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1. Introduction. Let ϕ(n) be Euler’s function and let A(x):=
∑
ϕ(n)≤x1.

Erdős and Turán [5] established the asymptotic relation

(1.1) A(x) ∼ Ax (x→∞)

with

A :=
∏
p

(
1 +

1
p(p− 1)

)
= 1.9435 . . . ,

where p ranges over all prime numbers. Using analytic methods, Bateman [2]
proved that for any ε > 0 the error term of (1.1) is

(1.2) �ε x exp{−(1/
√

2− ε)
√

log x log2 x}.
In 1989, Balazard and the first author [1] gave an elementary proof of (1.2).
As it seldom occurs that an elementary result reaches the degree of accu-
racy of the best known analytic method, we may say that this elementary
method is effective. Very recently we succeeded, using the same argument, in
generalizing Bateman’s theorem to the case of algebraic number fields [13].

In this paper, we shall further develop this method to investigate distri-
bution of values of Euler’s function over integers free of large prime factors.
Let P (n) be the largest prime factor of the integer n > 1, with the conven-
tion that P (1) = 1. Defining, for x ≥ y ≥ 2,

A(x, y) :=
∑

ϕ(n)≤x, P (n)≤y
1,

we are interested in the asymptotic behaviour of this function. In view of
(1.1), we could expect that A(x, y) ∼ AΨ(x, y) holds under suitable condi-
tions on x and y, where

Ψ(x, y) :=
∑

n≤x, P (n)≤y
1

[139]
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denotes the number of positive integers ≤ x and free of prime factors > y.
The latter has been extensively studied by various authors. An excellent
survey, including an exhaustive bibliography, has been written by Hilde-
brand and Tenenbaum [9]. For x, y ≥ 2, we shall systematically use the
notation u := log x/ log y. This quantity will play a pivotal role in the study
of the asymptotic behaviour of A(x, y). Denote by logk the k-fold iterated
logarithm.

Our principal result is as follows.

Theorem 1. For any ε > 0, the asymptotic relation

(1.3) A(x, y) = Ψ(x, y)
{
A+Oε

(
log u+ log2 y log3 y

log y

)}

holds uniformly in the range

(1.4) y ≥ 2, 1 ≤ u ≤ exp{ε−1
√

log y}.
From Theorem 1, we immediately deduce the following result.

Corollary 1. In the range (1.4), we have A(x, y) ∼ AΨ(x, y) if y →∞.

Let %(u) be Dickman’s function, which is defined as the unique solution,
which is continuous at u = 1 and differentiable for u > 1, of the difference-
differential equation

u%′(u) = −%(u− 1) (u > 1)

with initial condition %(u) = 1 (0 ≤ u ≤ 1). The following formula, due to
de Bruijn [3], describes the asymptotic behaviour of log %(u):

(1.5) %(u) = exp
{
− u
(

log u+ log2(u+ 2)− 1 +O

(
log2(u+ 2)
log(u+ 2)

))}

for u ≥ 1. Combining Theorem 1 with a well-known theorem of Hildebrand
(cf. Lemma 2.3 below), we immediately get the following statement.

Corollary 2. For any ε > 0, the asymptotic formula

A(x, y) = x%(u)
{
A+Oε

(
log u+ log2 y log3 y

log y

)}

holds uniformly in the range (1.4).

For proving Theorem 1, we approximate, as in [1], Euler’s function ϕ(n)
by

ϕ(n, z) := n
∏

p|n, p≤z
(1− p−1) (z ≥ 2)
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and we consider the sum

A(x, y, z) :=
∑

ϕ(n,z)≤x, P (n)≤y
1 (x ≥ y ≥ z ≥ 2).

