_{g}\right) \in$ $\mathfrak{H}^{g}, \operatorname{Nm}\left(\gamma_{\mathfrak{z}}+\delta\right)$ stands for $\prod_{i=1}^{g}\left(\gamma^{(i)} z_{i}+\delta^{(i)}\right)$, where $\gamma^{(1)}, \ldots, \gamma^{(g)}$ denote conjugates of γ. Let $\mathfrak{N}, \mathfrak{N}^{\prime}$ be integral ideals. Let \mathfrak{A} be an ideal relatively prime to $\mathfrak{N N}{ }^{\prime}$. Let $k \in \mathbb{N}$. For $\gamma_{0} \in \mathfrak{A d}_{K}^{-1}, \delta_{0} \in \mathfrak{N}^{-1} \mathfrak{A d}_{K}^{-1}$, an Eisenstein series on \mathfrak{H}^{g} is defined by setting

$$
E_{k, \mathfrak{A}}\left(\mathfrak{z}, \gamma_{0}, \delta_{0} ; \mathfrak{N}^{\prime}, \mathfrak{N}\right):=\left.\operatorname{Nm}(\mathfrak{A})^{k} \sum_{\gamma, \delta}^{\prime} \operatorname{Nm}(\gamma \mathfrak{z}+\delta)^{-k}|\operatorname{Nm}(\gamma \mathfrak{z}+\delta)|^{-s}\right|_{s=0}
$$

where the summation is taken over all $(\gamma, \delta) \neq(0,0), \gamma \equiv \gamma_{0}\left(\bmod \mathfrak{N}^{\prime} \mathfrak{A d}_{K}^{-1}\right)$, $\delta \equiv \delta_{0}\left(\bmod \mathfrak{A d}_{K}^{-1}\right)$ which are not associated under the action of $\mathcal{E}_{\mathfrak{N} \mathfrak{N}^{\prime}}^{-1}$: $(\gamma, \delta) \rightarrow(\varepsilon \gamma, \varepsilon \delta), \varepsilon \in \mathcal{E}_{\mathfrak{N} \mathfrak{N}^{\prime}}$.

Let $\psi \in \mathbf{C}_{\mathfrak{N}}^{*}$ and $\psi^{\prime}=\mathbf{C}_{\mathfrak{N}^{\prime}}^{*}$. Suppose that $\psi \psi^{\prime} \in \mathbf{C}_{\mathfrak{N} \mathfrak{N}^{\prime}}^{*}$ has the same parity as k. Then we put

$$
\begin{aligned}
\widetilde{\lambda}_{k, \psi}^{\psi^{\prime}}(\mathfrak{z}):= & \left(\frac{(k-1)!}{(2 \sqrt{-1} \pi)^{k}}\right)^{g} D_{K}^{-1 / 2} \operatorname{Nm}(\mathfrak{N})^{-1}\left[\mathcal{E}_{\mathfrak{N}}: \mathcal{E}_{\mathfrak{N} \mathfrak{N}}\right]^{-1} \sum_{\mathfrak{A} \in \mathbf{C}_{\mathfrak{N}}} \psi(\mathfrak{A}) \\
& \times \sum_{\gamma_{0} \in \mathfrak{A d}_{K}^{-1} / \mathfrak{N}^{\prime} \mathfrak{A l} \mathfrak{d}_{K}^{-1}, \gamma_{0} \succ 0} \psi^{\prime}\left(\gamma_{0} \mathfrak{A}^{-1} \mathfrak{d}_{K}\right) \sum_{\delta_{0} \in \mathfrak{N}^{-1} \mathfrak{A l}_{K}^{-1} / \mathfrak{A d}_{K}^{-1}} \mathrm{e}\left(\operatorname{tr}\left(\delta_{0}\right)\right) \\
& \times E_{k, \mathfrak{A}\left(\mathfrak{z},-\gamma_{0}, \delta_{0} ; \mathfrak{N}^{\prime}, \mathfrak{N}\right),}
\end{aligned}
$$

where \mathfrak{A} is a representative relatively prime to \mathfrak{N}^{\prime}. This is a modular form for

$$
\Gamma_{0}\left(\mathfrak{N N}^{\prime}\right)_{K}:=\left\{\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \mathrm{SL}_{2}(\mathcal{O}): \gamma \equiv 0\left(\bmod \mathfrak{N N}^{\prime}\right)\right\}
$$

of weight k with a character. In case $K=\mathbb{Q}$ and $k=2$ we assume that either $\mathfrak{N} \neq \mathcal{O}$ or at least one of ψ, ψ^{\prime} is nontrivial. The Fourier expansion of $\widetilde{\lambda}_{k, \psi}^{\psi^{\prime}}(\mathfrak{z})$ at the cusp $\sqrt{-1} \infty$ is given as
$\tilde{\lambda}_{k, \psi}^{\psi^{\prime}}(\mathfrak{z})=C+2^{g} \sum_{\nu \in \mathfrak{D}_{K}^{-1}, \nu \succ 0}\left(\sum_{\mathcal{O} \supset \mathfrak{B} \supset \nu \mathfrak{o}_{K}} \psi^{\prime}\left(\nu \mathfrak{B}^{-1} \mathfrak{d}_{K}\right) \psi(\mathfrak{B}) \operatorname{Nm}(\mathfrak{B})^{k-1}\right) \mathrm{e}(\operatorname{tr}(\nu \mathfrak{z}))$ with a constant C, where \mathfrak{B} runs over integral ideals containing $\nu \mathfrak{d}_{K}$. If $\mathfrak{N}^{\prime}=\mathcal{O}$ and ψ^{\prime} is trivial, we denote the modular form by $\widetilde{\lambda}_{k, \psi}(\mathfrak{z})$. Similarly $\widetilde{\lambda}_{k}^{\psi^{\prime}}(\mathfrak{z})$ is also defined. We can obtain C and the 0th Fourier coefficients of $\widetilde{\lambda}_{k, \psi}(\mathfrak{z})$ and $\widetilde{\lambda}_{k}^{\psi^{\prime}}(\mathfrak{z})$ at other cusps by a similar computation to that in Shimura [18].

Proposition 1. Let $A=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathrm{SL}_{2}(\mathcal{O})$. Let $k \in \mathbb{N}$ and let $\psi \in \mathbf{C}_{\mathfrak{N}}^{*}$ and k have the same parity.
(1) In case $K=\mathbb{Q}$ and $k=2$, assume that $\mathfrak{N} \neq \mathcal{O}$ or ψ is nontrivial. Then the 0 th Fourier coefficient of $\widetilde{\lambda}_{k, \psi}(\mathfrak{z}) \mid A$ is equal to

$$
\begin{array}{r}
\operatorname{sgn}(\operatorname{Nm}(\delta))^{k-1} \psi(\delta) \prod_{\substack{\mathfrak{P} \mid \mathfrak{N} \\
\mathfrak{P}+(\gamma, \mathfrak{N})}}\left(1-\operatorname{Nm}(\mathfrak{P})^{-1}\right) L_{K}\left(1-k, \psi_{(\gamma, \mathfrak{N})}\right) \quad\left((\gamma, \mathfrak{N}) \subset \mathfrak{f}_{\psi}\right) \\
+(\sqrt{-1} \pi)^{-g} D_{K}^{-1 / 2} \psi(\gamma) L_{K}(1, \psi) \quad(k=1 \text { and }(\gamma, \mathfrak{N})=\mathcal{O}),
\end{array}
$$

where $\psi(0)=1$ in case $\mathfrak{N}=\mathcal{O}$.
(2) In case $K=\mathbb{Q}$ and $k=2$, assume that ψ is nontrivial. Then the 0 th Fourier coefficient of $\widetilde{\lambda}_{k}^{\psi}(\mathfrak{z}) \mid A$ is equal to

$$
\begin{aligned}
& \left(\frac{2(k-1)!}{(2 \sqrt{-1} \pi)^{k}}\right)^{g} D_{K}^{k-1 / 2} \psi(\gamma) L_{K}(k, \psi) \quad((\gamma, \mathfrak{N})=\mathcal{O}) \\
& +\psi(\alpha)^{-1} \prod_{\substack{\mathfrak{P} \mid \mathfrak{N} \\
\mathfrak{P}+(\gamma, \mathfrak{N})}}\left(1-\operatorname{Nm}(\mathfrak{P})^{-1}\right) L_{K}\left(0, \psi_{(\gamma, \mathfrak{N})}\right) \quad\left(k=1 \text { and }(\gamma, \mathfrak{N})=\mathfrak{f}_{\psi}\right) .
\end{aligned}
$$

3. We put $\lambda_{g k, \psi}^{\psi^{\prime}}(z):=\widetilde{\lambda}_{k, \psi}^{\psi^{\prime}}(z, \ldots, z)$. Let $N \in \mathbb{N} \cap \mathfrak{N} \mathfrak{N}^{\prime}$, and let χ_{0} be an element of the group $(\mathbb{Z} / N)^{*}$ of characters $\bmod N$ such that $\chi_{0}(i)=$ $\psi(i) \psi^{\prime}(i)$. Then $\lambda_{g k, \psi}^{\psi^{\prime}}(z)$ is in $\mathbf{M}_{g k, \chi_{0}}(N)$. We have the Fourier expansion

$$
\lambda_{g k, \psi}^{\psi^{\prime}}(z)=C+2^{g} \sum_{n=1}^{\infty} \mathfrak{f}_{k-1, \psi}^{\psi^{\prime}}(n) \mathbf{e}(n z)
$$

with

$$
\mathfrak{f}_{k-1, \psi}^{\psi^{\prime}}(n):=\sum_{\substack{\nu \in \mathfrak{o}_{K}^{-1}, \nu \succ 0 \\ \operatorname{tr}(\nu)=n}} \sum_{\mathcal{O} \supset \mathfrak{A} \supset \nu \mathbf{d}_{K}} \psi^{\prime}\left(\nu \mathfrak{A}^{-1} \mathfrak{d}_{K}\right) \psi(\mathfrak{A}) \operatorname{Nm}(\mathfrak{A})^{k-1} .
$$

If ψ^{\prime} (resp. ψ) is trivial, then we write $\mathfrak{f}_{k-1, \psi}^{\psi^{\prime}}$ as $\mathfrak{f}_{k-1, \psi}\left(\right.$ resp. $\left.\mathfrak{f}_{k-1}^{\psi^{\prime}}\right)$. Further, we put $\lambda_{g k, \psi}(z):=\widetilde{\lambda}_{k, \psi}(z, \ldots, z)$ and $\lambda_{g k}^{\psi}(z):=\tilde{\lambda}_{k}^{\psi}(z, \ldots, z)$. By Proposition 1, we have the following:

Proposition 2. Let ψ be as in Proposition 1. Let $N \in \mathbb{N} \cap \mathfrak{N}$, and let $\chi_{0} \in(\mathbb{Z} / N)^{*}$ be such that $\chi_{0}(i)=\psi(i)$. Let $M \in \mathbb{N}$ be a divisor of N. The modular forms $\lambda_{g k, \psi}$ and $\lambda_{g k}^{\psi}$ are in $\mathbf{M}_{g k, \chi_{0}}(N)$. The 0 th Fourier coefficient of $\lambda_{g k, \psi}$ at a cusp $i / M(i \in \mathbb{N},(i, M)=1)$ is

$$
\chi_{0}(i)^{-1} \prod_{\substack{\mathfrak{F} \mathfrak{\mathfrak { N }} \\ \mathfrak{P}+(M, \mathfrak{N})}}\left(1-\operatorname{Nm}(\mathfrak{P})^{-1}\right) L_{K}\left(1-k, \psi_{(M, \mathfrak{N})}\right) \quad\left((M, \mathfrak{N}) \subset \mathfrak{f}_{\psi}\right)
$$

or 0 (otherwise), and there is an additional term $(\sqrt{-1} \pi)^{-g} D_{K}^{1 / 2} \chi_{0}(M)$ $\times L_{K}(1, \psi)$ if $k=1$ and $(M, \mathfrak{N})=\mathcal{O}$. Let $k>1$. Then the 0 th Fourier coefficient of $\lambda_{g k}^{\psi}$ at i / M is

$$
\left(\frac{2(k-1)!}{(2 \sqrt{-1} \pi)^{k}}\right)^{g} D_{K}^{k-1 / 2} \chi_{0}(M) L_{K}(k, \psi) \quad((M, \mathfrak{N})=\mathcal{O})
$$

or 0 (otherwise).
Corollary. Suppose that ψ is a primitive character with $\mathfrak{f}_{\psi}=\mathfrak{N}$. Let N be the least element in $\mathbb{N} \cap \mathfrak{N}$. Then $\lambda_{g k, \psi} \in \mathbf{M}_{g k, \chi_{0}}^{\infty}(N), \lambda_{g k}^{\psi} \in \mathbf{M}_{g k, \chi_{0}}^{0}(N)$ for $k>1$, and $\lambda_{g, \psi} \in \mathbf{M}_{g, \chi_{0}}^{\infty, 0}(N)$ for $k=1$.

Let $W(\psi)$ be the root of unity appearing in the functional equation of the L-function $L_{K}(s, \psi)$ in Hecke [12]. It is written as a Gauss sum, in the form

$$
W(\psi)=w \operatorname{Nm}(\mathfrak{N})^{-1 / 2} \psi\left(\varrho \mathfrak{N o}_{K}\right) \sum_{\mu \in \mathcal{O} / \mathfrak{N}, \mu \succ 0} \psi(\mu) \mathrm{e}(\operatorname{tr}(\varrho \mu)),
$$

where w equals 1 or $\sqrt{-1}^{-g}$ according as ψ is even or odd and where $\varrho \in K, \varrho \succ 0$, is such that $\varrho \mathfrak{N o}_{K}$ is an integral ideal relatively prime to \mathfrak{N}. Then the additional term in the above proposition is written as $\sqrt{-1}^{-g} \psi(M) W(\psi) \operatorname{Nm}(\mathfrak{N})^{-1 / 2} L(0, \bar{\psi}), \bar{\psi}$ being the complex conjugate of ψ.

By the Corollary to Lemma 1 and Proposition 2 we obtain the following:
Theorem 1. Let $k \in \mathbb{N}$. Let ψ be a primitive character with conductor \mathfrak{N} and with the same parity as k, and let N be the least element in $\mathbb{N} \cap \mathfrak{N}$. Let $\chi_{0} \in(\mathbb{Z} / N)^{*}$ be such that $\chi_{0}(i)=\psi(i)$. Assume that $\mathfrak{N} \neq \mathcal{O}$ if $k=1$.
(1) We have the identity

$$
c_{0} L_{K}(1-k, \psi)=-2^{g} \sum_{n=1}^{n_{0}} c_{-n} \mathfrak{f}_{k-1, \psi}(n)
$$

where $\left\{c_{0}, *, c_{-1}, \ldots, c_{-n_{0}}\right\} \in \operatorname{LR}_{g k, \chi_{0}}(N)(N>1, k>1)$, and $\left\{c_{0}, c_{-1}, \ldots, c_{-n_{0}}\right\} \in \operatorname{LR}_{g, \chi_{0}}^{\prime}(N)(N=1$ or $k=1)$. Let $k=1$ and suppose that $L_{K}(0, \psi) \in \mathbb{R}$. Then

$$
\left\{c_{0}+\sqrt{-1}^{-g} W(\psi) \operatorname{Nm}(\mathfrak{N})^{-1 / 2} c_{0}^{\prime}\right\} L_{K}(0, \psi)=-2^{g} \sum_{n=1}^{n_{0}} c_{-n} \mathfrak{f}_{0, \psi}(n)
$$

with $\left\{c_{0}, c_{0}^{\prime}, c_{-1}, \ldots, c_{-n_{0}}\right\} \in \operatorname{LR}_{g, \chi_{0}}(N)$.
(2) Let $k>1$. Then

$$
c_{0}^{\prime} L_{K}(k, \psi)=-\left(\frac{(2 \sqrt{-1} \pi)^{k}}{(k-1)!}\right)^{g} D_{K}^{-k+1 / 2} \sum_{n=1}^{n_{0}} c_{-n} f_{k-1}^{\psi}(n)
$$

with $\left\{*, c_{0}^{\prime}, c_{-1}, \ldots, c_{-n_{0}}\right\} \in \operatorname{LR}_{g k, \chi_{0}}(N)(N>1)$, and $\left\{c_{0}^{\prime}, c_{-1}, \ldots, c_{-n_{0}}\right\} \in$ $\mathrm{LR}_{g, \chi_{0}}^{\prime}(1)(N=1)$.

