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1. Introduction. Let t(X) =
∑
k≥−n akX

−k be a formal Laurent series
in Q((X−1)). Then it is well known that t(X) may be expanded uniquely as
a continued fraction [a0, a1, a2, . . .], where ai ∈ Q[X] for i ≥ 0 and deg ai > 0
for i > 0. (This fact was apparently first proved by E. Artin in his thesis
[2, §12]; for alternative treatments, see [11, 3, 14].) The ai are called the
partial quotients. These expansions share many of the properties of ordinary
continued fractions for real numbers; for example, if we set p−2 = 0, p−1 = 1,
q−2 = 1, q−1 = 0, and pn = anpn−1 + qn−2, qn = anqn−1 + qn−2 for n ≥ 0,
then

(1) [a0, a1, . . . , an] =
pn
qn
.

We call pn/qn the nth convergent to the continued fraction for t(X). The
following three identities will prove useful [7, 16]:

[an, an−1, . . . , a1] =
qn
qn−1

,(2)

pnqn−1 − pn−1qn = (−1)n+1,(3)

pn
qn

= a0 +
∑

0≤i<n

(−1)i

qiqi+1
.(4)
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Let ε0 = 1 and εi = ±1 for i ≥ 1. Define

gε(X) =
∑

i≥0

εiX
−2i ,(5)

hε(X) = X
∑

i≥0

εiX
−2i .(6)

If the choice of signs is arbitrary, or is clear from the context, we will often
omit the subscript and simply write g(X) and h(X). Previous papers have
discussed the continued fractions for gε(X) and hε(X); see, for example,
[19, 8, 10, 12, 20, 4, 21, 15]. It is known that, no matter what the choice
of signs is, the continued fraction for gε(X) has partial quotients in the set
{0, X− 1, X+ 1, X,X + 2, X− 2}, and the continued fraction for hε(X) has
partial quotients in the set {1, X,−X}; furthermore, explicit formulas are
known for these partial quotients in terms of the choice of signs made. These
explicit formulas use a description arising from iterated paperfolding [5].

In this paper, we examine the convergents to the continued fractions
for g(X) and h(X). In particular, we prove the surprising fact that the
denominators of the convergents are polynomials in Z[X] with coefficients
0, 1, −1.

Here is a brief outline of this paper. In Section 2, we recall the descrip-
tions of the continued fractions for g(X) and h(X) in terms of the folding
and perturbed symmetry maps. In Section 3, we recall some basic facts
about continuants and prove some technical lemmas. In Section 4, we prove
some theorems about the constant terms of the convergents to g(X) and
h(X). In Section 5, we give a recursion relation for computing the denom-
inators of the convergents and characterize their support. In Section 6, we
show how to describe the convergents for h(X) in terms of those for g(X).
In Section 7, we obtain further results using some simple Diophantine ap-
proximation properties.

2. Paperfolding and continued fractions. Let w and x be finite
sequences over an additive group G, and define the folding map fx(w) =
w · x · (−wR), where · represents concatenation, −w represents the same
sequence as w, but with all signs reversed, and wR represents the sequence
w taken in reverse order.

Let G be a group written additively, and let xi ∈ G for i ≥ 1. Set

F(x1, x2, . . . , xk) = fxk(fxk−1(. . . (fx2(fx1(λ))) . . .)),

where λ represents the empty sequence. Since F(x1, . . . , xk) is a prefix of
the sequence F(x1, x2, . . . , xk, xk+1), the limiting sequence F(x1, x2, . . .) is
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well-defined. For example, F(1, 2, 3, . . .) denotes the infinite sequence

(1, 2,−1, 3, 1,−2,−1, 4, 1, . . .).

We now have the following

Theorem 1. If (a1, a2, . . .) = F(x1, x2, . . .), then

(a) a2i+1 = (−1)ix1 for i ≥ 0,
(b) (a2i)i≥1 = F(x2, x3, x4, . . .),
(c) a2k+j = −a2k−j for k ≥ 1, 0 ≤ j ≤ 2k − 1.

P r o o f. The easy proof by induction is left to the reader.

If ei = ±1 for i ≥ 1, we say that F(e1, e2, . . .) is a paperfolding se-
quence [13, 5]. In this case, the ei are sometimes referred to as the unfolding
instructions.

In the special case ei = 1 for i ≥ 1, we get the regular paperfolding
sequence

(si)i≥1 = F(1, 1, 1, . . .)(7)

= (1, 1,−1, 1, 1,−1,−1, 1, 1, 1,−1,−1, 1,−1,−1, . . .).

For this sequence, we have

(8) sn = (−1)r

if n = 2a(2r + 1).
Now let h(X) = X

∑
i≥0 εiX

−2i , and assume ε0 = 1, and εi = ±1 for
i ≥ 1. It is known [15] that

(9) h(X) = [1, XF(ε1,−ε2,−ε3,−ε4, . . .)].