Let ω(n) be the number of distinct prime factors of the integer n. We have
ω(n) ≤ log n/ log 2. In addition, for ϕ(n) ≤ x we find that n� x log2 x and
logn ≤ {1 + o(1)} log x (x→∞). Hence we can deduce that

ϕ(n, z) ≥ ϕ(n) = ϕ(n, z)
∏

p|n, p>z
(1− p−1) ≥ ϕ(n, z)(1− z−1)ω(n)

≥ ϕ(n, z)(1− log n/(z log 2)) ≥ ϕ(n, z)(1− ω(n)/z)

≥ ϕ(n, z)(1− 3 log x/z),

which implies the following simple bounds:

(1.6) A(x, y, z) ≤ A(x, y) ≤ A
(

x

1− 3 log x/z
, y, z

)
.

In order to evaluate A(x, y, z), we observe that

(1.7) A(x, y, z) =
∑

ϕ(n)≤x/z, P (n)≤z
Θ

(
x

ϕ(n)
, y, z

)
+A(x, z),

where

Θ(x, y, z) := |{n ≤ x : p | n⇒ z < p ≤ y}|.
With the aid of a theorem of Saias (see below Lemma 2.1), we can derive
a precise estimate for A(x, y, z) (see Lemma 3.6 below). Finally, Theorem 1
follows from a suitable choice of z.

As for applications of Theorem 1, it seems interesting to consider the
sums ∑

ϕ(n)≤x
1/P (n),

∑

ϕ(n)≤x
logP (n),

which can be regarded as analogues of
∑
n≤x 1/P (n) and

∑
n≤x logP (n).

In 1986, Erdős, Ivić and Pomerance [6] obtained

(1.8)
∑

n≤x

1
P (n)

= x δ(x)
{

1 +O

((
log2 x

log x

)1/2)}
,

where δ(x) :=
Tx
2 %(log x/ log t)t−2 dt. Using (1.5), they proved that

(1.9) δ(x) = exp
{
−
√

2 log x log2 x

(
1 +

log3 x− 2− log 2
2 log2 x

−
{

1
8

+ o(1)
}(

log3 x

log2 x

)2)}
.
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In 1990, Tenenbaum ([14], Exercise III.5.3) showed that, for any ε > 0,
∑

n≤x
logP (n) = λx log x− λ(1− γ)x+Oε(x exp{−(log x)3/8−ε})

with λ := 1− T∞1 %(t)t−2 dt = 0.6243 . . .
We have the following results.

Theorem 2. For x ≥ 2,

∑

ϕ(n)≤x

1
P (n)

= x δ(x)
{
A+O

((
log2 x

log x

)1/2)}
.

Theorem 3. For x ≥ 2,
∑

ϕ(n)≤x
logP (n) = Aλx log x+O(x log2 x log3 x).

Acknowledgement. The authors would like to thank A. Ivić who sug-
gested them to study this problem.

2. Notations and auxiliary lemmas. For u > 1, we define ξ = ξ(u) as
the unique positive solution of the equation eξ = 1+uξ, with the convention
that ξ(u) = 0 (0 < u ≤ 1). For x, y ≥ 2, let α = α(x, y) be the unique
solution of the equation

log x =
∑

p≤y

log p
pσ − 1

.

For x, y, z ≥ 2 and d ≥ 1, we set

u :=
log x
log y

, r :=
log z
log y

, β = β(x, y) := 1− ξ(u)
log y

,

ud :=
log(x/d)

log y
, αd := α

(
x

d
, y

)
, βd := β

(
x

d
, y

)
.

Denote by ε a sufficiently small positive number and put Lε(y) :=
exp{(log y)3/5−ε}. We use c1, c2, . . . to denote positive absolute constants.

Next we shall cite some known results, which will be needed in the
proofs of Theorems 1 and 2. The first lemma is an immediate consequence of
Théorème 7 of Saias [12], which precisely describes the asymptotic behaviour
of Θ(x, y, z).

Lemma 2.1. Under the condition (1.4), the asymptotic formula

Θ(x, y, z) = Ψ(x, y)
∏

p≤z
(1− p−α){1 +Oε(re−(1−2r) log u + e−1/r)}

holds uniformly for 2u ≤ z ≤ y1/2.
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The following result is due to de Bruijn [4] and Hildebrand [7]. Here we
take this in the form of [9].