Consider the case $k=1$ and $\mathfrak{N}=\mathcal{O}$. The existence of an odd character ψ of $\mathbf{C}_{\mathcal{O}}$ implies that g is even. Then $W(\psi)$ is equal to $(-1)^{g / 2} \psi\left(\mathfrak{d}_{K}\right)$. Let \mathfrak{P} be a prime ideal of K with $\psi(\mathfrak{P}) \neq 1$, and let ψ^{\prime} be a character $\bmod \mathfrak{P}$ such that $\psi_{\mathfrak{F}}^{\prime}=\psi$. Then by Proposition 2,

$$
\lambda_{g, \psi^{\prime}}(z)=(1-\psi(\mathfrak{P})) L_{K}(0, \psi)+2^{g} \sum_{n=1}^{\infty} \mathfrak{f}_{0, \psi, \mathfrak{F}}(n) \mathrm{e}(n z)
$$

with

$$
\mathfrak{f}_{0, \psi, \mathfrak{P}}(n):=\sum_{\substack{\nu \in \mathfrak{o}_{K}^{-1}, \nu \succ 0 \\ \operatorname{tr}(\nu)=n}} \sum_{\substack{\mathcal{O} \mathfrak{S}_{\left.\mathfrak{A} \backslash \backslash \mathfrak{O}^{\prime}, \mathfrak{P}\right)}^{(\mathfrak{P})=\mathcal{O}}}} \psi(\mathfrak{A})
$$

is in $\mathbf{M}_{g}(p)$, where p is a rational prime in \mathfrak{P}. Hence for $\left\{c_{0}, c_{-1}, \ldots, c_{-n_{0}}\right\} \in$ $\mathrm{LR}_{g}^{\prime}(p)$, we have

$$
c_{0} L_{K}(0, \psi)=-2^{g}(1-\psi(\mathfrak{P}))^{-1} \sum_{n=1}^{n_{0}} c_{-n} \mathfrak{f}_{0, \psi, \mathfrak{P}}(n) .
$$

However, in the next proposition we obtain a formula which may be better in the sense that n_{0} is possibly smaller.

Proposition 3. Let \mathfrak{P} be a prime ideal of K with $\psi(\mathfrak{P}) \neq 1$ and let $p \in \mathbb{N}$ be a prime in \mathfrak{P}.
(1) Suppose that $L_{K}(0, \psi) \in \mathbb{R}$ and $\psi\left(\mathfrak{d}_{K}\right) \neq-1$. Then

$$
c_{0} L_{K}(0, \psi)=-2^{g}\left(1+\psi\left(\mathfrak{d}_{K}\right)\right)^{-1} \sum_{n=1}^{n_{0}} c_{-n} \mathfrak{f}_{0, \psi}(n)
$$

for $\left\{c_{0}, \ldots, c_{-n_{0}}\right\} \in \operatorname{LR}_{g}^{\prime}(1)$.
(2) Suppose that $L_{K}(0, \psi) \in \mathbb{R}$ and $\psi\left(\mathfrak{d}_{K}\right)=-1$. Then

$$
\left\{c_{0}-\operatorname{Nm}(\mathfrak{P})^{-1} c_{0}^{\prime}\right\} L_{K}(0, \psi)=-2^{g}(1-\psi(\mathfrak{P}))^{-1} \sum_{n=1}^{n_{0}} c_{-n} \mathfrak{f}_{0, \psi, \mathfrak{P}}(n)
$$

for $\left\{c_{0}, c_{0}^{\prime}, c_{-1}, \ldots, c_{-n_{0}}\right\} \in \operatorname{LR}_{g}(p)$, where p is the rational prime in \mathfrak{P}.
(3) We have the identity

$$
\begin{aligned}
& \left\{c_{0}-\operatorname{Nm}(\mathfrak{P})^{-1} c_{0}^{\prime}\right\} L_{K}(0, \psi) \\
& =2^{g}(1-\psi(\mathfrak{P}))^{-1} \\
& \quad \times\left\{\left(1-\psi(\mathfrak{P}) \operatorname{Nm}(\mathfrak{P})^{-1}\right) c_{0}^{\prime} d_{0}^{-1} \sum_{n=1}^{m_{0}} d_{-n} \mathfrak{f}_{0, \psi}(n)-\sum_{n=1}^{n_{0}} c_{-n} \mathfrak{f}_{0, \psi}, \mathfrak{P}(n)\right\}
\end{aligned}
$$

for $\left\{d_{0}, \ldots, d_{m_{0}}\right\} \in \operatorname{LR}_{g}^{\prime}(1)$ with $d_{0} \neq 0$, and for $\left\{c_{0}, c_{0}^{\prime}, c_{-1}, \ldots, c_{-n_{0}}\right\} \in$ $\mathrm{LR}_{g}(p)$.

Proof. Since $\lambda_{g, \psi}(z)=C+2^{g} \sum_{n=1}^{\infty} \mathfrak{f}_{k-1, \psi}(n) \mathrm{e}(n z)$ with $C=L_{K}(0, \psi)$ $+\psi\left(\mathfrak{d}_{K}\right) L_{K}(0, \bar{\psi})$, is in $\mathbf{M}_{g}(1)$, the assertion (1) follows immediately. The 0th Fourier coefficient of $\lambda_{g, \psi^{\prime}} \in \mathbf{M}_{g}(p)$ at 0 is $\left(1-\psi(\mathfrak{P}) \mathrm{Nm}(\mathfrak{P})^{-1}\right)$ $\times \psi\left(\mathfrak{d}_{K}\right) L_{K}(0, \bar{\psi})+\left(1-\operatorname{Nm}(\mathfrak{P})^{-1}\right) L_{K}(0, \psi)$, which is equal to $-(1-\psi(\mathfrak{P}))$ $\times \operatorname{Nm}(\mathfrak{P})^{-1} L_{K}(0, \psi)$ under the assumption of (2). Then the equality in (2) follows.

Consider the case (3). By Proposition 2 the 0 th coefficient of $\lambda_{g, \psi^{\prime}}$ at 0 is calculated to be $(1-\psi(\mathfrak{P})) \operatorname{Nm}(\mathfrak{P})^{-1} L_{K}(0, \psi)+\left(1-\psi(\mathfrak{P}) \operatorname{Nm}(\mathfrak{P})^{-1}\right) C$, and C is equal to $-2^{g} d_{0}^{-1} \sum_{n=1}^{m_{0}} d_{-n} f_{0, \psi}(n)$. Since

$$
\begin{aligned}
c_{0}(1 & -\psi(\mathfrak{P})) L_{K}(0, \psi) \\
& +c_{0}^{\prime}\left\{-(1-\psi(\mathfrak{P})) \operatorname{Nm}(\mathfrak{P})^{-1} L_{K}(0, \psi)+\left(1-\psi(\mathfrak{P}) \operatorname{Nm}(\mathfrak{P})^{-1}\right) C\right\} \\
= & -2^{g} \sum_{n=1}^{n_{0}} c_{-n} \mathrm{f}_{0, \psi, \mathfrak{P}}(n),
\end{aligned}
$$

our assertion follows.
Let F be a totally imaginary quadratic extension of a totally real field K. Let H and h denote the class numbers of F and K respectively. Let \mathfrak{D} be the relative discriminant and let $\psi \in \mathbf{C}_{\mathfrak{D}}^{*}$ be the character associated with the extension in the sense of class field theory. Then the relative class number
is given by

$$
H / h=\frac{w(F) R_{K}}{2 R_{F}} L_{K}(0, \psi)
$$

where $w(F)$ denotes the number of roots of unity in F and R_{F}, R_{K} denote the regulators of F, K respectively. Since $W(\psi)$ is trivial in this case, we have the following formulas for the relative class numbers as a corollary of Theorem 1 and of Proposition 3, where the exact form of fundamental units is not necessary.

Corollary. Let N be the minimum of $\mathfrak{D} \cap \mathbb{N}$, and let $\chi_{0} \in(\mathbb{Z} / N)^{*}$ be such that $\chi_{0}(i)=\psi(i)$. If $\mathfrak{D} \neq \mathcal{O}$, then

$$
\left\{c_{0}+\sqrt{-1}^{-g} \operatorname{Nm}(\mathfrak{D})^{-1 / 2} c_{0}^{\prime}\right\} H / h=-2^{g-1} w(F) R_{K} R_{F}^{-1} \sum_{n=1}^{n_{0}} c_{-n} \mathfrak{f}_{0, \psi}(n)
$$

with $\left\{c_{0}, c_{0}^{\prime}, c_{-1}, \ldots, c_{-n_{0}}\right\} \in \operatorname{LR}_{g, \chi_{0}}(N)$. Suppose that $\mathfrak{D}=\mathcal{O}$. If $g \equiv 0$ $(\bmod 4)$, then

$$
c_{0} H / h=-2^{g-2} w(F) R_{K} R_{F}^{-1} \sum_{n=1}^{n_{0}} c_{-n} \mathfrak{f}_{0, \psi}(n)
$$

with $\left\{c_{0}, \ldots, c_{-n_{0}}\right\} \in \operatorname{LR}_{g}^{\prime}(1)$. Let \mathfrak{P} and p be as in Proposition 3. Then if $g \equiv 2(\bmod 4)$, then
$\left\{c_{0}-\operatorname{Nm}(\mathfrak{P})^{-1} c_{0}^{\prime}\right\} H / h=-2^{g-1} w(F) R_{K} R_{F}^{-1}(1-\psi(\mathfrak{P}))^{-1} \sum_{n=1}^{n_{0}} c_{-n} \mathfrak{f}_{0, \psi, \mathfrak{P}}(n)$
with $\left\{c_{0}, c_{0}^{\prime}, c_{-1}, \ldots, c_{-n_{0}}\right\} \in \operatorname{LR}_{g}(p)$.
4. We give some examples to illustrate the results of Section 3. First we show the following:

Lemma 2. Let K be a real quadratic field of discriminant D_{K}. If $\psi^{\prime} \psi$ has the same parity as k, then

$$
\begin{aligned}
\mathfrak{f}_{k-1, \psi}^{\psi^{\prime}}(n)= & \sum_{\substack{|m|<n \sqrt{D_{K}} \\
m \equiv n D_{K}(\bmod 2)}} \sum_{\mathcal{O} \supset \mathfrak{A} \supset\left(\left(m+n \sqrt{D_{K}}\right) / 2\right)} \psi^{\prime}\left(\frac{m+n \sqrt{D_{K}}}{2} \mathfrak{A}^{-1}\right) \\
& \times \psi(\mathfrak{A}) \operatorname{Nm}(\mathfrak{A})^{k-1} .
\end{aligned}
$$

Let \mathfrak{P} be a prime ideal and let $\psi \in \mathbf{C}_{\mathcal{O}}^{*}$ be odd. Then

$$
\mathfrak{f}_{0, \psi, \mathfrak{P}}(n)=-\psi(\mathfrak{P}) \sum_{\substack{|m|<n \sqrt{D_{K}} \\ m \equiv n D_{K}(\bmod 2)}} \sum_{\mathcal{O} \supset \mathfrak{A} \supset \mathfrak{P}^{-1}\left(\left(m+n \sqrt{D_{K}}\right) / 2\right)} \psi(\mathfrak{A}) .
$$

Proof. A totally positive number in \mathfrak{d}_{K}^{-1} with trace $n \in \mathbb{N}$ is of the form $\left(m+n \sqrt{D_{K}}\right) / 2 \sqrt{D_{K}}$ with $m \equiv n D_{K}(\bmod 2)$ and $|m|<n \sqrt{D_{K}}$.

Then the first equality follows immediately. Consider the second one. Since $\lambda_{2, \psi} \in \mathbf{M}_{2}(1)=\{0\}$, its nth Fourier coefficient $\mathfrak{f}_{0, \psi}(n)$ is equal to 0 . Then

$$
\mathfrak{f}_{0, \psi, \mathfrak{P}}(n)=-\left(\mathfrak{f}_{0, \psi}(n)-\mathfrak{f}_{0, \psi, \mathfrak{P}}(n)\right)=-\sum_{\substack{\nu \in \mathfrak{d}_{K}^{-1}, \nu \succ 0 \\ \operatorname{tr}(\nu)=n}} \sum_{\mathfrak{P} \supset \mathfrak{A} \supset \nu \mathfrak{d}_{K}} \psi(\mathfrak{A})
$$

This shows our assertion.
Example 1. Let $K=\mathbb{Q}(\sqrt{79})$. The class number h is 3 , and the narrow ideal class group $\mathbf{C}_{\mathcal{O}}$ is a cyclic group of order six. There are six characters of $\mathbf{C}_{\mathcal{O}}$, three odd ones and three even ones. Let $\mathfrak{P}_{7}=(7,3+\sqrt{79})$. It is a prime ideal with norm 7 and the class containing \mathfrak{P}_{7} generates $\mathbf{C}_{\mathcal{O}}$. Let $\psi_{i}(0 \leq i \leq 6)$ be a character such that $\psi_{i}\left(\mathfrak{P}_{7}\right)=\mathrm{e}(i / 6)$, where the parity of ψ_{i} is the same as i. Since $\{-1,4\} \in L_{2}^{\prime}(7)$, by the formula before Proposition 3 and by Lemma 2 we have

$$
\begin{aligned}
4 L_{K}\left(0, \psi_{i}\right)= & -4 \mathrm{e}\left(\frac{i}{6}\right)\left(1-\mathrm{e}\left(\frac{i}{6}\right)\right)^{-1} \\
& \times \sum_{|m|<\sqrt{79}} \sum_{\mathcal{O} \supset \mathfrak{A} \supset \mathfrak{P}_{7}^{-1}(m+\sqrt{79})} \psi_{i}(\mathfrak{A}) \quad(i=1,3,5) .
\end{aligned}
$$

The inclusion $\mathfrak{P}_{7} \supset(m+\sqrt{79})(|m|<\sqrt{79})$ holds only for $m=3,-4$, and decompositions of $m+\sqrt{79}$ into products of primes are $3+\sqrt{79}=$ $(9+\sqrt{79})(5,3+\sqrt{79}) \mathfrak{P}_{7}$ and $4+\sqrt{79}=(3,2+\sqrt{79})^{2} \mathfrak{P}_{7}$. Hence if we put $\omega=\psi_{i}\left(\mathfrak{P}_{7}\right)$, then

$$
L_{K}\left(0, \psi_{i}\right)=-(1-\omega)^{-1} \omega\left\{\left(1+1+\omega^{2}+\omega^{2}\right)+\left(1+\omega+\omega^{2}\right)\right\}
$$

By substituting $\mathrm{e}(1 / 6),-1, \mathrm{e}(5 / 6)$ for ω, we obtain $L_{K}\left(0, \psi_{1}\right)=L_{K}\left(0, \psi_{5}\right)$ $=4$ and $L_{K}\left(0, \psi_{3}\right)=5 / 2$.

Let $\psi \in \mathbf{C}_{\mathcal{O}}^{*}$ and let $\omega=\psi\left(\mathfrak{P}_{7}\right)$. Considering the prime decompositions of $(m+\sqrt{79})(|m| \leq 8)$, we obtain

$$
\begin{aligned}
\mathfrak{f}_{k-1, \psi}(1)= & 17+8 \cdot 2^{k-1} \\
& +\left(6 \cdot 3^{k-1}+3 \cdot 6^{k-1}+2 \cdot 7^{k-1}+14^{k-1}+15^{k-1}\right)\left(\omega+\omega^{5}\right) \\
& +\left(4 \cdot 5^{k-1}+2 \cdot 9^{k-1}+2 \cdot 10^{k-1}+13^{k-1}+18^{k-1}+21^{k-1}\right. \\
& \left.+25^{k-1}+26^{k-1}\right)\left(\omega^{2}+\omega^{4}\right) \\
& +\left\{4 \cdot 15^{k-1}+2\left(27^{k-1}+30^{k-1}+35^{k-1}+39^{k-1}+43^{k-1}\right.\right. \\
& \left.\left.+54^{k-1}+63^{k-1}+70^{k-1}+75^{k-1}+78^{k-1}\right)+79^{k-1}\right\} \omega^{3}
\end{aligned}
$$

From this and the fact that $\{240,-1\} \in \operatorname{LR}_{4}(1),\{504,1\} \in \operatorname{LR}_{6}(1)$, $\{480,-1\} \in \operatorname{LR}_{8}(1)$ and $\{264,1\} \in \operatorname{LR}_{10}(1)$ (Siegel [20]), we obtain $L_{K}\left(-1, \psi_{2}\right)=L_{K}\left(-1, \psi_{4}\right)=16, L_{K}\left(-1, \psi_{0}\right)=\zeta_{K}(-1)=28 ; L_{K}\left(-2, \psi_{1}\right)$ $=L_{K}\left(-2, \psi_{5}\right)=544, L_{K}\left(-2, \psi_{0}\right)=\zeta_{K}(-2)=496 ; L_{K}\left(-3, \psi_{2}\right)=$
$L_{K}\left(-3, \psi_{4}\right)=34960, L_{K}\left(-3, \psi_{0}\right)=\zeta_{K}(-3)=182558 / 5 ; L_{K}\left(-4, \psi_{1}\right)=$ $L_{K}\left(-4, \psi_{5}\right)=4412992, L_{K}\left(-4, \psi_{3}\right)=4362400$.