For example, we have

X
∑

k≥0

X−2k = [1, X,−X,−X,−X,X,X,−X,−X, . . .].

Similarly, we can define the perturbed symmetry map px(w) = w · x ·wR

[12]. Let x1, . . . , xk each represent a finite sequence over an additive group
G. Then we define

P(x1, x2, . . . , xk) = pxk(pxk−1(. . . (px2(px1(λ))) . . .)).

As before, we can also consider the limiting sequence P(x1, x2, . . .). It is
known [4, Theorem 5] that if g(X) =

∑
i≥0 εiX

−2i , then

(10) g(X) = [0, X − ε1,P(c2, c3, c4, . . .)],

where

c2 = (X + ε1 + ε2, X + ε1 − ε2)
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and
cj = (X − ε1 + εj , X − ε1 − εj) for j ≥ 3.

For example, we have∑

k≥0

X−2k = [0, X − 1, X + 2, X,X,X − 2, X,X + 2, . . .].

3. Continuants. We recall the basic definition of the multivariate poly-
nomials known as continuants. Define K0( ) = 1, K1(a1) = a1, and Kn(a1,
. . . , an) = anKn−1(a1, . . . , an−1)+Kn−2(a1, . . . , an−2). It is also convenient
to set K−1( ) = 0. Then it is not difficult to see that

[a0, a1, . . . , an] =
Kn+1(a0, a1, . . . , an)
Kn(a1, . . . , an)

for all n ≥ 0 [9, §4.5.3].
We now give three technical lemmas on continuants which will be used

later in the paper.

Lemma 2. Let n ≥ 1 and a1, . . . , an−1 be real numbers. Then

Kn+j(a1, a2, . . . , an−1, 0,−an−1,−an−2, . . . ,−an−j)
= Kn−j−2(a1, a2, . . . , an−j−2)

for 0 ≤ j ≤ n− 1.

P r o o f. The easy induction on j is left to the reader.

Lemma 3. Let n ≥ 1, and let a1, . . . , an be integers. Then

Kn+j(a1, . . . , an−1, an,−an−1,−an−2, . . . ,−an−j)
≡ Kn+j(a1, . . . , an−1, 0,−an−1,−an−2, . . . ,−an−j)

(mod anKn−1(a1, . . . , an−1))

for 0 ≤ j ≤ n− 1.

P r o o f. Let qn−1 = Kn−1(a1, a2, . . . , an−1) and qn−2 = Kn−2(a1, a2, . . .
. . . , an−2). Then we have

Kn(a1, a2, . . . , an−1, an) = anqn−1 + qn−2,

Kn(a1, a2, . . . , an−1, 0) = qn−2.

Now for each j there exist integer constants c1, c2 such that

Kn+j(a1, . . . , an−1, an,−an−1,−an−2, . . . ,−an−j)
= c1Kn−1(a1, . . . , an−1) + c2Kn(a1, . . . , an−1, an)

and

Kn+j(a1, . . . , an−1, 0,−an−1,−an−2, . . . ,−an−j)
= c1Kn−1(a1, . . . , an−1) + c2Kn(a1, . . . , an−1, 0).
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Hence, subtracting these last two equations, we get

Kn+j(a1, . . . , an−1, an,−an−1,−an−2, . . . ,−an−j)
−Kn+j(a1, . . . , an−1, 0,−an−1,−an−2, . . . ,−an−j) = c2anqn−1,

which proves the desired result.

Lemma 4. Let ki ≥ 0 for i ≥ 1, and let

c = (c1, c2, . . .) = (−1, 0k1 , 2, 0k2 ,−2, 0k3 , 2, 0k4 ,−2, 0k5 , 2, . . .)

be an infinite sequence of integers. (The exponents on the 0’s refer to the
number of repetitions, and the 2’s alternate in sign.) Then for all n ≥ 0,
Kn(c1, . . . , cn) = ±1, and the same result holds for −c = (−1, 0k1 ,−2, 0k2 , 2,
0k3 ,−2, . . .).

P r o o f. Let qn = Kn(c1, . . . , cn). Then qn is the denominator of the nth
convergent of the continued fraction

[0,−1, 0k1 , 2, 0k2 ,−2, 0k3 , 2, 0k4 ,−2, 0k5 , 2, . . .].

By (2), it follows that

qn
qn+1

= [

n terms︷ ︸︸ ︷
. . . ,−2, 0k2 , 2, 0k1 ,−1].

But [2, 0k1 ,−1] = 1 for all k1 ≥ 0. It follows that qn/qn+1 = [. . . ,−2, 0k2 , 1].
But [−2, 0k2 , 1] = −1 for all k2 ≥ 0. It now follows by induction that
qn/qn+1 = ±1. Since q0 = 1, we conclude that qn = ±1 for all n ≥ 0.