Lemma 2.2 ([9], Theorem 1.2). For any ε > 0, the asymptotic formula

(2.1) log(Ψ(x, y)/x) = {1 +Oε(1/Lε(u))} log %(u)

holds uniformly in the range

(Rε) x ≥ 2, (log x)1+ε ≤ y ≤ x.
Moreover , the lower bound in (2.1) holds uniformly for all x ≥ y ≥ 2.

The third lemma is an important result of Hildebrand [7] about Ψ(x, y).

Lemma 2.3 ([7], Theorem 1). For any ε > 0, the asymptotic formula

Ψ(x, y) = x%(u)
{

1 +Oε

(
log(u+ 1)

log y

)}

holds uniformly in the range

(Hε) y ≥ 2, 1 ≤ u ≤ exp{(log y)3/5−ε}.
The next three lemmas, due to Ivić–Tenenbaum [11] and Hildebrand–

Tenenbaum [8], describe the local behaviour of Ψ(x, y).

Lemma 2.4 ([11], Lemma 2). Under the condition (Rε), the asymptotic
formula

Ψ(x/d, y) = Ψ(x, y)d−β
{

1 +Oε

(
log2 y

log y
+

log d
log x

)}

holds uniformly for 1 ≤ d ≤ y.

Lemma 2.5 ([11], Lemma 3). Under the condition (Rε), the asymptotic
formula

Ψ(x/d, y)�ε Ψ(x, y)d−β+c1/ log y

holds uniformly for 1 ≤ d ≤ x, where c1 is a positive absolute constant.

Lemma 2.6 ([8], Theorem 3). We have, uniformly for x ≥ y ≥ 2 and
1 ≤ c ≤ y,

Ψ(cx, y) = Ψ(x, y)cα(x,y)
{

1 +O

(
1
u

+
log y
y

)}
.

From (2.10) of [8], we immediately see the following statement.

Lemma 2.7. Under the condition (Rε), the asymptotic formula

Ψ(x+ x/z, y) = Ψ(x, y){1 +Oε(1/z)}
holds uniformly for 1 ≤ z ≤ y.

The last lemma, due to Ivić [10], is useful to prove Theorem 2.
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Lemma 2.8 ([10], (4.1) and (4.3)). For any fixed θ > 0, we have
∑

n≤x

1
P (n)

= 1+
∑

p≤x

1
p
Ψ

(
x

p
, p

)
=
{

1+Oθ

(
1

(log x)θ

)} ∑

L−≤p≤L+

1
p
Ψ

(
x

p
, p

)
,

where L± := exp{
√

(1/2) log x log2 x (1± 2 log3 x/ log2 x)}.

3. Proof of Theorem 1. Before proving Theorem 1, we first prove
preliminary lemmas.

Lemma 3.1. Defining A(σ, z) :=
∏
p≤z(1 + (p − 1)−σ − p−σ), we have,

uniformly for z ≥ 2 and 0 < σ0 ≤ σ ≤ 1,

A(σ, z) = A+Oσ0(|1− σ|+ z−σ).

P r o o f. For any σ > 0 we have

(3.1) 0 ≤ (p− 1)−σ − p−σ = σ

p\
p−1

t−σ−1 dt ≤ σ(p− 1)−σ−1.

Upon putting A(σ) := A(σ,∞), this inequality allows us to write, for z ≥ 2
and 0 < σ0 ≤ σ ≤ 1,

A(σ, z) = A(σ) exp
{
O
(
σ
∑
p>z

(p− 1)−σ−1
)}

(3.2)

= A(σ) exp{O(z−σ)} = A(σ) +Oσ0(z−σ).

In addition, (3.1) implies that

A′

A
(σ) = −

∑
p

((p− 1)−σ − p−σ) log p+ (p− 1)−σ log(1− 1/p)
1 + (p− 1)−σ − p−σ

�
∑
p

p−1−σ log p�σ0 1.

Hence for 0 < σ0 ≤ σ ≤ 1 we deduce that

(3.3) A(σ) = A exp
{
−

1\
σ

A′

A
(t) dt

}
= A+Oσ0(|1− σ|).