Let F be a totally imaginary extension of a totally real field of K. Let $Q_{F / K}$ denote the unit index of Hasse, that is, $Q_{F / K}=\left[\widetilde{\mathcal{E}}_{F}: \Omega_{F} \widetilde{\mathcal{E}}_{K}\right]$, where $\widetilde{\mathcal{E}}_{F}$ and $\widetilde{\mathcal{E}}_{K}$ denote the groups of all units in F and K respectively and Ω_{F} denotes the group of roots of unity in F. Then R_{K} / R_{F} is equal to $2^{-g+1} Q_{F / K}$. The index is 1 or 2 , and is readily obtained (Hasse [10], Okazaki [16]). Let $F=K(\sqrt{-\nu})$ with a totally positive integer ν in K. Let \mathfrak{D} be the relative discriminant of the extension, and let $\psi \in \mathbf{C}_{\mathfrak{D}}^{*}$ be the associated character. Let \mathfrak{A} be an ideal with $(\mathfrak{A}, \mathfrak{D})=\mathcal{O}$. If \mathfrak{A} is relatively prime to 2 , then $\psi(\mathfrak{A})$ is equal to $\left(\frac{-\nu}{\mathfrak{A}}\right)_{K}$ where $(-)_{K}$ is the quadratic residue symbol in K. If $(\mathfrak{A}, 2) \neq \mathcal{O}$, then we take another integral ideal \mathfrak{B} relatively prime to $2 \mathfrak{D}$ which is of the form $\mathfrak{B}=\varrho \mathfrak{C}^{2} \mathfrak{A}$ for some $\varrho \in K, \varrho \succ 0$ multiplicatively congruent $1 \bmod \mathfrak{D}$ and for a fractional ideal \mathfrak{C}. The computation of $\psi(\mathfrak{A})$ is reduced to that of $\psi(\mathfrak{B})$. Let χ_{0} be the character on \mathbb{Z} defined by $\chi_{0}(i)=\psi(i)$. Obviously $\chi_{0}(-1)=1$, that is, χ_{0} is even.

Suppose that K is real quadratic. Then if \mathfrak{P} is of degree one, then $\left(\frac{-\nu}{\mathfrak{P}}\right)_{K}$ is written as $\left(\frac{n}{p}\right)$, where $(-)$ denotes the usual Jacobi-Legendre symbol and $p=\operatorname{Nm}(\mathfrak{P}), n \in \mathbb{Z}, n \equiv-\nu(\bmod \mathfrak{P})$. If \mathfrak{P} is of degree two, then it is written as $\left(\frac{\mathrm{Nm}(\nu)}{p}\right)$, where p is a prime in \mathfrak{P}.

For D a discriminant of a quadratic field, we denote by χ_{D} the Kronecker-Jacobi-Legendre symbol.

Example 2. Let K be a real quadratic field where 2 is not inert and its prime factor \mathfrak{P}_{2} is a principal ideal (ν) with $\nu \succ 0$. A necessary condition for this is that D_{K} is free from a prime factor congruent to $3 \operatorname{or} 5 \bmod 8$. Let $F=K(\sqrt{-\nu})$. We show that the relative class number of F over K is given by

$$
H / h=c \sum_{\substack{|m|<\sqrt{D_{K}} \\ m \equiv D_{K}(\bmod 2)}} \sum_{\mathcal{O} \supset \mathfrak{A} \supset\left(\left(m+\sqrt{D_{K}}\right) / 2\right)} \psi(\mathfrak{A})
$$

where $c=1 / 7\left(D_{K} \equiv 1(\bmod 8)\right.$ and $\left.\operatorname{tr}(\nu) \equiv 1(\bmod 4)\right)$, and $c=1 / 3$ (otherwise).

The conductor \mathfrak{D} of the extension is \mathfrak{P}_{2}^{3} or $4 \mathfrak{P}_{2}$, where the former is the case when $c=1 / 7$. The character χ_{0} is in $(\mathbb{Z} / 8)^{*}$. For p prime, $\chi_{0}(p)=\left(\frac{2}{p}\right)$ or 1 according as p is decomposed in K or not, and hence $\chi_{0}=\chi_{8}$. Since $\{2,32 \sqrt{2}, 1\} \in \mathrm{LR}_{2, \chi 8}(8)$, and since $w(F)=2$ and $R_{K} / R_{F}=1 / 2$, we have $H / h=\left\{16 \sqrt{2} \mathrm{Nm}(\mathfrak{D})^{-1 / 2}-1\right\}^{-1} \mathfrak{f}_{0, \psi}(1)$ by the last corollary in Section 3 , which shows our formula.

There are nine real quadratic fields K with $D_{K}<100$ having ν satisfying the condition, to which we apply the formula.

Let $K=\mathbb{Q}(\sqrt{2})$ and $F=\mathbb{Q}(\sqrt{-2-\sqrt{2}})$. Then

$$
H / h=\frac{1}{3} \sum_{|m|<\sqrt{2}} \sum_{\mathfrak{A} \supset(m+\sqrt{2})} \psi(\mathfrak{A})=\frac{1}{3}(1+1+1)=1 .
$$

Thus the class number of F is 1 .
Let $K=\mathbb{Q}(\sqrt{17})$ and $F=K(\sqrt{-\nu})$ with $\nu=(5+\sqrt{17}) / 2$. Put $\mathfrak{P}_{2}=$ (ν). In this case the conductor is \mathfrak{P}_{2}^{3}. We note that $\psi\left(\overline{\mathfrak{P}}_{2}\right)=\psi(7)=1$ because $\bar{\nu} \equiv 7\left(\bmod \mathfrak{P}_{2}^{3}\right)$. Then

$$
H / h=\frac{1}{7} \sum_{\substack{|m|<\sqrt{17} \\ m \text { odd }}} \sum_{\mathfrak{A} \supset((m+\sqrt{17}) / 2)} \psi(\mathfrak{A})=\frac{1}{7}\left(5+2 \psi\left(\overline{\mathfrak{P}}_{2}\right)\right)=1 .
$$

Let $K=\mathbb{Q}(\sqrt{7})$ and $F=K(\sqrt{-3-\sqrt{7}})$. Then

$$
\begin{aligned}
H / h & =\frac{1}{3} \sum_{|m|<\sqrt{7}} \sum_{\mathfrak{A} \supset(m+\sqrt{7})} \psi(\mathfrak{A}) \\
& =\frac{1}{3}\left\{5+\left(\frac{-3-\sqrt{7}}{\sqrt{7}}\right)_{K}+2\left(\frac{-3-\sqrt{7}}{-2+\sqrt{7}}\right)_{K}+2\left(\frac{-3-\sqrt{7}}{2+\sqrt{7}}\right)_{K}\right\} \\
& =\frac{1}{3}\left\{5+\left(\frac{-3}{7}\right)+2\left(\frac{2}{3}\right)+2\left(\frac{1}{3}\right)\right\}=2 .
\end{aligned}
$$

Let $\varepsilon=8+3 \sqrt{7}$ a fundamental unit of K, let $F^{\prime}=K(\sqrt{(-3-\sqrt{7}) \varepsilon})$, and let H^{\prime} be the class number. Then $H^{\prime}=2$.

By similar computations we get the following class numbers:

$$
\begin{array}{lll}
2 & (F=\mathbb{Q}(\sqrt{(-7-\sqrt{41}) / 2})), & 2 \\
1 & (F=\mathbb{Q}(F=\mathbb{Q}(\sqrt{-4-\sqrt{14}})), \\
2 & (F=\mathbb{Q}(\sqrt{-5-\sqrt{73}) / 2})), & 3 \\
2-\sqrt{23})), & (F=\mathbb{Q}(\sqrt{(-217-23 \sqrt{89}) / 2})), \\
2 & (F=\mathbb{Q}(\sqrt{(-69-7 \sqrt{97}) / 2})) .
\end{array}
$$

Example 3 . Let K be a real quadratic field where $13=\mathfrak{P}_{13} \overline{\mathfrak{P}}_{13}$ in K and \mathfrak{P}_{13} is a principal ideal (ν) with $\nu \succ 0$. Here $\overline{\mathfrak{P}}_{13}$ is the conjugate of \mathfrak{P}_{13}. Let $F=K(\sqrt{-\nu})$. Assume that the relative discriminant of F over K is \mathfrak{P}_{13}. The character χ_{0} is equal to χ_{13}. Since $\{1,13 \sqrt{13}, 1\} \in \operatorname{LR}_{2, \chi_{0}}(13)$, we have

$$
H / h=\frac{1}{6} \sum_{\substack{|m|<\sqrt{D_{K}} \\ m \equiv D_{K}(\bmod 2)}} \sum_{\mathcal{O} \supset \mathfrak{A} \supset\left(\left(m+\sqrt{D_{K}}\right) / 2\right)} \psi(\mathfrak{A}) .
$$

If $K=\mathbb{Q}(\sqrt{13})$, then our conditions are satisfied, and

$$
F=K(\sqrt{-\sqrt{13} \varepsilon}) \quad \text { with } \varepsilon=\frac{3+\sqrt{13}}{2}
$$

and

$$
\begin{aligned}
H / h & =\frac{1}{6} \sum_{\substack{|m| \leq 3 \\
m \text { odd }}} \sum_{\mathfrak{A} \supset((m+\sqrt{13}) / 2)} \psi(\mathfrak{A}) \\
& =\frac{1}{6}\left\{4+\left(\frac{-\sqrt{13} \varepsilon}{(1+\sqrt{13}) / 2}\right)_{K}+\left(\frac{-\sqrt{13} \varepsilon}{(-1+\sqrt{13}) / 2}\right)_{K}\right\} \\
& =\frac{1}{6}\left\{4+\left(\frac{-5}{3}\right)+\left(\frac{-8}{3}\right)\right\}=1
\end{aligned}
$$

Let $K=\mathbb{Q}(\sqrt{17})$. Then $13=(9+2 \sqrt{17})(9-2 \sqrt{17})$, and if we put $F=K(\sqrt{-9-2 \sqrt{17}})$, then our conditions are satisfied. We have a decomposition $2=\mathfrak{P}_{2} \overline{\mathfrak{P}}_{2}$ in K. Since

$$
\psi(2)=\psi(14) \psi(7)=1 \cdot\left(\frac{-9-2 \sqrt{17}}{7}\right)_{K}=\left(\frac{13}{7}\right)=-1
$$

we have $\left\{\psi\left(\mathfrak{P}_{2}\right), \psi\left(\overline{\mathfrak{P}}_{2}\right)\right\}=\{ \pm 1\}$. Then

$$
\begin{aligned}
H / h & =\frac{1}{6} \sum_{\substack{|m| \leq 3 \\
m \text { odd }}} \sum_{\mathfrak{A} \supset((m+\sqrt{17}) / 2)} \psi(\mathfrak{A}) \\
& =\frac{1}{6}\left\{4+2 \psi\left(\mathfrak{P}_{2}\right)+2 \psi\left(\overline{\mathfrak{P}}_{2}\right)+\psi\left(\mathfrak{P}_{2}\right)^{2}+\psi\left(\overline{\mathfrak{P}}_{2}\right)^{2}\right\}=1
\end{aligned}
$$

Let $K=\mathbb{Q}(\sqrt{29})$. Then we have $13=\left(\frac{9+\sqrt{29}}{2}\right)\left(\frac{9-\sqrt{29}}{2}\right)$. Let $F=$ $K(\sqrt{(-9-\sqrt{29}) / 2})$. Then a similar calculation gives $H / h=\frac{1}{6} \cdot 6=1$.

Let $K=\mathbb{Q}(\sqrt{69})$. Then $13=(17+2 \sqrt{69})(17-2 \sqrt{69})$. Let $F=$ $K(\sqrt{-17-2 \sqrt{69}})$. Then $H / h=\frac{1}{6} \cdot 12=2$.

The class numbers of some of the fields in Examples 2 and 3 have already been computed in Okazaki [16], where Shintani's formula [19] is employed. Our results are compatible with his. Grundman [9] obtained numerical examples of values of zeta functions of totally real cubic fields also by adapting Shintani's method.

Example 4. Let K be a totally real cubic field, and let $\varepsilon \succ 0$ be a unit. Let $F=K(\sqrt{-\varepsilon})$. Then the conductor \mathfrak{D} of the extension is a factor of 4 , and $w(F)=4, Q_{F / K}=1$ for $\varepsilon=1$ or $w(F)=2, Q_{F / K}=2$ for $\varepsilon \notin\left(K^{\times}\right)^{2}$ (see for example Okazaki [16], Sect. 3). The character χ_{0} is equal to χ_{-4}, namely $\chi_{-4}(n)=(-1)^{(n-1) / 2}$ for n odd. Since $\{1,32 \sqrt{-1}, 1 / 4\} \in$ $\mathrm{LR}_{3, \chi-4}(4)$, by the last corollary of Section 3 we have a formula for the
relative class number $H / h=\left(32 \mathrm{Nm}(\mathfrak{D})^{-1 / 2}-1\right)^{-1} \mathfrak{f}_{0, \psi}(1)$. If the absolute discriminant of K is odd, then $\mathfrak{D}=(4)$ and we have

$$
H / h=\frac{1}{3} \sum_{\substack{\nu \in \mathfrak{o}_{K}^{-1}, \nu \succ 0 \\ \operatorname{tr}(\nu)=1}} \sum_{\mathcal{O} \supset \mathfrak{A} \supset \nu \mathfrak{d}_{K}} \psi(\mathfrak{A}) .
$$

Here we take as K a totally real nonabelian cubic field of discriminant 257 , whose class number h is 1 . We have $K=\mathbb{Q}(\theta)$, where θ is a root of $x^{3}-x^{2}-4 x+3=0$. Because the above polynomial is equal to $x\left(x^{2}-x-1\right) \bmod 3,(x+1)\left(x^{2}-2 x-2\right) \bmod 5,(x+3)\left(x^{2}+x+1\right) \bmod 7$, there are decompositions of 3,5 and 7 into primes as $3=\mathfrak{P}_{3} \mathfrak{P}_{3}^{\prime}, 5=\mathfrak{P}_{5} \mathfrak{P}_{5}^{\prime}$ and $7=\mathfrak{P}_{7} \mathfrak{P}_{7}^{\prime}$, where \mathfrak{P}_{i} 's are of degree 1 and $\mathfrak{P}_{i}^{\prime}$'s are of degree 2 . There are seven $\mu \in \mathfrak{d}_{K}^{-1}$ with $\mu \succ 0$ and $\operatorname{tr}(\mu)=1$, and the ideals $\mu \mathfrak{d}_{K}$ are equal to \mathfrak{P}_{3} for three of them, to \mathfrak{P}_{5} for two μ 's, to \mathfrak{P}_{7} for one μ and to $\mathfrak{P}_{3}^{\prime}$ for one μ. This computation was made by Cohen [5], Sect. 7. Let $F=K(\sqrt{-1})$. Then

$$
\begin{aligned}
H / h & =\frac{1}{3}\left\{7+3\left(\frac{-1}{\mathfrak{P}_{3}}\right)_{K}+2\left(\frac{-1}{\mathfrak{P}_{5}}\right)_{K}+\left(\frac{-1}{\mathfrak{P}_{7}}\right)_{K}+\left(\frac{-1}{\mathfrak{P}_{3}^{\prime}}\right)_{K}\right\} \\
& =\frac{1}{3}\left\{7+3\left(\frac{-1}{3}\right)+2\left(\frac{-1}{5}\right)+\left(\frac{-1}{7}\right)+1\right\}=2
\end{aligned}
$$

where $\left(\frac{-1}{\mathfrak{P}_{3}^{\prime}}\right)_{K}=1$ since -1 is a square in \mathbb{F}_{9}. Thus the class number of F is 2. Let $F^{\prime}=K(\sqrt{-\varepsilon})$ with $\varepsilon=2+\theta \succ 0$. Then if H^{\prime} is the class number of F^{\prime}, then

$$
H^{\prime} / h=\frac{1}{3}\left\{7+3\left(\frac{-\varepsilon}{\mathfrak{P}_{3}}\right)_{K}+2\left(\frac{-\varepsilon}{\mathfrak{P}_{5}}\right)_{K}+\left(\frac{-\varepsilon}{\mathfrak{P}_{7}}\right)_{K}+\left(\frac{-\varepsilon}{\mathfrak{P}_{3}^{\prime}}\right)_{K}\right\} .
$$

From the above factorizations of $x^{3}-x^{2}-4 x+3$ modulo $3,5,7$, it follows that $-\varepsilon \equiv 1\left(\bmod \mathfrak{P}_{3}\right),-\varepsilon \equiv 4\left(\bmod \mathfrak{P}_{5}\right),-\varepsilon \equiv 1\left(\bmod \mathfrak{P}_{7}\right)$ and that $-\varepsilon$ $\left(\bmod \mathfrak{P}_{3}^{\prime}\right)$ is not a square in \mathbb{F}_{9}. Therefore

$$
H^{\prime} / h=\frac{1}{3}\left\{7+3\left(\frac{1}{3}\right)+2\left(\frac{4}{5}\right)+\left(\frac{1}{7}\right)-1\right\}=4 .
$$