4. The constant term. Let gε(X) and hε(X) be as defined above in
(5) and (6). Let p′n/q

′
n be the nth convergent to the continued fraction for

gε(X), and pn/qn be the nth convergent to the continued fraction for hε(X).
Then (p′n)n≥0, (q′n)n≥0, (pn)n≥0, and (qn)n≥0 are sequences of polynomials
in X, and we are interested in their constant term.

We begin with the constant terms of pn and qn:

Theorem 5. For n ≥ −1 we have

(a) pn(0) = 1;
(b) q2n(0) = 1;
(c) q2n+1(0) = 0.

P r o o f. Easy proof by induction on n, using the fact that pn = ±Xpn−1+
pn−2, and qn = ±Xqn−1 + qn−2.

We now turn to the constant terms of p′n and q′n.

Theorem 6. For n ≥ 0 we have q′n(0) = ±1.
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P r o o f. Note that if gε(X) = [a′0(X), a′1(X), . . .], then by (10), we have
a′i(0) = ci, where (ci) is the sequence in Lemma 4.

R e m a r k. Evidently the proof applies to any formal Laurent series such
that the constant terms of the partial quotients of its continued fraction
expansion is given by the sequence (ci) of Lemma 4.

We now discuss p′n and q′n for a particular choice of ε; namely, when
εi = 1 for all i ≥ 0. First, we describe the partial quotients for the continued
fraction expansion of

∑
i≥0X

−2i :

Theorem 7. Let
∑
i≥0X

−2i = [a′0(X), a′1(X), . . .]. Then a′1(X) = X−1,
and a′n(X) = X − (−1)bn/2c + (−1)nsbn/2c, where (sn)n≥1 is the regular
paperfolding sequence of (7).

P r o o f. Follows from (10).

Now we discuss the denominators of the convergents to
∑
i≥0X

−2i :

Theorem 8. Let q′n(X) be the denominator of the nth convergent to∑
i≥0X

−2i . Then

q′n(0) = (−1)n+bn/2cs1 . . . sn,

where (si)i≥1 is the regular paperfolding sequence of (7).

P r o o f. By induction, using the fact that q′n+1(0) = a′n+1(0)q′n(0) +
q′n−1(0). (Recall that the sequence a′n+1 was described in Theorem 7.)

Now we discuss the numerators of the convergents to
∑
i≥0X

−2i :

Theorem 9. For n ≥ 0 we have

(11)
p′n(0)
q′n(0)

= −
∑

1≤i≤n
si,

where (si)i≥1 is the regular paperfolding sequence of (7).

P r o o f. By (4) we know that

p′n(0)
q′n(0)

=
1

q′0(0)q′1(0)
− 1
q′1(0)q′2(0)

+ . . .+
(−1)n−1

q′n−1(0)q′n(0)
.

Since q′n(0) = ±1 by Theorem 6, it follows that q′n(0) = 1/q′n(0), and we get

p′n(0)
q′n(0)

= q′0(0)q′1(0)− q′1(0)q′2(0)(12)

+ q′2(0)q′3(0)− . . .+ (−1)n−1q′n−1(0)q′n(0).
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Let us first consider the case where n is even, say n = 2k. Then (12) and
Theorem 8 gives

p′2k(0)
q′2k(0)

= −a′2(0)− a′4(0)− . . .− a′2k(0)

= −
∑

1≤i≤k
a′2i(0) =

∑

1≤i≤k
(−1)i −

∑

1≤i≤k
si

= −
∑

0≤i≤k−1

s2i+1 −
∑

1≤i≤k
s2i = −

∑

1≤i≤2k

si.

Now let us consider the case where n is odd, say n = 2k + 1. Then by (12)
and Theorem 8 we get

p′2k+1(0)
q′2k+1(0)

=
p′2k(0)
q′2k(0)

+ q′2k(0)q′2k+1(0)

=
p′2k(0)
q′2k(0)

+ ((−1)ks1s2 . . . s2k)((−1)k+1s1s2 . . . s2k+1)

=
p′2k(0)
q′2k(0)

− s2k+1 = −
∑

1≤i≤2k+1

si.

The result now follows.

R e m a r k. It is easy to prove by induction that
∑

1≤k≤n sk is always
positive, and so we have sgn p′n(0) = −q′n(0).

R e m a r k. In true Apéry fashion, we have therefore established that the
best approximations to

∑
k≥0 1/02k are the integers −|p′n(0)|.

Our result also implies that the sequence p′n(0) is 2-regular in the sense
of Allouche and Shallit [1].

Exercise. Prove that |p′n(0)| = O(log n). Also show that, for k ≥ 0, the

base-2 representation of the least index n such that |p′n(0)| = k is

k symbols︷ ︸︸ ︷
10101 . . .

Exercise. Show that the coefficient of the second-highest term in q′n(X)
is (−1)nsn for n ≥ 1.