Now the required result follows from (3.2) and (3.3).

Lemma 3.2. Under the condition (Rε), the asymptotic formula
∏

p≤z
(1− p−α) =

{
1 +Oε

(
log(u+ 1)

log y

)}∏

p≤z
(1− p−β)

holds uniformly for 2 ≤ z ≤ min{y, exp{(log y)8/5−ε/ξ(u)}}.
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P r o o f. First we observe that

(3.4)
∏

p≤z

1− p−α
1− p−β = exp

{ α\
β

∑

p≤z

log p
pσ − 1

dσ

}
.

Since α, β �ε 1 in the range (Rε) (cf. (7.8) of [8]), Lemma 13 of [8] allows
us to write

(3.5)
α\
β

∑

p≤z

log p
pσ − 1

dσ =
{

1 +Oε

(
1

Lε(z)

)} α\
β

z\
1

t−σ dt dσ +Oε(|α− β|).

Using (7.8) of [8] and noticing 2 ≤ z ≤ y, we can find that

∣∣∣
α\
β

z\
1

t−σ dt dσ
∣∣∣ =

∣∣∣∣
α\
β

z1−σ − 1
1− σ dσ

∣∣∣∣ ≤
∣∣∣
α\
β

z1−σ log z dσ
∣∣∣ = |z1−β − z1−α|

≤ zmax{1−β,1−α}(log z)|α− β|

� zξ(u)/ log y(log z)
(

1
Lε/2(y)

+
1

u(log y)2

)
.

Under the hypothesis 2 ≤ z ≤ min{y, exp{(log y)8/5−ε/ξ(u)}}, it is easy to
verify

zξ(u)/ log y(log z)
(

1
Lε/2(y)

+
1

u(log y)2

)
� log(u+ 1)

log y
.

This proves that
α\
β

∑

p≤z

log p
pσ − 1

dσ �ε
log(u+ 1)

log y
.

In view of (3.4), this is equivalent to the desired result.

Lemma 3.3. In the range

(R′ε) x ≥ 2, (log x)1+ε ≤ y ≤ √x,
we have

(3.6)
∏

p≤z
(1− p−βd) =

{
1 +Oε

(
log z
log x

)}∏

p≤z
(1− p−β)

uniformly for 1 ≤ d ≤ y and 2 ≤ z ≤ exp{ε−3(log y)/ξ(u)}. Further , under
the condition (Rε), we have

(3.7)
∏

p≤z
(1− p−βd)�ε

∏

p≤z
(1− p−β)

uniformly for 1 ≤ d ≤ x and 2 ≤ z ≤ exp{ε−3(log y)/ξ(u)}.
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P r o o f. In the range (R′ε) and for 1 ≤ d ≤ y, we have 2 ≤ u ≤ y1−ε/2

and 1 ≤ u/2 ≤ ud ≤ u. Thus it follows (cf. Lemma 2.2 of [9]) that

βd − β =
ξ(u)− ξ(ud)

log y
� u− ud

u log y
� log d

u(log y)2 �
1

log x
,

βd\
β

z\
1

t−σ dt dσ ≤ z1−β(log z)|βd − β| � zξ(u)/ log y log z
log x

�ε
log z
log x

,

since 1 ≤ d ≤ y and 2 ≤ z ≤ y. Now these estimates imply, via (3.4) and
(3.5), the assertion (3.6).

In the range (Rε) and for 1 ≤ d ≤ x, we have trivially

βd − β =
ξ(u)− ξ(ud)

log y
≤ ξ(u)

log y
�ε 1,

βd\
β

z\
1

t−σ dt dσ ≤ z1−β(log z)|βd − β| ≤ zξ(u)/ log y ξ(u) log z
log y

�ε 1.

Combining these estimates with (3.4) and (3.5) leads to the inequality (3.7).