Example 5. Let K be a totally real quartic field, and let F be its totally imaginary quadratic unramified extension. Since $\{-240,1\} \in \operatorname{LR}_{4}^{\prime}(1)$ (Siegel [20]), by the last corollary in Section 3 we have

$$
H / h=\frac{1}{480} w(F) Q_{F / K} \mathfrak{f}_{0, \psi}(1) .
$$

Let $K=\mathbb{Q}(\sqrt{5}, \sqrt{6})$ and let $F=\mathbb{Q}(\sqrt{-2}, \sqrt{-3}, \sqrt{5})$, where F is an unramified extension of K. Then $h=2, \mathfrak{d}_{K}=(2 \sqrt{30}), w(F)=6$, and $Q_{F / K}=2$. There are 22 numbers $\mu \in \mathfrak{d}_{K}^{-1}$ with $\mu \succ 0$ and $\operatorname{tr}(\mu)=1$,
and $\mu \mathfrak{d}_{K}$'s are the ideals generated by $(\pm 1+\sqrt{5})(\pm \sqrt{5}+\sqrt{6}) / 2$ (norm 1$)$, $(\pm 1+\sqrt{5})(\pm 2+\sqrt{6}) / 2($ norm 4$),\{ \pm(3+\sqrt{5})+\sqrt{6}+\sqrt{30}\} / 2,\{ \pm(3-$ $\sqrt{5})-\sqrt{6}+\sqrt{30}\} / 2,\{ \pm 2 \pm \sqrt{6}+\sqrt{30}\} / 2$ (norm 19) , $(\pm 1+\sqrt{5})(\pm 1+$ $\sqrt{6}) / 2($ norm 25$),(\pm \sqrt{6}+\sqrt{30}) / 2$ (norm 36). In K we have the prime decompositions $2=\mathfrak{P}_{2}^{2}, 3=\mathfrak{P}_{3}^{2}, 5=\mathfrak{P}_{5}^{2} \mathfrak{P}_{5}^{\prime 2}$ and $19=\mathfrak{P}_{19} \mathfrak{P}_{19}^{\prime} \mathfrak{P}_{19}^{\prime \prime} \mathfrak{P}_{19}^{\prime \prime \prime}$, where $\mathfrak{P}_{2}=(2+\sqrt{6}), \mathfrak{P}_{5}^{2}=(1+\sqrt{6})$ and $\mathfrak{P}_{5}^{\prime 2}=(1-\sqrt{6})$. Since \mathfrak{P}_{2} and \mathfrak{P}_{5}^{2} are in the same class of $\mathbf{C}_{\mathcal{O}}$, we have $\psi\left(\mathfrak{P}_{2}\right)=1$. Therefore

$$
\begin{aligned}
H / h=\frac{1}{40}\{ & 4+4\left(1+\psi\left(\mathfrak{P}_{2}\right)\right)+8\left(1+\left(\frac{-2}{19}\right)\right) \\
& \left.+4\left(1+\left(\frac{-2}{5}\right)+\psi\left(\mathfrak{P}_{5}^{2}\right)\right)+2\left(1+\psi\left(\mathfrak{P}_{2}\right)\right)\left(1+\left(\frac{-2}{\mathfrak{P}_{3}}\right)\right)\right\}
\end{aligned}
$$

$$
=1
$$

Example 6 . Let K be a totally real quartic field, and let F be a totally imaginary quadratic extension of K with conductor \mathfrak{D}. Let $\psi=\mathbf{C}_{\mathfrak{D}}^{*}$ be the character associated with the extension. Suppose that $\mathfrak{D}=(4)$. Then $\chi_{0}=(\mathbb{Z} / 4)^{*}$ is trivial. Since $\{0,-256,1\} \in \operatorname{LR}_{4}(4)$, we have

$$
H / h=\frac{1}{16} w(F) Q_{F / K} \mathfrak{f}_{0, \psi}(1)
$$

Next, suppose that 7 is the least element in $\mathbb{N} \cap \mathfrak{D}$ and that $\chi_{0} \in(\mathbb{Z} / 7)^{*}$ is trivial. Since $\left\{1,-7^{4}, 1,1\right\} \in \mathrm{LR}_{4}(7)$, we have

$$
H / h=w(F) Q_{F / K}\left(7^{4} \operatorname{Nm}(\mathfrak{D})^{-1 / 2}-1\right)^{-1}\left\{\mathfrak{f}_{0, \psi}(1)+\mathfrak{f}_{0, \psi}(2)\right\}
$$

Let $K=\mathbb{Q}(\theta)$ with θ a zero of $f(x):=x^{4}-8 x^{3}+20 x^{2}-17 x+3$. It is a nonabelian totally real quartic field of discriminant $1957(=19 \cdot 103)$ and its \mathbb{Z}-basis is provided by $1, \theta, \theta^{2}, \theta^{3}$ (Godwin [8]). The ideal (2) remains prime at K. There are decompositions $3=\mathfrak{P}_{3} \mathfrak{P}_{3}^{\prime}$ and $7=\mathfrak{P}_{7} \mathfrak{P}_{7}^{\prime}$, where \mathfrak{P}_{3}, \mathfrak{P}_{7} are primes of degree 1 and $\mathfrak{P}_{3}^{\prime}, \mathfrak{P}_{7}^{\prime}$ are of degree 3 . The inverse different $\mathfrak{d}_{K}^{-1}=\left(1 / f^{\prime}(\theta)\right)$ has $1, \theta, \theta^{2}, \frac{1}{1957}\left(\theta^{3}+691 \theta^{2}-350 \theta-42\right)$ as its \mathbb{Z}-basis. With the aid of a computer, we can show that there are seven totally positive elements μ in \mathfrak{d}_{K}^{-1} with trace 1. The ideals $\mu \mathfrak{d}_{K}$'s are equal to \mathcal{O} for four elements and to \mathfrak{P}_{3} for two and to \mathfrak{P}_{7} for one. Let $F=K(\sqrt{-1})$. Then $\mathfrak{D}=(4), w(F)=4, Q_{F / K}=1$, and $H / h=\frac{1}{4}\left\{7+2\left(\frac{-1}{3}\right)+\left(\frac{-1}{7}\right)\right\}=1$. Let $\varepsilon=-\theta^{3}+5 \theta^{2}-7 \theta+2$, which is a totally positive unit. Let $F=K(\sqrt{-\varepsilon})$. Then $\mathfrak{D}=(4), w(F)=2, Q_{F / K}=2$ and

$$
H / h=\frac{1}{4}\left\{7+2\left(\frac{-\varepsilon}{\mathfrak{P}_{3}}\right)_{K}+\left(\frac{-\varepsilon}{\mathfrak{P}_{7}}\right)_{K}\right\}=\frac{1}{4}\left\{7+2\left(\frac{1}{3}\right)+\left(\frac{-1}{7}\right)\right\}=2
$$

Let $F=K(\sqrt{-7})$. Then $\mathfrak{D}=(7), w(F)=2, Q_{F / K}=1$. We have

$$
\chi_{0}(3)=\psi(3)=\left(\frac{-7}{\mathfrak{P}_{3}}\right)_{K}\left(\frac{-7}{\mathfrak{P}_{3}^{\prime}}\right)_{K}=(-1) \cdot(-1)=1
$$

since -7 is not a square in \mathbb{F}_{3} and in $\mathbb{F}_{3^{3}}$. Since 3 is a generator of $(\mathbb{Z} / 7)^{\times}, \chi_{0}$ is trivial. Then $H / h=\frac{1}{24}\left\{\mathfrak{f}_{0, \psi}(1)+\mathfrak{f}_{0, \psi}(2)\right\}$. It can be shown that there are 58 totally positive elements in \mathfrak{d}_{K}^{-1} with trace 2 . By a similar computation to the above, we obtain $H / h=\frac{1}{24} \cdot 48=2$.
5. Hereafter we consider exclusively the case where K is a real quadratic field. Let χ_{K} denote the Kronecker-Jacobi-Legendre symbol of K. For an ideal $\mathfrak{A}, \overline{\mathfrak{A}}$ denotes its conjugate in K. If $\psi \in \mathbf{C}_{\mathfrak{N}}^{*}$ is invariant under conjugation, that is, $\psi(\mathfrak{A})=\psi(\overline{\mathfrak{A}})$ for any \mathfrak{A}, then there is a completely multiplicative function χ on \mathbb{N} such that $\psi(\mathfrak{A})=\chi(\operatorname{Nm}(\mathfrak{A}))$ for any ideal \mathfrak{A}. Indeed, ψ obviously gives a completely multiplicative function χ on the subset of \mathbb{N} consisting of norms of ideals. The desired χ is constructed by assigning to $\chi(p)$ any square root of $\chi\left(p^{2}\right)$, for each prime p which is inert. In particular, χ is not uniquely determined.

For completely multiplicative functions χ, χ^{\prime}, we define $\sigma_{k-1, \chi}^{\chi^{\prime}}$ by setting

$$
\sigma_{k-1, \chi}^{\chi^{\prime}}(m):=\sum_{0<d \mid m} \chi^{\prime}(m / d) \chi(d) d^{k-1}
$$

for $m \in \mathbb{N}$, and $\sigma_{k-1, \chi}^{\chi^{\prime}}(m):=0$ for $m \notin \mathbb{N} \cup\{0\}$. In the sequel we denote it by $\sigma_{k-1, \chi}$ (resp. $\sigma_{k-1}^{\chi^{\prime}}$) if χ^{\prime} (resp. χ) is trivial. The value $\sigma_{k-1, \chi}(0)$ is defined to be $\frac{1}{2} L(1-k, \chi)$. The value $\sigma_{k-1}^{\chi^{\prime}}(0)$ is defined to be 0 if $\chi^{\prime} \neq 1$. For later use we present the following lemma. The proof is parallel to that of Theorem 3.4 in Cohen [5].

Lemma 3. (1) Let $m, n \in \mathbb{N}$. Then

$$
\sigma_{k-1, \chi}^{\chi^{\prime}}(m) \sigma_{k-1, \chi}^{\chi^{\prime}}(n)=\sum_{d \mid(m, n)} \chi^{\prime}(d) \chi(d) d^{k-1} \sigma_{k-1, \chi}^{\chi^{\prime}}\left(\frac{m n}{d^{2}}\right)
$$

(2) Let $n \in \mathbb{N}$. Then

$$
\sum_{m=0}^{n} \sigma_{k-1, \chi}(m) \sigma_{k-1, \chi}(n-m)=\sum_{d \mid n} \chi(d) d^{k-1} \sum_{m \in \mathbb{Z}} \sigma_{k-1, \chi}\left(\frac{(n / d)^{2}-m^{2}}{4}\right)
$$

(3) Suppose that $\chi^{\prime} \neq 1$. Then

$$
\sum_{m=0}^{n} \sigma_{k-1}^{\chi^{\prime}}(m) \sigma_{k-1}^{\chi^{\prime}}(n-m)=\sum_{d \mid n} \chi^{\prime}(d) d^{k-1} \sum_{m \in \mathbb{Z}} \sigma_{k-1}^{\chi^{\prime}}\left(\frac{(n / d)^{2}-m^{2}}{4}\right)
$$

Proposition 4. Let K be a real quadratic field.
(1) Let ψ, ψ^{\prime} be as in Section 2 and let k be a natural number with the same parity as $\psi^{\prime} \psi$. Suppose that there are completely multiplicative
functions χ, χ^{\prime} with $\psi=\chi \circ \mathrm{Nm}, \psi^{\prime}=\chi^{\prime} \circ \mathrm{Nm}$. Then

$$
\mathfrak{f}_{k-1, \psi}^{\psi^{\prime}}(n)=\sum_{0<d \mid n} \chi_{K}(d) \chi^{\prime}(d) \chi(d) d^{k-1} \sum_{m \in \mathbb{Z}} \sigma_{k-1, \chi}^{\chi^{\prime}}\left(\frac{(n / d)^{2} D_{K}-m^{2}}{4}\right)
$$

(2) Let $\psi=\chi \circ \mathrm{Nm} \in \mathbf{C}_{\mathcal{O}}^{*}$ be odd. Let p be a rational prime which is not inert. Suppose that $\chi(p)=-1$ if $\chi_{K}(p)=1$. If \mathfrak{P} is a prime factor of p in K, then

$$
\mathfrak{f}_{0, \psi, \mathfrak{P}}(n)=-\frac{\chi(p)}{1+\chi_{K}(p)} \sum_{\substack{0<d \mid n \\(d, p)=1}} \chi_{K}(d) \chi(d) \sum_{m \in \mathbb{Z}} \sigma_{0, \chi}\left(\frac{(n / d)^{2} D_{K}-m^{2}}{4 p}\right) .
$$

Proof. (1) Let $N(d, \mathfrak{A}, K)$ denote the number of integral ideals of K dividing \mathfrak{A} whose norms are d. By Lemma 2 , $\mathfrak{f}_{k-1, \psi}^{\psi^{\prime}}(n)$ is equal to

$$
\begin{aligned}
& \sum_{\substack{|m|<n \sqrt{D_{K}} \\
m \equiv n D_{K}(\bmod 2)}} \sum_{0<d \mid\left(n^{2} D_{K}-m^{2}\right) / 4} \chi^{\prime}\left(\frac{n^{2} D_{K}-m^{2}}{4 d}\right) \\
& \times \chi(d) d^{k-1} N\left(d, \frac{m+n \sqrt{D_{K}}}{2}, K\right)
\end{aligned}
$$

It has been shown in Cohen [5] that

$$
N\left(d, \frac{m+n \sqrt{D_{K}}}{2}, K\right)=\sum_{0<e \mid \operatorname{gcd}\left(m, n, d,\left(n^{2} D_{K}-m^{2}\right) / 4\right)} \chi_{K}(e)
$$

Then

$$
\begin{aligned}
\mathfrak{f}_{k-1, \psi}^{\psi^{\prime}}(n)= & \sum_{\substack{|m|<n \sqrt{D_{K}} \\
m \equiv n D_{K}(\bmod 2)}} \sum_{0<e \mid \operatorname{gcd}\left(m, n,\left(n^{2} D_{K}-m^{2}\right) / 4\right)} \sum_{0<d_{1} \mid\left((n / e)^{2} D_{K}-(m / e)^{2}\right) / 4} \chi_{K}(e) \chi^{\prime}(e) \\
& \times \chi^{\prime}\left(\frac{(n / e)^{2} D_{K}-(m / e)^{2}}{4 d_{1}}\right) \chi\left(e d_{1}\right) e^{k-1} d^{k-1} \\
= & \sum_{0<d \mid n} \chi_{K}(d) \chi^{\prime}(d) \chi(d) d^{k-1} \sum_{m \in \mathbb{Z}} \sigma_{k-1, \chi}^{\chi^{\prime}}\left(\frac{(n / d)^{2} D_{K}-m^{2}}{4}\right)
\end{aligned}
$$

(2) First suppose $\chi_{K}(p)=0$, that is, p is ramified at K. If $d \mid\left((n / d)^{2} D_{K}-\right.$ $\left.m^{2}\right) /(4 p)$ and if $\mathfrak{P}^{-1}\left(\frac{m+n \sqrt{D_{K}}}{2}\right)$ is integral, then

$$
N\left(d, \mathfrak{P}^{-1}\left(\frac{m+n \sqrt{D_{K}}}{2}\right), K\right)=N\left(d, \frac{m+n \sqrt{D_{K}}}{2}, K\right)
$$

By Lemma 2 and by the same argument as in (1),

$$
\mathfrak{f}_{0, \psi, \mathfrak{P}}(n)=-\chi(p) \sum_{0<d \mid n} \chi_{K}(d) \chi(d) \sum_{m \in \mathbb{Z}} \sigma_{0, \chi}\left(\frac{(n / d)^{2} D_{K}-m^{2}}{4 p}\right)
$$

Now suppose that $\chi_{K}(p)=1$, that is, p is decomposed at K, and that $\chi(p)=-1$. Let $v(m, n)$ (resp. $\bar{v}(m, n))$ denote the \mathfrak{P}-adic (resp. $\overline{\mathfrak{P}}$-adic) valuation of $\left(m+n \sqrt{D_{K}}\right) / 2$, and let $v_{p}(m)$ denote the p-adic valuation of $m \in \mathbb{Z}$. Then by Lemma 2 ,

$$
\begin{aligned}
\mathfrak{f}_{0, \psi, \mathfrak{P}}(n) & \sum_{\substack{|m|<n \sqrt{D_{K}} \\
m \equiv n D_{K}(\bmod 2)}}\left(1+\chi(p)+\ldots+\chi(p)^{v(m, n)-1}\right) \\
& \times\left(1+\chi(p)+\ldots+\chi(p)^{\bar{v}(m, n)}\right) \\
& \times \sum_{\substack{0<d \mid\left(n^{2} D_{K}-m^{2}\right) /(4 p) \\
(d, p)=1}} \chi(d) N\left(d, \frac{m+n \sqrt{D_{K}}}{2}, K\right) \\
= & \sum_{\substack{|m|<n \sqrt{D_{K}} \\
m \equiv n D_{K}(\bmod 2) \\
v(m, n) \text { odd, } \bar{v}(m, n) \text { even }}} \sum_{\substack{ \\
0<d \mid\left(n^{2} D_{K}-m^{2}\right) /(4 p) \\
(d, p)=1}} \chi(d) N\left(d, \frac{m+n \sqrt{D_{K}}}{2}, K\right) .
\end{aligned}
$$

A necessary condition that $v(m, n)$ be odd and $\bar{v}(m, n)$ be even is that $v_{p}\left(\left(n^{2} D_{K}-m^{2}\right) / 4\right)$ be odd. Under this condition, $v(m, n)$ and $\bar{v}(m, n)$ have the above properties only for one of $\pm m(\neq 0)$ for a fixed n. Hence since

$$
N\left(d, \frac{m+n \sqrt{D_{K}}}{2}, K\right)=N\left(d, \frac{-m+n \sqrt{D_{K}}}{2}, K\right)
$$

it follows that
$\mathfrak{f}_{0, \psi, \mathfrak{P}}(n)$

$$
=\sum_{\substack{0<m<n \sqrt{D_{K}} \\ m \equiv n D_{K}(\bmod 2) \\ v_{p}\left(\left(n^{2} D_{K}-m^{2}\right) / 4\right) \text { odd }}} \sum_{\substack{0<d \mid\left(n^{2} D_{K}-m^{2}\right) /(4 p) \\(d, p)=1}} \chi(d) N\left(d, \frac{m+n \sqrt{D_{K}}}{2}, K\right)
$$

If $v_{p}\left(\left(n^{2} D_{K}-m^{2}\right) / 4\right)$ is even, then $\sum_{m \in \mathbb{Z}} \sigma_{0, \chi}\left(\frac{(n / d)^{2} D_{K}-m^{2}}{4 p}\right)$ vanishes. Then by the same argument as in (1) it is shown that

$$
\mathfrak{f}_{0, \psi, \mathfrak{P}}(n)=\frac{1}{2} \sum_{\substack{0<d \mid n \\(d, p)=1}} \chi_{K}(d) \chi(d) \sum_{m \in \mathbb{Z}} \sigma_{0, \chi}\left(\frac{(n / d)^{2} D_{K}-m^{2}}{4 p}\right)
$$

This shows our assertion.