5. More on convergents. In the previous section, we studied the con-
stant term of the convergents to gε(X) =

∑
i≥0 εiX

−2i . Our results suggest
studying the rest of the coefficients of the convergents. To aid intuition, in
Table 1 we list the convergents p′n(X)/q′n(X) to

∑
i≥0X

−2i .
The observant reader will note that the coefficients of q′n(X) lie in

{0, 1,−1} for 0 ≤ n ≤ 9 and will naturally wonder if this is true for all n.
We prove this (and more) below in Corollary 16. For the moment, however,
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Table 1. Convergents to
∑

i≥0 X
−2i

n a′n(X) p′n(X) q′n(X)

0 0 0 1
1 X − 1 1 X − 1
2 X + 2 X + 2 X2 +X − 1
3 X X2 + 2X + 1 X3 +X2 − 1
4 X X3 + 2X2 + 2X + 2 X4 +X3 +X2 − 1
5 X − 2 X4 −X2 − 3 X5 −X4 −X2 −X + 1
6 X X5 + 2X2 −X + 2 X6 −X5 +X4 +X − 1
7 X + 2 X6 + 2X5 +X4 + 2X3 + 2X2 + 1 X7 +X6 +X4 − 1
8 X X7 + 2X6 + 2X5 X8 +X7 +X6 +X4 − 1

+ 2X4 + 2X3 + 2X2 + 2
9 X − 2 X8 −X6 −X4 − 2X2 + 2X − 3 X9 −X8 −X6 +X5 −X4 −X + 1

we turn to the study of hε(X) = Xgε(X) instead. This series is somewhat
easier to handle and, as we will see in Section 6, the results we obtain for
hε(X) will also imply results for gε(X).

Again, to build intuition, we provide a brief table of the convergents
pn(X)/qn(X) to X

∑
i≥0X

−2i .

Table 2. Convergents to X
∑

i≥0 X
−2i

n an(X) pn(X) qn(X)

0 1 1 1
1 X X + 1 X

2 −X −X2 −X + 1 −X2 + 1
3 −X X3 +X2 + 1 X3

4 −X −X4 −X3 −X2 − 2X + 1 −X4 −X2 + 1
5 X −X5 −X4 −X2 +X + 1 −X5 +X

6 X −X6 −X5 −X4 − 2X3 −X + 1 −X6 −X4 + 1
7 −X X7 +X6 +X4 + 1 X7

8 −X −X8 −X7 −X6 − 2X5 −X4 − 2X3 − 2X + 1 −X8 −X6 −X4 + 1
9 X −X9 −X8 −X6 −X5 −X4 − 2X2 +X + 1 −X9 −X5 +X

We begin our investigation by studying the denominators qn(X) of con-
vergents to hε(X). Unfortunately, the notation qn(X) is no longer sufficient,
so we introduce the new notation q(a1,a2,...)

n (X) to make the dependence on
the partial quotients clear. More precisely, we define

q(a1,a2,...)
n (X) = Kn(a1, . . . , an).

(Since qn does not depend on a0, we do not specify it explicitly.)
Now let ei = ±1 for i ≥ 1, and define e = (e1, e2, . . .). By (9), we know

that qXF(e)
n (X) is the denominator of the nth convergent to hε(X), where

ε0 = 1, ε1 = e1, and εi = −ei for i ≥ 2. We now give a recursive formula
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for qXF(e)
n (X) that expresses it as the sum of two polynomials, one with

high-order terms and one with low-order terms.

Theorem 10. Write n = 2k + j, with k ≥ 0 and 0 ≤ j ≤ 2k − 1. Let
ei = ±1 for i ≥ 1. Define e = (e1, e2, . . .) and e′ = (e1, e2, . . . , ek−1,−ek).
Let F(e) = (a1, a2, . . .). Then

qXF(e)
n (X)

=





e1X if n = 1,
−ek+1X

2k+1−1 if k ≥ 1 and j = 2k − 1,
−ekek+1X

2kq
XF(e′)
j (X) + q

XF(e)
2k−j−2(X) if k ≥ 1 and 0 ≤ j ≤ 2k − 2.

P r o o f. By induction on n. The result is clearly true for n = 1. Now
assume it is true for all n′ < n; we prove it for n′ = n.

Write n = 2k + j, with k ≥ 1 and 0 ≤ j ≤ 2k − 1. We prove the identity
by considering the high- and low-order terms of the polynomial qXF(e)

j (X)

separately. To do this, we consider the polynomial modulo X2k . First, we
observe that

qXF(e)
n (X) = Kn(a1, . . . , an)

= Kn(a1, . . . , a2k , a2k+1, . . . , a2k+j)

= Kn(a1, . . . , a2k ,−a2k−1, . . . ,−a2k−j) (by Theorem 1(c))

≡ Kn(a1, . . . , a2k−1, 0,−a2k−1, . . . ,−a2k−j)

(mod a2kKn−1(a1, . . . , a2k−1)) (by Lemma 2)

≡ Kn(a1, . . . , a2k−1, 0,−a2k−1, . . . ,−a2k−j) (mod X2k)

(by the induction hypothesis)

= K2k−j−2(a1, . . . , a2k−j−2) (by Lemma 3)

and so

(13) qXF(e)
n (X) ≡ qXF(e)

2k−j−2(X) (mod X2k).