Lemma 3.4. Under the condition (Rε), we have
∑

ϕ(n)>y, P (n)≤z
ϕ(n)−β+c1/ log y

∏

p≤z
(1− p−β)�ε e

−1/r

uniformly for

2 ≤ z ≤ min{exp{(log y)1/2+ε/5}, exp{log y log2 y/(2 + ε)ξ(u)}}.

P r o o f. Let S0 be the quantity to be estimated. By Rankin’s method,
for any η ∈ (0, 1/10] we can write

S0 ≤ y−η
∑

P (n)≤z
ϕ(n)−β+η+c1/ log y

∏

p≤z
(1− p−β).

By noticing that, for any σ > 0 and z ≥ 2,

(3.8)
∑

P (n)≤z
ϕ(n)−σ

∏

p≤z
(1− p−σ) = A(σ, z),

Lemma 3.1 and (3.4) and (3.5) yield that

S0 � y−η
∏

p≤z

1− p−β
1− p−β+η+c1/ log y

� y−η exp
{
c2

β\
β−η−c1/ log y

z\
1

t−σ dt dσ + c3η

}

� y−η exp{c4z1−β+η+c1/ log y(log z)η}
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� y−η exp{c4zξ(u)/ log y+η+c1/ log y(log z)η}.
Now the required result follows on taking η = 2/ log z.

Lemma 3.5. Under the condition (Rε), we have
∑

ϕ(n)≤y, P (n)≤z
ϕ(n)−β logϕ(n)

∏

p≤z
(1− p−β)�ε log z log2 z

uniformly for 2 ≤ z ≤ exp{ε−3(log y)/ξ(u)}.
P r o o f. Let Y ≥ 2 be a parameter to be chosen later. We define

S1 :=
∑

ϕ(n)≤Y, P (n)≤z
ϕ(n)−β logϕ(n)

∏

p≤z
(1− p−β),

S2 :=
∑

Y <ϕ(n)≤y, P (n)≤z
ϕ(n)−β logϕ(n)

∏

p≤z
(1− p−β).

The relation (3.8) and Lemma 3.1 imply immediately

(3.9) S1 ≤ A(β, z) log Y � log Y.

When Y < ϕ(n) ≤ y, we easily see that logϕ(n) ≤ ϕ(n)δ with δ :=
log2 Y/ log Y , which implies

S2 ≤
∑

ϕ(n)>Y, P (n)≤z
ϕ(n)−β+δ

∏

p≤z
(1− p−β).

As in the proof of Lemma 3.4, for any η ∈ (0, 1/10] we write

S2 ≤ Y −η
∏

p≤z

1− p−β
1− p−β+δ+η � Y −η exp{c5z1−β+η+δ(log z)(δ + η)}.

Taking η = 1/ log z leads to the estimate

(3.10) S2 � exp{− log Y/ log z + c5e
1/ε3+1zδ(1 + δ log z)}.

Combining (3.9) and (3.10) and taking Y = exp{log z log2 z}, we obtain the
desired result.

Lemma 3.6. In the range

(1.4)′ y ≥ 2, 2 ≤ u ≤ exp{ε−1
√

log y},
we have

A(x, y, z) = Ψ(x, y){A+Oε(R1)}
uniformly for

(u log y)1+ε ≤ z ≤ min{exp{(log y)1/2+ε/5}, exp{ε−3(log y)/ξ(u)}},
where

R1 :=
log u
log y

+
log2 y

log y
+

log z log2 z

log x
+re−(1−2r) log u+e−1/r+

erξ(u)

z
+r5 log2 x.
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P r o o f. We start by the expression (1.7). To evaluate the sum on the
right-hand side of (1.7), we divide the range of summation into two parts:
ϕ(n) ≤ y and y < ϕ(n) ≤ x/z. The corresponding contributions S3 and S4

can be estimated as follows.
From Lemma 2.1, we deduce that

(3.11) S3 =
∑

ϕ(n)≤y, P (n)≤z
Ψ

(
x

ϕ(n)
, y

)∏

p≤z
(1− p−αϕ(n))

×{1 +O(re−(1−2r) log u + e−1/r)}.
Lemmas 3.2 and 3.3 imply

∏

p≤z
(1− p−αϕ(n)) =

{
1 +O

(
log u
log y

+
log z
log x

)}∏

p≤z
(1− p−β).