Let χ be a completely multiplicative function on \mathbb{N} and suppose that $\psi:=\chi \circ \mathrm{Nm} \in \mathbf{C}_{(N)}^{*}$. Let M be a divisor of N contained in the conductor \mathfrak{f}_{ψ}. Then $\psi_{(M)} \in \mathbf{C}_{(M)}^{*}$ (see Section 2 for the notation) is also invariant under conjugation, and in particular there is a completely multiplicative function $\chi_{(M)}$ on \mathbb{N} such that $\psi_{(M)}=\chi_{(M)} \circ \mathrm{Nm}$.

Since there is an identity

$$
L_{K}(s, \psi)=L(s, \chi) L\left(s, \chi \chi_{K}\right)
$$

by Propositions 2 and 4 we have the following:
Theorem 2. Let $k, N \in \mathbb{N}$ with $k N \neq 1$. Let K be a real quadratic field and let $\mathbf{C}_{(N)}$ be its narrow ideal class group modulo N. Let χ be a completely multiplicative function on \mathbb{N} such that $\psi:=\chi \circ \mathrm{Nm} \in \mathbf{C}_{(N)}^{*}$ has the same parity as k. Let χ_{0} be such that $\chi_{0}(i)=\chi\left(i^{2}\right)$.
(1) We have the identity

$$
\begin{aligned}
\lambda_{2 k, \psi}(z)= & L(1-k, \chi) L\left(1-k, \chi \chi_{K}\right) \\
& +4 \sum_{n=1}^{\infty} \sum_{0<d \mid n} \chi_{K}(d) \chi(d) d^{k-1} \\
& \times \sum_{m \in \mathbb{Z}} \sigma_{k-1, \chi}\left(\frac{(n / d)^{2} D_{K}-m^{2}}{4}\right) \mathrm{e}(n z),
\end{aligned}
$$

which is in $\mathbf{M}_{2 k, \chi_{0}}(N)$. For M with $M \mid N$, the 0 th Fourier coefficient at a cusp $i / M,(i, M)=1$, is equal to 0 if $M \notin \mathfrak{f}_{\psi}$, and to

$$
\chi_{0}(i)^{-1} \prod_{p \mid(N / M)}\left(1-p^{-1}\right)\left(1-\chi_{K}(p) p^{-1}\right) L\left(1-k, \chi_{(M)}\right) L\left(1-k, \chi_{(M)} \chi_{K}\right)
$$

otherwise, and there is an additional term $-\pi^{-2} D_{K}^{1 / 2} L(1, \chi) L\left(1, \chi \chi_{K}\right)$ at a cusp 0 if $k=1$. Suppose that N is the least element in $\mathbb{N} \cap \mathfrak{f}_{\psi}$. Then the modular form is in $\mathbf{M}_{2 k, \chi_{0}}^{\infty}(N)(k>1)$ or in $\mathbf{M}_{2, \chi_{0}}^{\infty, 0}(N)(k=1)$.
(2) Let $k>1$ and $N>1$. Then

$$
\lambda_{2 k}^{\psi}(z)=4 \sum_{n=1}^{\infty} \chi_{K}(d) \chi(d) d^{k-1} \sum_{m \in \mathbb{Z}} \sigma_{k-1}^{\chi}\left(\frac{(n / d)^{2} D_{K}-m^{2}}{4}\right) \mathrm{e}(n z)
$$

is in $\mathbf{M}_{2 k, \chi_{0}}^{0}(N)$. The 0th Fourier coefficient at the cusp 0 is equal to

$$
4(-1)^{k}\left(\frac{(k-1)!}{(2 \pi)^{k}}\right)^{2} D_{K}^{k-1 / 2} L(k, \chi) L\left(k, \chi \chi_{K}\right)
$$

Let $N \in \mathbb{N}, N>1$, and let $\chi \in(\mathbb{Z} / N)^{*}$. Then χ is said to be even or odd according as $\chi(-1)=1$ or -1 . Let \mathfrak{N} be an integral ideal of K
containing N so that $N \mid \operatorname{Nm}(\mathfrak{N})$ and $\operatorname{tr}(\mathfrak{N}) \subset N \mathbb{Z}$. Put $\psi:=\chi \circ \mathrm{Nm}$. We show that $\psi \in \mathbf{C}_{\mathfrak{N}}^{*}$. If $\alpha \equiv \beta(\bmod \mathfrak{N})$ with $\alpha, \beta \in \mathcal{O}$ relatively prime to \mathfrak{N}, then $\operatorname{Nm}(\alpha) \equiv \operatorname{Nm}(\beta)(\bmod N)$. Indeed, putting $\alpha / \beta=1+\xi / \beta, \xi \in \mathfrak{N}$, we have

$$
\frac{\mathrm{Nm}(\alpha)}{\operatorname{Nm}(\beta)}=1+\frac{1}{\operatorname{Nm}(\beta)}(\operatorname{tr}(\beta \bar{\xi})+\operatorname{Nm}(\xi)) \in 1+\frac{N}{\operatorname{Nm}(\beta)} \mathbb{Z}
$$

where we note that $(\operatorname{Nm}(\beta), N)=1$. Then $\psi(\alpha \mathfrak{A})=\psi(\mathfrak{A})$ for $\alpha \succ 0$, $\alpha \equiv 1(\bmod \mathfrak{N})$, which implies that $\psi \in \mathbf{C}_{\mathfrak{N}}^{*}$. For $\alpha \equiv \beta(\bmod \mathfrak{N})$, we have $|\operatorname{Nm}(\alpha)| \equiv \operatorname{sgn}(\operatorname{Nm}(\alpha / \beta))|\operatorname{Nm}(\beta)|(\bmod N)$ and so ψ is even or odd according as χ is even or odd.

Now let $\mathfrak{N}=(N)$. The above argument shows that for $\chi \in(\mathbb{Z} / N)^{*}$, $\psi:=\chi \circ \mathrm{Nm}$ is a character in $\mathbf{C}_{(N)}^{*}$. However, it is sometimes possible that even if χ is in $\left(\mathbb{Z} / N^{\prime}\right)^{*}$ with $N \mid N^{\prime}, N^{\prime}>N, \psi$ is still a character in $\mathbf{C}_{(N)}^{*}$. For example, suppose that $4 \mid D_{K}$ and $2 \mid N$. Then $2 N \mid \operatorname{Nm}(\mathfrak{N})$ and $2 N \mathbb{Z} \subset \operatorname{tr}(\mathfrak{N})$, that is, $2 N$ plays the same role as N in the above argument. Hence $\chi \in(\mathbb{Z} / 2 N)^{*}$ gives a character ψ of the group $\mathbf{C}_{(N)}$. Later for a Dirichlet character χ we obtain the minimal $N \in \mathbb{N}$ for which $\psi \in \mathbf{C}_{(N)}^{*}$.

Let χ be a Dirichlet character in $(\mathbb{Z} / N)^{*}$ with the same parity as k. Consider the case $K=\mathbb{Q}$ in Section 2, where we have constructed a modular form $\widetilde{\lambda}_{k, \psi}^{\psi^{\prime}}$. Put $G_{k, \chi}:=\widetilde{\lambda}_{k, \chi} \in \mathbf{M}_{k, \chi}(N)(k \neq 2$ or $N \neq 1)$, and $G_{k}^{\chi}:=\widetilde{\lambda}_{k}^{\chi} \in$ $\mathbf{M}_{k, \chi}(N)(k \neq 2$ or χ is nontrivial). For $k \geq 2$, we have the expansions

$$
G_{k, \chi}(z)=L(1-k, \chi)+2 \sum_{n=1}^{\infty} \sigma_{k-1, \chi}(n) \mathrm{e}(n z)
$$

and

$$
G_{k}^{\chi}(z)=2 \sum_{n=1}^{\infty} \sigma_{k-1}^{\chi}(n) \mathrm{e}(n z)
$$

This holds also for $k=1$, except possibly for the constant term. Let $\theta(z):=$ $\sum_{n=1}^{\infty} \mathrm{e}\left(\frac{1}{2} n^{2} z\right)$ be a thetanullwerte. Then

$$
\theta(2 z) G_{k, \chi}(4 z)=L(1-k, \chi)+2 \sum_{n=1}^{\infty} \sum_{m \in \mathbb{Z}} \sigma_{k-1, \chi}\left(\frac{n-m^{2}}{4}\right) \mathrm{e}(n z)
$$

and

$$
\theta(2 z) G_{k}^{\chi}(4 z)=2 \sum_{n=1}^{\infty} \sum_{m \in \mathbb{Z}} \sigma_{k-1}^{\chi}\left(\frac{n-m^{2}}{4}\right) \mathrm{e}(n z)
$$

are modular forms for $\Gamma_{1}(4 N)$ of weight $k+1 / 2$ with character χ. Then $\theta(2 z) G_{k, \chi}(4 z)$ and $\lambda_{2 k, \psi}(z)$, or $\theta(2 z) G_{k}^{\chi}(4 z)$ and $\lambda_{2 k}^{\psi}(z)$ give an example of Shimura correspondence between noncusp forms of half-integral and integral weight. In a later paper we shall investigate a Shimura correspondence by using this fact.

The following lemma is easily verified. Here we denote by $\bar{i}(i \in \mathbb{Z})$ the class of $\mathbb{Z} / 8 \mathbb{Z}$ containing i.

Lemma 4. (1) Let p be an odd prime. Then the map of $\mathcal{O}(\subset K)$ to $\mathbb{Z} / p \mathbb{Z}$ defined by $\alpha \rightarrow \operatorname{Nm}(\alpha)(\bmod p), \alpha \in \mathcal{O}$, is surjective if $p \nmid D_{K}$. If $p \mid D_{K}$, then the image is the set of squares in $\mathbb{Z} / p \mathbb{Z}$.
(2) The image of the map $\alpha \rightarrow \mathrm{Nm}(\alpha)(\bmod 8)$ from $\{\alpha \in \mathcal{O}:(\alpha, 2)=$ $\mathcal{O}\}$ to $(\mathbb{Z} / 8 \mathbb{Z})^{\times}$is $(\mathbb{Z} / 8 \mathbb{Z})^{\times}\left(D_{K} \equiv 1(\bmod 4)\right),\{\overline{1}, \overline{5}\}\left(D_{K} \equiv 4(\bmod 8)\right)$, $\left\{\overline{1}, \overline{1-D_{K} / 4}\right\} \quad\left(D_{K} \equiv 0(\bmod 8)\right)$.
(3) The image of the same map from $\{\alpha \in \mathcal{O}: \alpha \equiv 1(\bmod 2)\}$ to $(\mathbb{Z} / 8 \mathbb{Z})^{\times}$is $(\mathbb{Z} / 8 \mathbb{Z})^{\times}\left(D_{K} \equiv 1(\bmod 4)\right),\{\overline{1}, \overline{5}\}\left(D_{K} \equiv 4(\bmod 8)\right),\{\overline{1}\}$ $\left(D_{K} \equiv 0(\bmod 8)\right)$.
(4) The image of the same map from $\{\alpha \in \mathcal{O}: \alpha \equiv 1(\bmod 4)\}$ to $(\mathbb{Z} / 8 \mathbb{Z})^{\times}$is $\{\overline{1}, \overline{5}\}$ if $D_{K} \equiv 1(\bmod 4)$.

Even if the domains of the maps in Lemma 4 are replaced by the subsets consisting of totally positive elements, the images do not change.

Let \mathbb{D} denote the set of integers of the form $u^{2} D^{\prime}$ with $u \in \mathbb{N}$ and D^{\prime} the discriminants of a quadratic field or 1 . We note that once an integer is of this form, such an expression is unique. The set \mathbb{D} is closed under multiplication. If $D^{\prime}=1$, then $\chi_{D^{\prime}}$ denotes the trivial character, and otherwise it denotes the Kronecker-Jacobi-Legendre symbol. For $D=u^{2} D^{\prime} \in \mathbb{D}$, we define χ_{D} to be the character

$$
\chi_{D}(m)= \begin{cases}\chi_{D^{\prime}}(m) & ((D, m)=1) \\ 0 & ((D, m) \neq 1)\end{cases}
$$

Lemma 5. Let $D \in \mathbb{D}$ with $D=u^{2} D^{\prime}$, where D^{\prime} is 1 or a discriminant and $\left(u, D^{\prime}\right)=1$, and let D_{K} be a positive discriminant.
(1) Let $N=\left|D^{\prime}\right| \prod_{p \mid u} p\left(v_{2}\left(D^{\prime} D_{K}\right) \leq 3\right), N=\frac{1}{2}\left|D^{\prime}\right| \prod_{p \mid u} p\left(v_{2}\left(D^{\prime} D_{K}\right)\right.$ $=4,5)$ and $N=\frac{1}{4}\left|D^{\prime}\right| \prod_{p \mid u} p\left(v_{2}\left(D^{\prime} D_{K}\right)=6\right)$. Then $\chi_{D} \circ \mathrm{Nm}$ is in $\mathbf{C}_{(N)}^{*}$.
(2) Let $u=1$. Then a necessary and sufficient condition for N to be the minimal natural number in the conductor of $\chi_{D} \circ \mathrm{Nm}$ is
(i) D and D_{K} have no common odd prime factor, and
(ii) neither $v_{2}\left(D D_{K}\right)=4$ nor $D D_{K} / 64 \equiv 1(\bmod 4)$.

Proof. (1) It is enough to show the assertion in case $u=1$. Let $Z_{N}:=$ $\{(\mu): \mu \in \mathcal{O}, \mu \succ 0, \mu \equiv 1(\bmod N)\}$. This is the identity element of $\mathbf{C}_{(N)}$. We must show that $\chi_{D} \circ \mathrm{Nm}$ is trivial on Z_{N}. If D is odd, then there is nothing to prove. Let $D \equiv 4(\bmod 8)$. Lemma $4(2)$, (3) implies that $\chi_{D} \circ \mathrm{Nm}$ is trivial on $Z_{D / 4}\left(D_{K} \equiv 4(\bmod 8)\right)$, or on $Z_{D / 2}\left(D_{K} \equiv 0(\bmod 8)\right)$, and hence $\chi_{D} \circ \mathrm{Nm}$ is trivial on Z_{N}. Let $D \equiv 0(\bmod 8)$. For i odd, let \bar{i} denote the class in $\mathbb{Z} /(D)$ which is congruent to $i(\bmod 8)$ and to $1(\bmod D / 8)$. Then $\chi_{D}(\overline{5})=-1, \chi_{D}(\overline{3})=-(-1)^{(D / 8-1) / 2}, \chi_{D}(\overline{7})=(-1)^{(D / 8-1) / 2}$. By

Lemma 4(2)-(4), $\chi_{D} \circ \mathrm{Nm}$ is trivial on $Z_{D / 2}\left(D_{K} \equiv 4(\bmod 8)\right)$, or on $Z_{D / 4}$ $\left(D_{K} \equiv 0(\bmod 8)\right)$. Thus $\chi_{D} \circ \mathrm{Nm}$ is trivial on Z_{N} also in this case, which shows our assertion.
(2) Let p be a prime with $p \mid N$. We must show that $\chi \circ \mathrm{Nm}$ is nontrivial on $Z_{N / p}$ for any p if and only if D and D_{K} satisfy the condition. Since D is a discriminant, χ_{D} is a primitive character $\bmod D$. Let p be odd. If $p \nmid D_{K}$, then the image of the map $\mathfrak{A} \rightarrow \operatorname{Nm}(\mathfrak{A})(\bmod p)$ from $Z_{N / p}$ to $(\mathbb{Z} / p \mathbb{Z})^{\times}$is surjective by Lemma 4 , and hence χ_{D} is nontrivial on $Z_{N / p}$ by primitiveness. If $p \mid D_{K}$, then χ_{D} is trivial on $Z_{N / p}$ again by Lemma 4. Hence (i) follows. Let $p=2$. By a similar argument to (1), we can show that $\chi_{D} \circ \mathrm{Nm}$ is nontrivial on $Z_{N / 2}$ except for the case (ii).