Now, recalling that n = 2k + j, define

rj(X) =
q
XF(e)
2k+j (X)− qXF(e)

2k−j−2(X)

−ekek+1X2k

for 0 ≤ j ≤ 2k − 1. (We omit the superscript on the variable rj , since it
is the same in both of the terms in the numerator of the expression that
defines it.)

By induction, we know that

q
XF(e)
2k−1 (X) = −ekX2k−1,
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so the sign of the leading coefficient of qXF(e)
2k is −ekek+1. Hence r0(X) = 1.

Similarly, it is easily verified that r−1(X) = 0. We claim that

rj(X) = a2k+jrj−1(X) + rj−2(X)

for 1 ≤ j ≤ 2k − 1. From the definition of rj(X), it suffices to verify that
both q

XF(e)
2k+j (X) and q

XF(e)
2k−j−2(X) satisfy this recurrence. The first is clear.

For the second, observe that

q2k−j = a2k−jq2k−j−1 + q2k−j−2,

so
q2k−j−2 = −a2k−jq2k−j−1 + q2k−j .

But, by Theorem 1(c), we have a2k−j = −a2k+j for 1 ≤ j ≤ 2k−1. It follows
that

q2k−j−2 = a2k+jq2k−j−1 + q2k−j ,
as desired.

Now, by the folding property,

(a2k+1, a2k+2, . . . , a2k+1−1) = (−a2k−1,−a2k−2, . . . ,−a1)

= −XF(e1, . . . , ek)R

= −X(F(e1, . . . , ek−1), ek,−F(e1, . . . , ek−1)R)R

= X(F(e1, . . . , ek−1),−ek,−F(e1, . . . , ek−1)R)

= XF(e1, . . . , ek−1,−ek),

so we have rj(X) = q
XF(e1,...,ek−1,−ek)
j (X) for 0 ≤ j ≤ 2k − 1.

Finally, it remains to see that qXF(e)
2k+1−1(X) = −ek+1X

2k+1−1. To see this,
note that we have shown that

q
XF(e)
2k+1−1(X) = −ekek+1X

2kq
XF(e′)
2k−1 (X) + q−1(X)

= −ekek+1X
2kq

XF(e′)
2k−1 (X)

= (−ekek+1X
2k)(ekX2k−1) = −ek+1X

2k+1−1,

where we have used the fact that q−1(X) = 0, induction, and the fact that
e2
k = 1. This completes the proof.

Corollary 11. All the coefficients of qXF(e)
n (X), no matter what choice

of signs is made, are in {1, 0,−1}.
P r o o f. An easy induction on n, using the fact that Theorem 10 writes

qn(X) as the sum of a polynomial with lowest nonzero term of degree X2k

and one with highest nonzero term of degree X2k−1.

We now turn to a kind of converse to Corollary 11. It is easiest to phrase
this converse in terms of something we call the infinite continuant tree T .
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The root of this infinite binary tree is labeled K0(0) = 1. If z is a node of the
tree labeled Kn−1(a1, . . . , an−1), then there is an edge labeled +1 connecting
z to its left child, labeled Kn(a1, . . . , an−1, X). There is also an edge labeled
−1 connecting z to its right child, labeled Kn(a1, . . . , an−1,−X). Figure 1
gives the first few levels of the tree T . Labels on the edges have been omitted.

Fig. 1. The first 4 levels of the continuant tree

By Corollary 11, any infinite path labeled with a paperfolding sequence
reaches nodes with labels that have only coefficients 0, 1,−1. The next the-
orem says that in T , only the paperfolding paths have this property.

Theorem 12. Suppose we define a sequence of polynomials as follows:
q−1(X) = 0, q0(X) = 1, and qi(X) = aiXqi−1(X) + qi−2(X), where ai ∈
{1,−1}. Furthermore, choose ai successively so that the resulting polynomi-
als qi(X) have coefficients in {−1, 0, 1}. Then (a1, a2, . . .) is a paperfolding
sequence.

P r o o f. Suppose, contrary to what we want to prove, that a1, a2, . . . is
not a paperfolding sequence. Then there is some index, say n, such that
a1, . . . , an is not the prefix of any paperfolding sequence. Without loss of
generality let n be the smallest such, so that a1, . . . , an−1 is the prefix of
some paperfolding sequence.

By assumption, qn = anXqn−1 + qn−2 has only coefficients 0, 1,−1, and
by Theorem 10 so does q̂n = −anXqn−1 + qn−2. Write n = 2k + j, with 0 ≤
j < 2k. If n is not a power of 2, then by reducing modulo X2k and applying
Theorem 10, we see that qn−1 has a nonzero term of the form ±X2k−j−1 and
qn−2 has a nonzero term of the form ±X2k−j . Since q̂n = −anXqn−1 +qn−2,
we see that these terms must cancel in q̂n, or else we would have a coefficient
of ±2 in the X2k−j term in q̂n. But then X2k−j has a coefficient of ±2 in
qn, a contradiction.
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It follows that n must be a power of 2. But then either choice an = ±1
corresponds to a valid prefix of a paperfolding sequence, a contradiction.