Inserting into (3.11) and applying Lemma 2.4 to evaluate Ψ(x/ϕ(n), y), we
obtain

S3 = Ψ(x, y)
∑

ϕ(n)≤y, P (n)≤z
ϕ(n)−β

∏

p≤z
(1− p−β)

×
{

1 +O

(
log u
log y

+
log2 y

log y
+

log z
log x

+
logϕ(n)

log x
+ re−(1−2r) log u + e−1/r

)}
.

In addition, in view of (3.8), Lemmas 3.1 and 3.4 yield that

∑

ϕ(n)≤y, P (n)≤z
ϕ(n)−β

∏

p≤z
(1− p−β) = A+O

(
log u
log y

+
erξ(u)

z
+ e−1/r

)
.

Therefore by Lemma 3.5, it follows that

(3.12) S3 = Ψ(x, y)
{
A+O

(
log u
log y

+
log2 y

log y
+

log z log2 z

log x

+ re−(1−2r) log u + e−1/r +
erξ(u)

z

)}
.

Now we estimate S4. Using Lemmas 2.1 and 3.2, we can show

S4 �
∑

y<ϕ(n)≤x/z, P (n)≤z
Ψ

(
x

ϕ(n)
, y

)∏

p≤z
(1− p−αϕ(n))

�
∑

y<ϕ(n)≤x/z, P (n)≤z
Ψ

(
x

ϕ(n)
, y

)∏

p≤z
(1− p−βϕ(n)).

In addition, Lemma 2.5 and (3.7) allow us to deduce that
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S4 � Ψ(x, y)
∑

y<ϕ(n)≤x/z, P (n)≤z
ϕ(n)−β+c1/ log y

∏

p≤z
(1− p−βϕ(n))

� Ψ(x, y)
∑

ϕ(n)>y, P (n)≤z
ϕ(n)−β+c1/ log y

∏

p≤z
(1− p−β).

Thus applying Lemma 3.4 leads to the inequality

(3.13) S4 � e−1/rΨ(x, y).

It remains to control A(x, z). Since ϕ(n) ≥ c6n/ log2 n, Lemma 2.7 yields

A(x, z) ≤ Ψ(c7x log2 x, z)� Ψ(x log2 x, z).

Putting u′ := log(x log2 x)/ log z, we have u′ ≥ u/r ≥ 3u. Hence Lemma 2.2
implies

Ψ(x log2 x, z)� x(log2 x)%(u′)5/6.

Using the inequalities

(3.14) u−2u � %(u)� u−u (u ≥ 1)

which are a simple consequence of (1.5), we may deduce that

Ψ(x log2 x, z)� xu′−5u′/6 log2 x� xu−5u′/6r5u′/6 log2 x

� xu−5u/2r5u/2 log2 x� x%(u)5/4r5u/2 log2 x.

Thus Lemma 2.2 yields that

(3.15) Ψ(x log2 x, z)� Ψ(x, y)r5u/2 log2 x� Ψ(x, y)r5 log2 x.

Combining (3.12) and (3.13) with (3.15), we obtain the desired result.

We can now complete the proof of Theorem 1.
When y is bounded, the result follows by trivial arguments. Hence we

may suppose y ≥ y0, where y0 := y0(ε) is a sufficiently large constant
depending on ε.

First we consider the case

y ≥ y0, 2 ≤ u ≤ exp{ε−1
√

log y}.
Let z be a parameter to be chosen later which satisfies

(3.16) (u log y)1+ε ≤ z ≤ min{exp{(log y)1/2+ε/5}, exp{ε−3 log y/ξ(u)}}.
The relation (1.6) and Lemmas 3.6 and 2.7 allow us to write A(x, y) =
Ψ(x, y){A+Oε(R2)}, where

R2 :=
log u
log y

+
log2 y

log y
+

log z log2 z

log x
+ re−(1−2r) log u

+ e−1/r +
erξ(u)

z
+ r5 log2 x+

log x
z

.
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If 2 ≤ u ≤ log y, for the choice z = (u log y)2 we obtain

A(x, y) = Ψ(x, y)
{
A+Oε

(
log2 y log3 y

log y

)}
.