Let $D=2^{w} d a, D_{K}=2^{w} d a^{\prime}\left(w=0,2,3,2 \nmid d, 2 \nmid a, 2 \nmid a^{\prime},\left(a, a^{\prime}\right)=1\right)$ be distinct discriminants, where $a a^{\prime} \equiv 1(\bmod 4)$ if $w=3$. We note that $a \equiv a^{\prime}$ $(\bmod 4)$ and that $a a^{\prime}$ is a discriminant. Let $\widetilde{\chi}$ be the multiplicative function defined by $\widetilde{\chi}(p)=\chi_{D}(p)\left(p \nmid 2^{w} d\right)$ and $\widetilde{\chi}(p)=\chi_{a a^{\prime}}(p)\left(p \mid 2^{w} d\right)$. Then $\widetilde{\chi} \circ N m$ is in $\mathbf{C}_{(a)}^{*}$ and its restriction to $\mathbf{C}_{(D)}$ is equal to the character $\chi_{D} \circ \mathrm{Nm}$. Let $\psi:=\chi_{D} \circ \mathrm{Nm}$ and $\tilde{\psi}:=\tilde{\chi} \circ \mathrm{Nm}$. Then

$$
L_{K}(1-k, \widetilde{\psi})=\prod_{\mathfrak{P} \supset 2^{w} d}\left(1-\chi_{a a^{\prime}}(\operatorname{Nm}(\mathfrak{P})) \operatorname{Nm}(\mathfrak{P})^{k-1}\right)^{-1} L_{K}(1-k, \psi)
$$

Hence

$$
\begin{aligned}
L(1-k, \widetilde{\chi}) L & \left.L 1-k, \widetilde{\chi} \chi_{K}\right) \\
& =\prod_{p \mid 2^{w} d}\left(1-\chi_{a a^{\prime}}(p) p^{k-1}\right)^{-1} L\left(1-k, \chi_{D}\right) L\left(1-k, \chi_{D} \chi_{K}\right) \\
& =L\left(1-k, \chi_{D}\right) L\left(1-k, \chi_{a a^{\prime}}\right) .
\end{aligned}
$$

More generally, for $M \in \mathfrak{f}_{\psi}$, we have

$$
L\left(1-k, \chi_{(M)}\right) L\left(1-k, \chi_{(M)} \chi_{K}\right)=L\left(1-k, \chi_{D}\right) L\left(1-k, \chi_{M^{2} a a^{\prime}}\right) .
$$

Let $D \in \mathbb{D}$, and $k \in \mathbb{N}$ with $(-1)^{k} D>0$. Put $\lambda_{2 k, D_{K}, D}:=\lambda_{2 k, \chi_{D} \circ \mathrm{Nm}}$ and $\lambda_{2 k, D_{K}}^{(D)}:=\lambda_{2 k}^{\chi D \circ \mathrm{Nm}}$ for a positive discriminant D_{K}. Further, put $\lambda_{2 k, 1, D}:=$ $\left(G_{k, \chi_{D}}\right)^{2}(k \neq 2$ or $D \neq 1)$, and $\lambda_{2 k, 1}^{(D)}:=\left(G_{k}^{\chi_{D}}\right)^{2}(k \neq 2$ or D is not a square). In the following corollary we treat the case $k>1$. The case $k=1$ is considered in Section 7.

Corollary to Theorem 2 . Let D_{K} be 1 or the discriminant of a real quadratic field, and let $D \in \mathbb{D}, u$ and D^{\prime} be as in Lemma 5. Let $k>1$ with $(-1)^{k} D>0$. Let N be $\left|D^{\prime}\right| \prod_{p \mid u} p$ if $D_{K}=1$ and as in Lemma 5(1) otherwise. Put $D^{\prime \prime}:=4 D^{\prime} D_{K} /\left(D^{\prime}, D_{K}\right)^{2}$ and $E:=2\left|D^{\prime} /\left(D^{\prime}, D_{K}\right)\right|$ in case $v_{2}\left(D^{\prime} D_{K}\right)=5$ or $D^{\prime} D_{K} / 64 \equiv 3(\bmod 4)$, and put $D^{\prime \prime}:=D^{\prime} D_{K} /\left(D^{\prime}, D_{K}\right)^{2}$ and $E:=\left|D^{\prime} /\left(D^{\prime}, D_{K}\right)\right|$ in any other case.
(1) Suppose that $D \neq 1$ if $k=2$ and $D_{K}=1$. Then

$$
\begin{aligned}
\lambda_{2 k, D_{K}, D}(z)= & L\left(1-k, \chi_{D}\right) L\left(1-k, \chi_{D D_{K}}\right) \\
& +4 \sum_{n=1}^{\infty} \sum_{0<d \mid n} \chi_{D D_{K}}(d) d^{k-1} \\
& \times \sum_{m \in \mathbb{Z}} \sigma_{k-1, \chi_{D}}\left(\frac{(n / d)^{2} D_{K}-m^{2}}{4}\right) \mathrm{e}(n z)
\end{aligned}
$$

is in $\mathbf{M}_{2 k}(N)$. For M with $M \mid N$ and $\left(M, D^{\prime \prime}\right)=\left(N, D^{\prime \prime}\right)$, the 0 th Fourier coefficient at a cusp $i / M,(i, M)=1$, is equal to

$$
\prod_{p \mid(N / M)}\left(1-p^{-1}\right)\left(1-\chi_{D_{K}}(p) p^{-1}\right) L\left(1-k, \chi_{M^{2} D^{\prime}}\right) L\left(1-k, \chi_{M^{2} D^{\prime \prime}}\right)
$$

The modular form is in $\mathbf{M}_{2 k}^{\infty}(N)$ if D, D_{K} satisfy the conditions in Lemma 5(2).
(2) Let $D \neq 1$. Suppose that D is not a square if $k=2$ and $D_{K}=1$. Then

$$
\lambda_{2 k, D_{K}}^{(D)}(z)=4 \sum_{n=1}^{\infty} \sum_{0<d \mid n} \chi_{D D_{K}}(d) d^{k-1} \sum_{m \in \mathbb{Z}} \sigma_{k-1}^{\chi_{D}}\left(\frac{(n / d)^{2} D_{K}-m^{2}}{4}\right) \mathrm{e}(n z)
$$

is in $\mathbf{M}_{2 k}^{0}(N)$. The 0 th Fourier coefficient at the cusp 0 is

$$
\begin{aligned}
&(-1)^{k} E^{-2 k+1} \prod_{p \mid u}\left(1-\chi_{D^{\prime}}(p) p^{-k}\right) \prod_{p \mid\left(D D_{K} / D^{\prime \prime}\right)}\left(1-\chi_{D^{\prime \prime}}(p) p^{-k}\right) \\
& \times L\left(1-k, \chi_{D^{\prime}}\right) L\left(1-k, \chi_{D^{\prime \prime}}\right)
\end{aligned}
$$

Proof. First let D_{K} be a discriminant. Then the assertions (1), (2) follow immediately from Theorem 2 and Lemma 5, except for the 0th Fourier coefficient at the cusp 0 . We have the equality

$$
L\left(k, \chi_{D}\right)=\prod_{p \mid u}\left(1-\chi_{D^{\prime}}(p) p^{-k}\right) L\left(k, \chi_{D^{\prime}}\right)
$$

$D^{\prime \prime}$ is a discriminant with $D^{\prime} D_{K}=t^{2} D^{\prime \prime}$, and

$$
L\left(k, \chi_{D D_{K}}\right)=\prod_{p \mid\left(D D_{K} / D^{\prime \prime}\right)}\left(1-\chi_{D^{\prime \prime}}(p) p^{-k}\right) L\left(k, \chi_{D^{\prime \prime}}\right)
$$

Then the functional equations of L-functions of primitive Dirichlet characters give our 0th Fourier coefficient. Now let $D_{K}=1$. Our Fourier expansions are obtained by Lemma 3, and the assertions follow from Propositions 1 and 2 in case $K=\mathbb{Q}$.
6. We give some applications of the Corollary to Theorem 2. Let

$$
G_{k}(z):=1+\frac{(-1)^{k / 2} 2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) \mathrm{e}(n z) \quad \text { for even } k \geq 4
$$

where B_{k} denotes the k th Bernoulli number. This is a normalized Eisenstein series for $\mathrm{SL}_{2}(\mathbb{Z})$ of weight k. The following lemma is elementary.

Lemma 6. (i) There is no nontrivial cusp form in $\mathbf{M}_{k}(N)$ if $k<12$ and $N=1$ or if $(k, N)=(4,2),(4,3),(4,4),(6,2)$.
(ii) Let $k \geq 4$ be even. If N is prime, then $\left(1 /\left(N^{k}-1\right)\right)\left(N^{k} G_{k}(N z)-\right.$ $\left.G_{k}(z)\right) \in \mathbf{M}_{k}^{\infty}(N)$ and $\left(N^{k} /\left(N^{k}-1\right)\right)\left(G_{k}(z)-G_{k}(N z)\right) \in \mathbf{M}_{k}^{0}(N)$. The former (resp. the latter) has 1 as its 0th coefficient at the cusp $\sqrt{-1} \infty$ (resp. 0).

Lemma 7. Let $a \in \mathbb{N}$ be square-free. Let a^{*} be a or $4 a$ according as $a \equiv 1$ $(\bmod 4)$ or not. Denote by μ the Möbius function. Let $k \geq 2$ be even and let N be 1 or a prime. Then, up to $O\left(a^{k / 2-1 / 28+\varepsilon} n^{k-1+\varepsilon}\right)$,

$$
\begin{aligned}
& \sum_{m \in \mathbb{Z}} \sigma_{k-1, \chi_{N^{2}}\left(\frac{n^{2} a^{*}-m^{2}}{4}\right)} \quad \begin{array}{ll}
\frac{(-1)^{k / 2} B_{k} L\left(1-k, \chi_{a^{*}}\right)}{B_{2 k}} \sum_{d \mid n} \mu(d) \chi_{a^{*}}(d) d^{k-1} \sigma_{2 k-1}\left(\frac{n}{d}\right) & (N=1) \\
\frac{(-1)^{k / 2} B_{k} L\left(1-k, \chi_{a^{*}}\right)}{B_{2 k}\left(N^{k}+1\right)} \sum_{d \mid n} \mu(d) \chi_{N^{2} a^{*}}(d) d^{k-1} \\
& \times\left[\left\{N^{k}-N^{k-1}+1-\chi_{a^{*}}(N) N^{k-1}\right\} \sigma_{2 k-1}\left(\frac{n}{d}\right)\right. \\
\left.+N^{2 k-2}\left\{-N+\chi_{a^{*}}(N)\left(N^{k}-N+1\right)\right\} \sigma_{2 k-1}\left(\frac{n}{N d}\right)\right] & (N \text { prime })
\end{array}
\end{aligned}
$$

where there is an additional term $-\frac{1}{2} n^{2}$ if $N=1, a=1$ and $k=2$. The term $O\left(a^{k / 2-1 / 28+\varepsilon} n^{k-1+\varepsilon}\right)$ is 0 if k and N are as in Lemma 5(1).

Proof. Let $a \equiv 1(\bmod 4)$. Suppose $N \neq 1$ or $k \neq 2$. Put

$$
\begin{aligned}
& c_{0}:=\left(1-N^{k-1}\right)\left(1-\chi_{a}(N) N^{k-1}\right) \zeta(1-k) L\left(1-k, \chi_{a}\right), \\
& c_{0}^{\prime}:=\left(1-N^{-1}\right)\left(1-\chi_{a}(N) N^{-1}\right) \zeta(1-k) L\left(1-k, \chi_{a}\right)
\end{aligned}
$$

Then by the Corollary to Theorem 2, $\lambda_{2 k, a, N^{2}}$ is in $\mathbf{M}_{2 k}^{\infty, 0}(N)$ with c_{0} (resp. c_{0}^{\prime}) as its 0th Fourier coefficient at $\sqrt{-1} \infty$ (resp. 0). By Lemma 6(ii), $\lambda_{2 k, a, N^{2}}(z)=\left(c_{0} /\left(N^{k}-1\right)\right)\left(N^{k} G_{k}(N z)-G_{k}(z)\right)+\left(c_{0}^{\prime} N^{k} /\left(N^{k}-1\right)\right)\left(G_{k}(z)-\right.$ $G_{k}(N z)$) plus some cusp form. Comparing the Fourier coefficients and using the Möbius inversion formula we obtain the formula. The error term
vanishes if $\mathbf{M}_{2 k}(N)$ contains no nontrivial cusp form. A similar argument works also for other cases except for the case $N=1, a=1, k=2$ in (1) of the Corollary to Theorem 2 , where nonexistence of $\lambda_{4,1,1}$ causes difficulty. For this, we refer to Cohen [5], Theorem 3.6. The Ramanujan-Petersson conjecture proved by Deligne and Iwaniec's result [14] gives the estimate of the error term.

We give arithmetic expressions for values of $L\left(1-k, \chi_{D}\right)(k=2,3,4)$ with D being discriminants of quadratic fields.

Example 1. Let D be a positive discriminant. Then

$$
\begin{gathered}
L\left(-1, \chi_{D}\right)=-\frac{1}{5} \sum_{m \in \mathbb{Z}} \sigma_{1}\left(\frac{D-m^{2}}{4}\right)=\frac{-1}{4-\chi_{D}(2)} \sum_{m \in \mathbb{Z}} \sigma_{1}^{\chi_{4}}\left(\frac{D-m^{2}}{4}\right) \\
=\frac{-2}{9-\chi_{D}(3)} \sum_{m \in \mathbb{Z}} \sigma_{1}^{\chi_{9}}\left(\frac{D-m^{2}}{4}\right), \\
L\left(-3, \chi_{D}\right)=\sum_{m \in \mathbb{Z}} \sigma_{3}\left(\frac{D-m^{2}}{4}\right) .
\end{gathered}
$$

These equalities are obtained by substituting $n=1$ in Lemma 7 . Let D be a negative discriminant. Then

$$
\begin{aligned}
L\left(-2, \chi_{D}\right)= & \frac{1}{31+4(-1)^{(D+1) / 2}} \sum_{m \in \mathbb{Z}} \sigma_{2, \chi_{-4}}\left(|D|-m^{2}\right) & (2 \nmid D), \\
& -\sum_{m \in \mathbb{Z}} \sigma_{2, \chi_{-4}}\left(\frac{|D|-m^{2}}{4}\right) & \left(v_{2}(D) \geq 2\right) .
\end{aligned}
$$

Indeed, let $D_{K}=-4 D(2 \nmid D),-D / 4\left(v_{2}(D)=2\right),-D\left(v_{2}(D)=3\right)$. Then $\lambda_{6, D_{K},-4}$ is in $\mathbf{M}_{6}(2), \mathbf{M}_{6}^{\infty}(4), \mathbf{M}_{6}^{\infty}(2)$ in the respective cases. From $\{8,-512,-1\} \in \operatorname{LR}_{6}(2),\{8,0,-1\} \in \operatorname{LR}_{6}(4),\{8,-1\} \in \operatorname{LR}_{6}^{\prime}(2)$, the formula follows.

For a positive definite integral quadratic form f, we denote by $r_{f}(a)$ the number of integral representations of a by f. If f is a sum of k squares, then we denote it by $r_{k}(a)$. For a square-free a, we can have a formula for $r_{2 k+1}\left(n^{2} a\right)$ up to $O\left(a^{k / 2-1 / 28+\varepsilon} n^{k-1+\varepsilon}\right)$ (cf. van Asch [1]). However, we treat several other quadratic forms here.