In Figure 2 below, we display the first few levels of the infinite continuant
tree with only the paperfolding paths shown.

The continuant tree T has many other interesting properties, and we
leave to the reader the pleasure of discovering some of them.

The reader will notice that in any particular level of Figure 2, the poly-
nomials are essentially the same; only the signs of the terms differ. We now
prove that this pattern continues throughout the continuant tree.

First, we define the support supp(b) of a polynomial b(X) = bnX
n+. . .+

b1X+b0 to be the set {i : bi 6= 0}, that is, the set of exponents corresponding
to nonzero coefficients. For example, supp(X5−X) = {1, 5}. We also define
[Xi]b(X) to be bi, the coefficient of the Xi term in b(X).

Corollary 13. Let F(e1, e2, . . .) be a paperfolding sequence, and define
a = XF(e1, e2, . . .). Then the set supp(qan(X)) is independent of e1, e2, . . . ,
and is equal to

{
n− 2i : 0 ≤ i ≤ n/2,

(
n− i
i

)
≡ 1 (mod 2)

}
.

P r o o f. Since e1, e2, . . . is a paperfolding sequence, it follows that the
coefficients of qan(X) are all 0, 1,−1. Now, taking everything mod 2, it follows
that qan(X) ≡ sn(X) (mod 2), where sn(X) is the denominator of the nth
convergent to [1, X,X,X, . . .]. But it is easy to prove by induction on n that

[X,X,X, . . .] =
tn+1(X)
tn(X)

, where tn(X) =
∑

0≤i≤n/2

(
n− i
i

)
Xn−2i.

Clearly sn(X) = tn(X), and the result follows.

R e m a r k. If we define am,n = [Xn]tm(X) mod 2, then it is not hard to
see that

am,n =
{

0 if m 6≡ n (mod 2),(
m+n
m−n

)
mod 2 if m ≡ n (mod 2).

Thus (am,n)m,n≥0 is a 2-automatic double sequence in the sense of Salon
[17, 18].

The size of the support of qn(X) can be computed using Theorem 10.
Define un to be the number of nonzero coefficients in qn(X). Then we have

un =





0 if n = −1,
1 if n = 0, 1,
uj + u2k−j−2 if n ≥ 2 and n = 2k + j with 0 ≤ j < 2k.
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Here is a brief table of this sequence:

Table 3. The sequence (un)

n −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
un 0 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5

This sequence is easily proved by induction to satisfy the identities

u2n = un + un−1 (n ≥ 1), u2n+1 = un (n ≥ 0).

The sequence (un)n≥0 is the Stern–Brocot sequence [23, 6], and is 2-regular
in the sense of Allouche and Shallit [1]. It is Sloane and Plouffe’s sequence
M0141 [22].

6. Results through approximation. In this section we obtain more
results on the convergents to gε(X) and hε(X) through some very simple
approximation results. Our main tool is the the following theorem:

Theorem 14. Let t(X) be a formal Laurent series with continued frac-
tion expansion [a0, a1, a2, . . .], let pn/qn be the nth convergent , and let p
and q be polynomials. Then

(a) deg(qnt− pn) = − deg qn+1 < − deg qn.
(b) If deg(qt− p) < − deg q, then p/q is a convergent to t.

P r o o f. See, for example, [14]. Note that in our statement of part (b) of
the theorem, we have omitted the superfluous condition, specified in [14],
that the polynomials p and q be relatively prime.

Up to now, most of our results have been for hε(X). We now show how
to go from results for hε(X) to results for gε(X).

Theorem 15. Let pn/qn and p′n/q
′
n be the nth convergents to hε(X) =

X
∑
i≥0 εiX

−2i and gε(X) =
∑
i≥0 εiX

−2i respectively. Then

p′n = dn(pn − pn−1)/X, q′n = dn(qn − qn−1),

where dn = ±1.

P r o o f. From Theorem 14(a), we obtain

deg(qnXg − pn) = − deg qn+1 = −(n+ 1).(14)

deg(qn−1Xg − pn−1) = − deg qn = −n.(15)

From (14) and (15), it follows that

deg((qn − qn−1)Xg − (pn − pn−1)) = −n,
and so

(16) deg((qn − qn−1)g − (pn − pn−1)/X) = −(n+ 1).
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Since pi(0) = 1 for all i ≥ −1, it follows that (pn−pn−1)/X is a polynomial.
Since deg q′n = n, it follows from Theorem 14(b) that

(pn − pn−1)/X
qn − qn−1

is the nth convergent to g. Since the degrees of numerator and denominator
agree with the degrees of p′n and q′n, it follows that

p′n = dn(pn − pn−1)/X, q′n = dn(qn − qn−1)

for some sequence (dn) of ±1’s.

R e m a r k. It is easy to determine precisely what the sequence (dn) is.
Since the sign of the leading term of p′n is clearly +1, and the sign of the
leading term of pn is

∏
1≤j≤n bj , where (b1, b2, . . .) = F(ε1,−ε2,−ε3, . . .), it

follows that dn =
∏

1≤j≤n bj .

Corollary 16. The coefficients of q′n(X) lie in {−1, 0, 1} for all n ≥ 0.

P r o o f. We know that q′n = ±(qn− qn−1), and it is easy to see q2n(X) is
an even polynomial and q2n+1(X) is an odd polynomial. The result follows.

7. Further approximation results. Let E = {(εn)n≥0 ∈ {−1,+1}N :
ε0 = 1}. Define on E the map T as follows:

T ((εn)n≥0) = (ε1εn)n≥1 = (ε1εn+1)n≥0.

For (εn)n≥0 ∈ E , let hε = X
∑
k≥0 εkX

−2k . We know that the contin-
ued fraction expansion of hε is of the form [1,±X,±X, . . .]. Denote by
pε,n(X)/qε,n(X) its nth convergent. (Note that this notation is slightly dif-
ferent from the notation we introduced in Section 5. In particular, here the
ε indicates the dependence of the convergent on a particular choice of signs
in the associated series, while in Section 5, the superscript indicated the
dependence of the convergent on the particular choice of partial quotients.)

Lemma 17. The following properties hold :

(a) deg qε,n = n,
(b) deg(hε(X)− pε,n/qε,n) = −2n− 1.

P r o o f. As the continued fraction expansion of hε is of the form [1,±X,
±X, . . .], we have

pε,n+2(X) = ±Xpε,n+1(X) + pε,n(X),

qε,n+2(X) = ±Xqε,n+1(X) + qε,n(X),

which proves our claim.

Theorem 18. The following relations hold between the polynomials
qε,2n(X), qε,2n+1(X) and the polynomial qTε,n(X):
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(a) qε,2n+1(X) = ε1XqTε,n(X2),
(b) qε,2n(X) = (−1)n(qTε,n(X2)− qTε,n−1(X2)),
(c) the polynomial qε,2n+1(X) is odd ,
(d) the polynomial qε,2n(X) is even.

P r o o f. We have

deg
(
hTε(X2)− pTε,n(X2)

qTε,n(X2)

)
= 2 deg

(
hTε(X)− pTε,n(X)

qTε,n(X)

)
(17)

= −4n− 2.

On the other hand, we have

(18) hTε(X2) = X2
∑

k≥0

ε1εk+1X
−2k+1

= ε1X(hε(X)− 1).

Combining (17) and (18), we get

(19) deg
(
hε(X)− 1− ε1

pTε,n(X2)
XqTε,n(X2)

)
= −4n− 3.

Now, considering the even- and odd-indexed convergents of hε, we get

(20)
deg

(
hε(X)− pε,2n(X)

qε,2n(X)

)
= −4n− 1,

deg
(
hε(X)− pε,2n+1(X)

qε,2n+1(X)

)
= −4n− 3.

Now, combining (19) and (20), we get

deg
(
pε,2n(X)
qε,2n(X)

− 1− ε1
pTε,n(X2)
XqTε,n(X2)

)
= −4n− 1,

deg
(
pε,2n+1(X)
qε,2n+1(X)

− 1− ε1
pTε,n(X2)
XqTε,n(X2)

)
≤ −4n− 3.

Hence

deg(XqTε,n(X2)pε,2n(X)−Xqε,2n(X)qTε,n(X2)−ε1pTε,n(X2)qε,2n(X)) = 0,

deg(XqTε,n(X2)pε,2n+1(X)−Xqε,2n+1(X)qTε,n(X2)

−ε1pTε,n(X2)qε,2n+1(X)) ≤ −1.

We thus have two polynomials, one of which has degree 0, hence is constant
and equal to its value at 0, the second of which has degree at most −1, hence
−∞ and hence is the zero polynomial. Using the values at 0 of the q’s and
p’s that we gave in Theorem 5, we get

XqTε,n(X2)pε,2n(X)−Xqε,2n(X)qTε,n(X2)− ε1pTε,n(X2)qε,2n(X) = −ε1,

XqTε,n(X2)pε,2n+1(X)−Xqε,2n+1(X)qTε,n(X2)

−ε1pTε,n(X2)qε,2n+1(X) = 0.
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Solving this linear system in qTε,n(X2) and pTε,n(X2) and noticing that, by
(3), its determinant

ε1Xpε,2n+1(X)qε,2n(X)− pε,2n(X)qε,2n+1(X)

is equal to ε1X, we obtain

qε,2n+1(X) = ε1XqTε,n(X2),

pε,2n+1(X) = pTε,n(X2) + ε1XqTε,n(X2).