Let S be a positive even symmetric matrix of size $2 k(k \geq 2)$ with square determinant $M^{2}(M \in \mathbb{N})$ with level N, that is, N is the least number in \mathbb{N} such that $N S^{-1}$ is even. Suppose that k is even and $N=1$ or a prime. The theta series

$$
\Theta_{S}(z)=\sum_{r \in \mathbb{Z}^{2 k}} \mathrm{e}\left(\frac{1}{2}{ }^{t} r S r z\right)
$$

associated with S is in $\mathbf{M}_{k}(N)$. The theta series takes the value $(-1)^{k / 2} / M$ at the cusp 0 by the inversion formulas for theta series. It is written as a sum of Eisenstein series in Lemma 6 up to cusp forms. Let $g=\frac{1}{2} t \mathbf{x} S \mathbf{x}$ with ${ }^{t} \mathbf{x}=\left(x_{1}, \ldots, x_{2 k}\right)$. By the expression of $\Theta_{S}, r_{g}(n)(n \in \mathbb{N})$ is shown to be equal, up to $O\left(n^{(k-1) / 2+\varepsilon}\right)$, to

$$
\begin{gathered}
\frac{2 k}{B_{k}} \sigma_{k-1}(n) \quad(4 \mid k, N=1), \\
\frac{2 k}{\left(N^{k}-1\right) B_{k}}\left[\left\{M^{-1} N\left(N^{k-1}-1\right)+(-1)^{k / 2}(N-1)\right\}\right. \\
\left.\times \sigma_{k-1}(n)+N\left(M^{-1}-(-1)^{k / 2}\right) \sigma_{k-1, \chi_{N^{2}}}(n)\right] \quad(2 \mid k, \text { prime } N) .
\end{gathered}
$$

Here we note that for N prime,

$$
\begin{aligned}
\sigma_{k-1}(n / N) & =N^{-k+1}\left(\sigma_{k-1}(n)-\sigma_{k-1, \chi_{N^{2}}}(n)\right), \\
\sigma_{k-1}^{\chi_{N^{2}}}(n) & =\left(1-N^{-k+1}\right) \sigma_{k-1}(n)+N^{-k+1} \sigma_{k-1, \chi_{N^{2}}}(n)
\end{aligned}
$$

Let $f=g+x_{2 k+1}^{2}$. Then $r_{f}(n)=\sum_{m \in \mathbb{Z}} r_{g}\left(n-m^{2}\right)$. By the above formulas for $r_{g}, r_{f}(n)$ is written in terms of $\sigma_{k-1}\left(n-m^{2}\right), \sigma_{k-1, \chi_{N}{ }^{2}}\left(n-m^{2}\right)$ up to $O\left(n^{k / 2+\varepsilon}\right)$. Then Lemma 7 gives a formula for r_{f}. For a square-free $a \in \mathbb{N}, r_{g}\left(n^{2} a\right)$ is equal, up to $O\left(a^{k / 2-1 / 28+\varepsilon} n^{k-1+\varepsilon}\right)$, to

$$
\begin{aligned}
& \frac{2 k L\left(1-k, \chi_{a^{*}}\right)}{B_{2 k}} \sum_{d \mid n^{*}} \mu(d) \chi_{a^{*}}(d) d^{k-1} \sigma_{2 k-1}\left(n^{*} / d\right) \quad(4 \mid k, N=1), \\
& \frac{(-1)^{k / 2} 2 k L\left(1-k, \chi_{a^{*}}\right)}{M\left(N^{2 k}-1\right) B_{2 k}} \sum_{N \nmid d \mid n n^{*}} \mu(d) \chi_{a^{*}}(d) d^{k-1}\left[\left\{N^{2 k}-(-1)^{k / 2} M\right.\right. \\
& \left.\quad-\chi_{a^{*}}(N) N^{k}\left(1-(-1)^{k / 2} M\right)\right\} \sigma_{2 k-1}\left(n^{*} / d\right) \\
& \quad-N^{k-1}\left\{N^{k+1}\left(1-(-1)^{k / 2} M\right)+\chi_{a^{*}}(N)\left(-N+(-1)^{k / 2}\right.\right. \\
& \left.\left.\left.\quad \times M\left(N^{2 k}+N-1\right)\right)\right\} \sigma_{2 k-1}\left(n^{*} / N d\right)\right] \quad(N \text { being prime }),
\end{aligned}
$$

where n^{*} denotes $2 n$ or n according as $a \equiv 1(\bmod 4)$ or not and where in the latter formula there is an additional term $-240(N-M) M^{-1}(N+1)^{-1} n^{2}$ if $k=2$ and $a=1$.

Example 2. Let $g=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{1} x_{2}+x_{3} x_{4}$. Then $k=2$, $N=M=3$, and

$$
\begin{aligned}
& r_{g}\left(n^{2} a\right)=6 L\left(-1, \chi_{a^{*}}\right) \sum_{3 \nmid d \mid n^{*}} \mu(d) \chi_{a^{*}}(d) d\left\{\left(-7+3 \chi_{a^{*}}(3)\right) \sigma_{3}\left(n^{*} / d\right)\right. \\
&+\left.9\left(3-7 \chi_{a^{*}}(3)\right) \sigma_{3}\left(n^{*} /(3 d)\right)\right\} .
\end{aligned}
$$

Since $\mathbf{M}_{4}(3)$ contains no nontrivial cusp form, there appears no error term.

Example 3. Let $A_{8 k}(k \in \mathbb{N})$ be a positive even unimodular matrix of size $8 k$, and let $g=\frac{1}{2}{ }^{t} \mathbf{x} A_{8 k} \mathbf{x}+x_{8 k+1}^{2}$ with ${ }^{t} \mathbf{x}=\left(x_{1}, \ldots, x_{8 k}\right)$. For a square-free integer $a \in \mathbb{N}$,

$$
\begin{aligned}
r_{g}\left(n^{2} a\right)= & \frac{8 k L\left(1-4 k, \chi_{a^{*}}\right)}{B_{8 k}} \sum_{d \mid n^{*}} \mu(d) \chi_{a^{*}}(d) d^{4 k-1} \sigma_{8 k-1}\left(n^{*} / d\right) \\
& +O\left(a^{2 k-1 / 28+\varepsilon} n^{4 k-1+\varepsilon}\right)
\end{aligned}
$$

If $k=1$, then

$$
r_{g}\left(n^{2} a\right)=-240 L\left(-3, \chi_{a^{*}}\right) \sum_{d \mid n^{*}} \mu(d) \chi_{a^{*}}(d) d^{3} \sigma_{7}\left(n^{*} / d\right)
$$

since there is no nontrivial cusp form in $\mathbf{M}_{8}(1)$.
Finally, we give a formula in the case of a quadratic form with nonsquare discriminant.

Example 4. Let $g=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+2 x_{5}^{2}$. Let $a \in \mathbb{N}$ be square-free. Then

$$
r_{g}\left(n^{2} a\right)=\left\{\begin{array}{r}
-8 L\left(-1, \chi_{8 a}\right) \sum_{d \mid n} \mu(d) \chi_{8 a}(d) d\left\{\sigma_{3}\left(\frac{n}{d}\right)-16 \sigma_{3}\left(\frac{n}{4 d}\right)\right\} \\
-8 L\left(-1, \chi_{2 a}\right) \sum_{d \mid n} \mu(d) \chi_{2 a}(d) d\left\{3 \sigma_{3}\left(\frac{n}{d}\right)-8 \sigma_{3}\left(\frac{n}{2 d}\right)\right\} \\
(a \equiv 6(\bmod 8)) \\
-8 L\left(-1, \chi_{a / 2}\right) \sum_{d \mid n} \mu(d) \chi_{2 a}(d) d\left\{\left(19-6 \chi_{a / 2}(2)\right) \sigma_{3}\left(\frac{n}{d}\right)\right. \\
\left.+8\left(-3+2 \chi_{a / 2}(2)\right) \sigma_{3}\left(\frac{n}{2 d}\right)\right\} \\
(a \equiv 2(\bmod 8))
\end{array}\right.
$$

Let f denote a quaternary form $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 x_{4}^{2}$. By a standard argument, we have $r_{f}(n)=2\left(4 \sigma_{1}^{\chi 8}(n)-\sigma_{1, \chi_{8}}(n)\right)$. Since $r_{g}(n)=\sum_{m \in \mathbb{Z}} r_{f}\left(n-m^{2}\right)$, we have

$$
r_{g}(n)=2 \sum_{m \in \mathbb{Z}}\left(4 \sigma_{1}^{\chi_{8}}\left(n-m^{2}\right)-\sigma_{1, \chi_{8}}\left(n-m^{2}\right)\right)
$$

Let $a \equiv 1(\bmod 4)$. By Corollary to Theorem $2, \lambda_{4, a, 8} \in \mathbf{M}_{4}^{\infty}(8)$ and $\lambda_{4, a}^{(8)} \in$ $\mathbf{M}_{4}^{0}(8)$, and hence their U_{2}-images are in $\mathbf{M}_{4}^{\infty}(4)$ and $\mathbf{M}_{4}^{0}(4)$ respectively. Now $U_{2}\left(\lambda_{4, a}^{(8)}\right)$ has $-2^{-6} L\left(-1, \chi_{8 a}\right)$ at its 0th Fourier coefficient at 0 . We
have

$$
\begin{aligned}
2 \lambda_{4, a}^{(8)}(z)- & \frac{1}{2} \lambda_{4, a, 8}(z) \\
= & -\frac{1}{2} L\left(-1, \chi_{8}\right) L\left(-1, \chi_{8 a}\right)+2 \sum_{n=1}^{\infty} \sum_{d \mid n} \chi_{8 a}(d) d \\
& \times \sum_{m \in \mathbb{Z}}\left(4 \sigma_{1}^{\chi_{8}}\left(\frac{(n / d)^{2} a-m^{2}}{4}\right)-\sigma_{1, \chi_{8}}\left(\frac{(n / d)^{2} a-m^{2}}{4}\right)\right) \mathrm{e}(n z)
\end{aligned}
$$

and so,

$$
\begin{aligned}
U_{2}\left(2 \lambda_{4, a}^{(8)}-\frac{1}{2} \lambda_{4, a, 8}\right) & (z) \\
= & \frac{1}{2} L\left(-1, \chi_{8 a}\right)+\sum_{n=1}^{\infty} \sum_{d \mid n} \chi_{8 a}(d) d r_{f}\left((n / d)^{2} a\right) \mathrm{e}(n z)
\end{aligned}
$$

which is equal to

$$
2^{-5} L\left(-1, \chi_{8 a}\right)\left\{\frac{16}{15}\left(16 G_{4}(4 z)-G_{4}(2 z)\right)-\frac{16}{15}\left(G_{4}(z)-G_{4}(2 z)\right)\right\}
$$

By comparing Fourier coefficients, we obtain the formula in this case. By a similar argument we can obtain formulas for $a \not \equiv 1(\bmod 4)$.
7. In this section we consider a modular form $\lambda_{2 k, \psi}$ in case $k=1$. Its 0th coefficient is essentially a product of two class numbers of imaginary quadratic number fields. Costa's result [6] has already shown that modular forms are effective in the study of class numbers. Our purpose is different and we investigate a relation between ternary forms and class numbers. For m nonsquare, let $h(m)$ and $w(m)$ denote the class number of $\mathbb{Q}(\sqrt{m})$ and the number of roots of unity, respectively. Let D be a negative discriminant. Then $L\left(0, \chi_{D}\right)$ equals $2 h(D) / w(D)$. The number $w(D)$ is $4(D=-4)$, $6(D=-3)$, or 2 (otherwise).

Let $N>1$. Let $l \in \mathbb{N}$ be a divisor of N^{m} for some $m \in \mathbb{N}$. Let $\mathbf{M}_{2}(N, l)$ denote the subspace consisting of modular forms f in $\mathbf{M}_{2}(N)$ for which

$$
\left(U_{l} \prod_{p \mid N}\left(U_{p}-1\right)\right)(f)=0 .
$$

When N is prime, $\mathbf{M}_{2}(N, 1)$ denotes the subspace in $\mathbf{M}_{2}(N)$ consisting of modular forms invariant under U_{N}. Obviously if $l \mid l^{\prime}$, then $\mathbf{M}_{2}(N, l) \subset$ $\mathbf{M}_{2}\left(N, l^{\prime}\right)$, and if $p^{2} \mid N$, then $U_{p}\left(\mathbf{M}_{2}(N, l)\right) \subset \mathbf{M}_{2}(N / p, l /(l, p))$. For the first several prime N, a basis of the space of cusp forms in $\mathbf{M}_{2}(N, 1)$ and their Fourier coefficients are computed in [21].

Proposition 5. (1) Let the notation be as in Theorem 2. Suppose that $k=1$ and that χ is a real-valued odd Dirichlet character with conductor N^{\prime}. Let l be a natural number such that $N^{\prime} \mid\left(\left(l \prod_{p \mid N} p\right)^{2} D_{K}\right)\left(2 \nmid N^{\prime}\right)$, or $N^{\prime} \mid\left(\left(l \prod_{p \mid N} p\right)^{2} D_{K} / 4\right)\left(2 \mid N^{\prime}\right)$. Then $\lambda_{2, \psi}$ is in $\mathbf{M}_{2}(N, l)$.
(2) Let the notation be as in Proposition 4(2). Let $\psi=\chi \circ \mathrm{Nm}$. If χ is real-valued, that is, ψ is a genus character, then $\lambda_{2, \psi}$ is in $\mathbf{M}_{2}(p, 1)$.

Proof. (1) Put

$$
s(n)=\sum_{m \in \mathbb{Z}} \sigma_{0, \chi}\left(\frac{n^{2} D_{K}-m^{2}}{4}\right)
$$

Let $c \in \mathbb{N}$ be so that $\chi(c)=-1$. In particular, c is not a square. Then $\sigma_{0, \chi}(c)$ vanishes because for $d \mid c$, the equality $\chi(d)+\chi\left(d^{\prime}\right)=0$ holds, d^{\prime} being the complementary divisor. This shows that $\sigma_{0, \chi}\left(\frac{\left(\ln \prod_{p \mid N^{\prime}} p\right)^{2} D_{K}-m^{2}}{4}\right)$ vanishes if $\left(N^{\prime}, m\right)=1$, or if $2 \mid N^{\prime}$ and $\left(N^{\prime}, m / 2\right)=1$. Thus

$$
s\left(\ln \prod_{p \mid N} p\right)=\sum_{p_{1} \mid N} s\left(\ln \prod_{p \neq p_{1}} p\right)-\sum_{p_{1}, p_{2} \mid N} s\left(\ln \prod_{p \neq p_{1}, p_{2}} p\right)+\ldots,
$$

where p, p_{i} are primes. Putting $a(n)=\sum_{0<d \mid n} \chi_{K}(d) \chi(d) s(n / d)$, we have

$$
a\left(\ln \prod_{p \mid N} p\right)=\sum_{p_{1} \mid N} a\left(\ln \prod_{p \neq p_{1}} p\right)-\sum_{p_{1}, p_{2} \mid N} a\left(\ln \prod_{p \neq p_{1}, p_{2}} p\right)+\ldots
$$

Since $a(n)(n>0)$ is the higher Fourier coefficient of $\lambda_{2, \psi}$, we have shown that the modular form is in $\mathbf{M}_{2}(N, l)$. Thus our assertion follows.
(2) The higher Fourier coefficient of $\lambda_{2, \psi}$ is obtained in Proposition 4(2). If $\chi_{K}(p)=0$, then its nth and $p n$th coefficients are obviously equal for any $n \in \mathbb{N}$, that is, $\lambda_{2, \psi}$ is invariant under U_{p}. Suppose $\chi_{K}(p) \neq 0$. Let $c=p^{r} c^{\prime}$ with $\left(c^{\prime}, p\right)=1$. Since $\chi(p)=-1, \sigma_{0, \chi}(c)$ is equal to 0 if r is odd, and to $\sigma_{0, \chi}\left(c^{\prime}\right)$ otherwise. So

$$
\sum_{m \in \mathbb{Z}} \sigma_{0, \chi}\left(\frac{(p n)^{2} D_{K}-m^{2}}{4 p}\right)=\sum_{m \in \mathbb{Z}} \sigma_{0, \chi}\left(\frac{n^{2} D_{K}-m^{2}}{4 p}\right),
$$

which shows that $\lambda_{2, \psi}$ is invariant under U_{p}.
Theorem 3. (1) Let D and D_{1} be negative discriminants. Let $a \in \mathbb{N}$ be square-free. Let a^{*} denote a or $4 a$ according as $a \equiv 1(\bmod 4)$ or not. Assume that
(i) there is $u \in \mathbb{N}$ such that $a^{*} D_{1}=u^{2} D$, and
(ii) $\chi_{D}(p) \neq 1$ for any prime factor p of u.