This proves parts (a) and (c) of our theorem.
Now, using the recurrence relation satisfied by the qn’s and the fact that

the partial quotients of hε are ±X, we get

qε,2n+1(X) = ±Xqε,2n(X) + qε,2n−1(X).

Replacing qε,2n+1(X) (and qε,2n−1(X)) by the expressions in qTε,n(X2) (and
qTε,n−1(X2)) we have just obtained gives

ε1XqTε,n(X2) = ±Xqε,2n(X) + ε1XqTε,n−1(X2),

that is,
qε,2n(X) = ±ε1(qTε,n(X2)− qTε,n−1(X2)).

Looking at the value at 0, we get

qε,2n(X) = (−1)n(qTε,n(X2)− qTε,n−1(X2)).

This proves parts (b) and (d) of our theorem.

R e m a r k. Theorem 18 can be used to give a different proof of Corol-
lary 11. Indeed, we deduce from Theorem 18 that if the coefficients of qε,j
are all 0,±1 for all j ≤ n, then the coefficients of qε,2n and qε,2n+1 have the
same property: the different parities of qε,n and qε,n−1 ensure that there is
no “overlap” in the equation of Theorem 18(b).

We conclude the paper by proving a results about the automaticity of
the double sequence ([Xn]qm,ε(X))m,n≥0.

Theorem 19. Let (εn)n≥0 be a sequence in E. As before, let
pε,n(X)/qε,n(X) be the nth convergent of the continued fraction expansion
of hε = X

∑
k≥0 εkX

−2k . Let (aεm,n)m,n≥0 be the double sequence defined by
am,n = [Xn]qm,ε(X). Then the double sequence (aεm,n)m,n≥0 is 2-automatic
in the sense of Salon [17, 18] if and only if the sequence ε = (εj)j≥0 is
ultimately periodic.

P r o o f. Suppose first that the sequence (aεm,n)m,n≥0 is 2-automatic.
Then [17, 18] the sequence (aεn,n)n≥0 is a one-dimensional 2-automatic se-
quence. Hence, by a classical result, the sequence

(aε2j−1,2j−1)j≥0

is ultimately periodic.
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But from Theorem 18 we have

aε2m+1,2n+1 = ε1a
Tε
m,n.

By induction, it follows that

aε2j−1,2j−1 = ε1(Tε)1 . . . (T j−1ε)1a
T jε
0,0 .

Now observe that aT
jε

0,0 = 1 and (T jε)n = εjεn+j . Hence

ε1(Tε)1 . . . (T j−1ε)1 = εj = aε2j−1,2j−1.

Since (aε2j−1,2j−1)j≥0 is ultimately periodic, the sequence (εj)j≥0 is also
ultimately periodic.

Now we prove the converse. Suppose that the sequence (εj)j≥0 is ulti-
mately periodic. Theorem 18 gives the following relations:

aε2m,2n = (−1)m(aTεm,n − aTεm−1,n), aε2m+1,2n = 0,

aε2m,2n+1 = 0, aε2m+1,2n+1 = ε1a
Tε
m,n.

Denote by V εm,n for m ≥ 1 the vector

V εm,n =




aεm,n
aεm−1,n

(−1)maεm,n
(−1)maεm−1,n


 .

We then obtain
V ε2m,2n = A0,0V

Tε
m,n, V ε2m+1,2n = A1,0V

Tε
m,n,

V ε2m,2n+1 = ε1A0,1V
Tε
m,n, V ε2m+1,2n+1 = ε1A1,1V

Tε
m,n,

where the matrices Ai,j are given by

A0,0 =




0 0 1 −1
0 0 0 0
0 0 1 −1
0 0 0 0


 , A0,1 =




0 0 0 0
0 1 0 0
0 0 0 0
0 1 0 0


 ,

A1,0 =




0 0 0 0
0 0 1 −1
0 0 0 0
0 0 −1 1


 , A1,1 =




1 0 0 0
0 0 0 0
−1 0 0 0
0 0 0 0


 .

Now, examining the set of subsequences of the double sequence (V εm,n)m,n
defined by

N = {(V Tuε2jm+r,2jn+s)m,n≥0 : j ≥ 0, 0 ≤ r, s ≤ 2j − 1, u ≥ 0}
we see from the above relations that this set is finite if ε = T jε for some
j, i.e., if the sequence ε is ultimately periodic. Hence the 2-kernel of the
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sequence (V εm,n)m,n is also finite, which means that this sequence is 2-
automatic. Finally, its first component (aεm,n)m,n is also 2-automatic.

R e m a r k. The same proof works for the coefficients of the polynomial
q′ε,n, but the corresponding result for the coefficients of q′ε,n can also be
deduced from Theorem 15 and from the property that (dn)n is 2-automatic
if and only if (εn)n is ultimately periodic.
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