Let t denote the cardinality of $\left\{p: p \mid u, \chi_{D}(p)=-1\right\}$. Let $N=\left|D_{1}\right|$

$$
\begin{aligned}
& \left(2 \nmid a^{*} \text { or } 2 \nmid D_{1}\right), \frac{1}{2}\left|D_{1}\right|\left(v_{2}\left(a^{*} D_{1}\right)=4,5\right), \frac{1}{4}\left|D_{1}\right|\left(v_{2}\left(a^{*} D_{1}\right)=6\right) \text {. Then } \\
& \begin{aligned}
& \lambda_{2, a^{*}, D_{1}}(z)=2^{t+2} h\left(D_{1}\right) h(D) / w\left(D_{1}\right) w(D) \\
&+4 \sum_{n=1}^{\infty} \sum_{0<d \mid n} \chi_{u^{2} D}(d) \sum_{m \in \mathbb{Z}} \sigma_{0, \chi_{D_{1}}}\left(\frac{(n / d)^{2} a^{*}-m^{2}}{4}\right) \mathrm{e}(n z)
\end{aligned}
\end{aligned}
$$

is a modular form in $\mathbf{M}_{2}(N, l)$, where $l=2^{u}$ with the least integer $u \geq$ $\max \left\{0,\left(v_{2}\left(D_{1}\right)-v_{2}\left(a^{*}\right)\right) / 2\right\}$. If D_{1} and a* have no common odd prime factor and if neither $v_{2}\left(D_{1} a^{*}\right)=4$ nor $D_{1} a^{*} / 64 \equiv 1(\bmod 4)$, then the modular form is also in $\mathbf{M}_{2}^{\infty, 0}(N)$. Suppose otherwise. Let $M>1$ be a divisor of N. Then the 0 th coefficient at a cusp $i / M,(i, M)=1$, is equal to $0((M, D)$ $\neq 1$),

$$
2^{t_{M}+2} \prod_{p \mid(N / M)}\left(1-p^{-1}\right) h\left(D_{1}\right) h(D) / w\left(D_{1}\right) w(D) \quad((M, D)=1),
$$

where t_{M} denotes the cardinality of $\left\{p: p \mid M, \chi_{D}(p)=-1\right\}$.
(2) Let D and D_{1} be negative discriminants such that $a^{*}=D D_{1}$ is the discriminant of a real quadratic field. Let p be a rational prime such that $\chi_{D_{1}}(p)=-1$ and $\chi_{D}(p)=0$ or -1 , and let χ be a completely multiplicative function on \mathbb{N} defined by $\chi(q)=\chi_{D_{1}}(q)$ for a prime q with $q \nmid D_{1}$, and $\chi(q)=\chi_{D}(q)$ for q dividing D_{1}. Then

$$
\begin{aligned}
& 4 h\left(D_{1}\right) h(D) / w\left(D_{1}\right) w(D) \\
& \quad+\frac{2}{1-\chi_{D}(p)} \sum_{n=1}^{\infty} \sum_{\substack{0<d \mid n \\
\left(d, p D_{1}\right)=1}} \chi_{D}(d) \sum_{m \in \mathbb{Z}} \sigma_{0, \chi}\left(\frac{(n / d)^{2} a^{*}-m^{2}}{4 p}\right) \mathrm{e}(n z)
\end{aligned}
$$

is a modular form in $\mathbf{M}_{2}(p, 1)$.
Proof. (1) The 0th Fourier coefficient of $\lambda_{2, a^{*}, D_{1}}$ is $L\left(0, \chi_{D_{1}}\right) L\left(0, \chi_{u^{2} D}\right)$, which is equal to $2^{t} L\left(0, \chi_{D_{1}}\right) L\left(0, \chi_{D}\right)=2^{t+2} h\left(D_{1}\right) h(D) /\left(w\left(D_{1}\right) w(D)\right)$. The 0th coefficients at other cusps are obtained as in the Corollary to Theorem 2. Thus by Lemma 5, Theorem 2(1) and Proposition 5, our assertion follows.
(2) Let K be a quadratic field with $D_{K}=a^{*}$, and let $\psi:=\chi \circ \mathrm{Nm}$ be a genus character corresponding to the decomposition $a^{*}=D \cdot D_{1}$. By Proposition 5(2), $\lambda_{2, \psi}$ is in $\mathbf{M}_{2}(p, 1)$. Its 0 th coefficient is equal to ($1-$ $\psi(\mathfrak{P})) L_{K}(0, \psi)=2 L\left(0, \chi_{D}\right) L\left(0, \chi_{D_{1}}\right)$, and the higher coefficients are given in Proposition 4(2). Thus $\frac{1}{2} \lambda_{2, \psi}$ is the modular form in the theorem.

In Theorem 3, the 0th coefficients at a cusp 0 are not presented. However, by Lemma 1, they can be obtained from the 0th coefficients at other cusps.

We give an application of Theorem 3(2).
Example. Let $r \equiv 3(\bmod 8)>3$ be square-free, and let $-s$ be a negative discriminant with $s \not \equiv 7(\bmod 8)$ and $(s, r)=1$. Let $p=2, D_{1}=$
$-r$ and $D=-s$ in Theorem 3(2). Then

$$
\begin{aligned}
h(-r) h(-s)+\frac{2}{1-\chi_{-s}(2)} & \sum_{n=1}^{\infty} \sum_{\substack{d \mid n \\
(d, 2 r)=1}} \chi_{-s}(d) \\
& \times \sum_{m \in \mathbb{Z}} \sigma_{0, \chi}\left(\frac{(n / d)^{2} r s-m^{2}}{8}\right) \mathrm{e}(n z) \in \mathbf{M}_{2}(2) .
\end{aligned}
$$

Since $\{24,-1\} \in \operatorname{LR}_{2}^{\prime}(2)$, we have

$$
h(-r) h(-s)=\frac{1}{12(1-\chi-s(2))} \sum_{\substack{m \in \mathbb{Z} \\ m \equiv s(\bmod 2)}} \sigma_{0, \chi}\left(\frac{r s-m^{2}}{8}\right)
$$

If q is the minimal prime with $\chi(q)=1$, then $0 \leq \sigma_{0, \chi}(m) \leq \log _{q} m$ (see the proof of Proposition 5). Thus we obtain the estimate

$$
\begin{aligned}
h(-r) h(-s) & \leq \frac{1}{12\left(1-\chi_{-s}(2)\right)}(\sqrt{r s}+2) \log _{3}(r s) \\
& <\frac{1}{12}(\sqrt{r s}+1)(\log |r|+\log |s|)
\end{aligned}
$$

Note that this cannot be obtained from the usual estimate such as $h(-s)<$ $C \sqrt{|s|} \log |s|$ with a constant C (see for example Newman [15]). A similar argument is possible for some other congruence conditions.

Let D be a discriminant. Then for $m \in \mathbb{N}, \sigma_{0, \chi_{D}}(m)$ is equal to the number of integral ideals in $\mathbb{Q}(\sqrt{D})$ with norm m. Hence for $D<0$, $w(D) \sigma_{0, \chi_{D}}(m)$ is equal to the number of representations of m by positive definite quadratic forms of discriminant D which form a complete system of representatives of the proper equivalence classes. It follows that higher Fourier coefficients of $\lambda_{2, a^{*}, D_{1}}$ in Theorem 3(1) are closely related to representations of natural numbers by ternary forms.

We give an application of Theorem $3(1)$. We examine the case $D_{1}=-4$. Let a be square-free with $a \not \equiv 7(\bmod 8)$. Then $D=-4 a(a \equiv 1,2(\bmod 4))$, $D=-a(a \equiv 3(\bmod 8))$ satisfy the conditions (i), (ii), where $t=0$ in the former, and $t=1$ in the latter. Since $h(-4)=1$ and $w(-4)=4$,

$$
\begin{aligned}
& \lambda_{2, a^{*},-4} \\
& \quad=2^{t} h(-a) / w(-a)+4 \sum_{n=1}^{\infty} \sum_{d \mid n} \chi_{-4 a}(d) \sum_{m \in \mathbb{Z}} \sigma_{0, \chi_{-4}}\left(\frac{(n / d)^{2} a^{*}-m^{2}}{4}\right) \mathrm{e}(n z) .
\end{aligned}
$$

Considering the norm form for $\mathbb{Q}(\sqrt{-1})$, we have

$$
r_{3}(n)=4 \sum_{m \in \mathbb{Z}} \sigma_{0, \chi-4}\left(n-m^{2}\right) \quad \text { for } n \in \mathbb{N}
$$

Here $U_{2}\left(\lambda_{2, a^{*},-4}\right)(a \equiv 1(\bmod 4))$ and $\lambda_{2, a^{*},-4}(a \not \equiv 1(\bmod 4))$ are in $\mathbf{M}_{2}(2)$ and they have the expansion

$$
2^{t} h(-a) / w(-a)+\sum_{n=1}^{\infty}\left\{\sum_{d \mid n} \chi_{-4 a}(d) r_{f}\left((n / d)^{2} a\right)\right\} \mathrm{e}(n z) .
$$

Since $\{24,-1\} \in \operatorname{LR}_{2}^{\prime}(2)$, we have shown that for a square-free $a>3$,

$$
h(-a)= \begin{cases}\frac{1}{12} r_{3}(a) & (a \equiv 1,2(\bmod 4)) \\ \frac{1}{24} r_{3}(a) & (a \equiv 3(\bmod 8))\end{cases}
$$

which is known as "Gauss' three-square theorem". Since $\mathbf{M}_{2}(2)$ is spanned by $G_{2, \chi_{4}}(z)$, comparison of Fourier coefficients leads to

$$
\left(2^{t+3} 3 h(-a) / w(-a)\right) \sigma_{1, \chi_{4}}(n)=\sum_{d \mid n} \chi_{-4 a}(d) r_{3}\left((n / d)^{2} a\right)
$$

for any n. By the Möbius inversion formula, we obtain

$$
r_{3}\left(n^{2} a\right)=\left(2^{t+3} 3 h(-a) / w(-a)\right) \sum_{d \mid n} \mu(d) \chi_{-4 a}(d) \sigma_{1, \chi_{4}}(n / d)
$$

which is a classical result (Bachmann [3], Bateman [4]).
In this way we can obtain other such formulas by replacing D_{1} by other negative discriminants. We state some of them as a corollary.

Corollary. Let m be any natural number. Let $m=n^{2}$ a with a squarefree. Let n^{*} be $2 n$ or n according as $a \equiv 1(\bmod 4)$ or not.
(1) Then $r_{3}(m)=0(a \equiv 7(\bmod 8))$, and $r_{3}(m)=\delta_{1}(a) h(-a)$ $\times \sum_{d \mid n} \mu(d) \chi_{-4 a}(d) \sigma_{1, \chi_{4}}(n / d) \quad$ (otherwise), where $\delta_{1}(a)=6(a=1)$, $8(a=3), 12(a \equiv 1,2(\bmod 4), a>1), 24(a \equiv 3(\bmod 8), a>3)$.
(2) Let $f=x^{2}+y^{2}+2 z^{2}$. Then $r_{f}(m)=0$ if $a \equiv 14(\bmod 16)$. Suppose otherwise. Then

$$
r_{f}(m)= \begin{cases}\delta_{2}(m) h(-2 a) \sum_{d \mid n} \mu(d) \chi_{-8 a}(d) \sigma_{1, \chi_{4}}(n / d) & (2 \mid a \text { or } 2 \nmid n), \\ \delta_{2}(m) h(-2 a) \sum_{d \mid n} \mu(d) \chi_{-8 a}(d) \sigma_{1, \chi_{4}}(n / 2 d) & (2 \nmid a \text { and } 2 \mid n),\end{cases}
$$

where $\delta_{2}(m)$ denotes $6(a=2), 8(a=6), 12(a \equiv 2(\bmod 8), a>2)$, $24(a \equiv 6(\bmod 16), a>6), 4(2 \nmid a, 2 \nmid n), 12(2 \nmid a, 2 \mid n)$.
(3) Let $f=x^{2}+y^{2}+y z+z^{2}$. Then

$$
r_{f}(m)= \begin{cases}0 & (a \equiv 6(\bmod 9)) \\ \delta_{3}(a) h(-3 a) \sum_{d \mid n^{*}} \mu(d) \chi_{-3 a^{*}}(d) \sigma_{1, \chi_{9}}\left(n^{*} / d\right) & (\text { otherwise })\end{cases}
$$

where $\delta_{3}(a)$ denotes $2(a=1), 3(a=3), 6\left(1+v_{3}(a)\right)(a \neq 1,3)$.
(4) Let $f=x^{2}+y^{2}+3 z^{2}$. Then $r_{f}(m)=0$ if $a \equiv 6(\bmod 9)$. Suppose otherwise. Then
$r_{f}(m)= \begin{cases}\delta_{3}^{\prime}(a) h(-3 a) \sum_{d \mid n} \mu(d) \chi_{-12 a}(d) \sigma_{1, \chi_{9}}(n / d) & (a \equiv 1(\bmod 8)), \\ \delta_{3}^{\prime}(a) h(-3 a) \sum_{d \mid n} \mu(d) \chi_{-3 a}(d) \sigma_{1, \chi_{9}}(n / d) & (a \equiv 5(\bmod 8)), \\ \delta_{3}^{\prime}(a) h(-3 a) \sum_{d \mid n} \mu(d) \chi_{-12 a}(d)\left\{\sigma_{1, \chi_{9}}(n / d)\right. \\ \left.+2 \sigma_{1, \chi_{9}}(n /(2 d))\right\} & (a \equiv 2,3(\bmod 4)),\end{cases}$
where $\delta_{3}^{\prime}(a)=4(a=1), 2(a=3), 12\left(1+v_{3}(a)\right)(a \equiv 1(\bmod 8), a>1)$, $8\left(1+v_{3}(a)\right)(a \equiv 5(\bmod 8)), 2\left(1+v_{3}(a)\right)(a \equiv 2,3(\bmod 4), a \neq 3)$.
(5) Let $f=x^{2}+y^{2}+y z+2 z^{2}$. Then

$$
r_{f}(m)= \begin{cases}0 & (a / 7 \not \equiv 3,5,6(\bmod 7)) \\ 2 \delta_{7}(a)\left(1+v_{7}(a)\right) h(-7 a) & (\text { otherwise }) \\ \quad \times \sum_{d \mid n^{*}} \mu(d) \chi_{-7 a^{*}}(d) \sigma_{1,7}\left(n^{*} / d\right)\end{cases}
$$

where $\delta_{7}(7)=1 / 2, \delta_{7}(21)=1 / 3$ and $\delta_{7}(a)=1(a \neq 7,21)$.

References

[1] A. G. van Asch, Modular forms of half-integral weight, some explicit arithmetic, Math. Ann. 262 (1983), 77-89.
[2] A. O. L. Atkin and J. Lehner, Hecke operator on $\Gamma_{0}(m)$, ibid. 185 (1970), 134-160.
[3] P. Bachmann, Die Arithmetik von quadratischen Formen, part I, Leipzig, 1898.
[4] P. T. Bateman, On the representations of a number as the sum of three squares, Trans. Amer. Math. Soc. 71 (1951), 70-101.
[5] H. Cohen, Variations sur un thème de Siegel et Hecke, Acta Arith. 30 (1976), 63-93.
[6] A. Costa, Modular forms and class number congruence, ibid. 61 (1992), 101-118.
[7] P. Deligne and K. A. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227-286.
[8] H. J. Godwin, Real quartic fields with small discriminant, J. London Math. Soc. 31 (1956), 478-485.
[9] H. G. Grundman, The arithmetic genus of Hilbert modular varieties over nonGalois cubic fields, J. Number Theory 37 (1991), 343-365.
[10] H. Hasse, Uber die Klassenzahl abelscher Zahlkörper, Springer, Berlin, 1985.
[11] E. Hecke, Theorie der Eisensteinschen Reihen höhere Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Univ. Hamburg 5 (1927), 199-224.
[12] —, Über die L-funktionen und den Dirichletschen Primzahlsatz für einen beliebigen Zahlkörper, Nachr. Gesell. Wiss. Göttingen 1917, 299-318.
[13] H. Hida, On the values of Hecke's L-functions at nonpositive integers, J. Math. Soc. Japan 30 (1978), 249-278.
[14] H. Iwaniec, Fourier coefficients of modular forms of half-integral weight, Invent. Math. 87 (1987), 385-401.
[15] M. Newman, Bounds for class numbers, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc., 1965, 70-77.
[16] R. Okazaki, On evaluation of L-functions over real quadratic fields, J. Math. Kyoto Univ. 31 (1994), 1125-1153.
[17] R. Schulze-Pillot, Thetareihen positiv definiter quadratischer Formen, Invent. Math. 75 (1984), 283-299.
[18] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), 637-679.
[19] T. Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo 23 (1976), 393-417.
[20] C. L. Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Göttingen, 1969, 87-102.
[21] S. Tsuyumine, Cusp forms for $\Gamma_{0}(p)$ of weight 2, Bull. Fac. Ed. Mie Univ. 45 (1994), 7-25.
[22] -, Evaluation of zeta functions of totally real algebraic number fields at non-positive integers, preprint.

Department of Mathematics
Mie University
Tsu, 514, Japan
E-mail: tsuyu@edu.mie-u.ac.jp

Received on 23.3.1995
and in revised form on 17.8.1995