When log y < u ≤ (log y)1/ε, we take z = u3. Noticing that ξ(u) ∼ log u
for u → ∞ (cf. Lemma 2.2 of [9]), it is easy to verify that this value of z
satisfies (3.16). We have

A(x, y) = Ψ(x, y)
{
A+Oε

(
log u
log y

)}
.

If (log y)1/ε < u ≤ exp{ε−1√log y}, the choice z := exp{(2ε−1 + 1)
√

log y}
gives the required result.

Next we consider the case

y ≥ y0, 1 ≤ u < 2.

We observe that

A(x, y) =
∑

ϕ(n)≤x
1−

∑

ϕ(n)≤x, y<P (n)≤x
1 = A(x)−

∑

y<p≤x
A(x/(p− 1)).

Using (1.1) and (1.2), we easily show that

A(x, y) = Ax(1− log u) +O(x/ log y + xR3),

where

R3 :=
∑

y<p≤x

1
p

exp{−
√

log(x/p)}.

On the one hand, the prime number theorem allows us to deduce that

R3 �
x\
y

e−
√

log(x/t)

t log t
dt.

On the other hand, the change of variables v := log x− log t yields that

R3 � 1
log x

(1−1/u) log x\
0

e−
√
v

1− v/ log x
dv � 1

log x

∞\
0

e−
√
v dv � 1

log x
.

This proves that

A(x, y) = x(1− log u)
{
A+O

(
1

log x

)}
.

By noticing that %(u) = 1− log u (1 ≤ u ≤ 2), Lemma 2.3 implies

A(x, y) = x%(u)
{
A+O

(
1

log x

)}
= Ψ(x, y)

{
A+O

(
1

log y

)}
.

This completes the proof of Theorem 1.
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4. Proof of Theorem 2. In view of (1.8), it is sufficient to prove

(4.1)
∑

ϕ(n)≤x

1
P (n)

=
{
A+O

((
log2 x

log x

)1/2)}∑

n≤x

1
P (n)

.

Put I := [L−, L+], where L−, L+ are defined as in Lemma 2.8. We split
the range of summation into two parts: ϕ(n) ≤ x, P (n) ∈ I, and ϕ(n) ≤
x, P (n) 6∈ I. The corresponding contributions are denoted by T1 and T2,
respectively.

We first estimate T2. For ϕ(n) ≤ x and P (n) 6∈ I, we write n = P (n)νm
with P (m) < P (n). Since ϕ(n) ≤ x implies n ≤ c8x log2 x, we have ν ≤
(log n)/ logP (n) ≤ c9(log x)/ logP (n). Thus it follows that

T2 =
∑

p 6∈I

∑

1≤ν≤c9(log x)/ log p

1
p

∑

ϕ(m)≤x/pν−1(p−1), P (m)<p

1

� log x
∑

p 6∈I

1
p log p

A

(
x

p− 1
, p

)
.

In order to estimate the last sum, we decompose it into four parts:

T2,1 :=
∑

p≤M

1
p log p

A

(
x

p− 1
, p

)
,

T2,2 :=
∑

M<p<L−

1
p log p

A

(
x

p− 1
, p

)
,

T2,3 :=
∑

L+<p≤
√
x+1

1
p log p

A

(
x

p− 1
, p

)
,

T2,4 :=
∑

√
x+1<p≤x+1

1
p log p

A

(
x

p− 1
, p

)
,

where M := exp{√log x}.
For T2,1, by Theorem 1 we have

T2,1 ≤
∑

p≤M

1
p log p

A(x,M)� A(x,M)� Ψ(x,M).

Hence Lemma 2.2, (3.14) and (1.9) imply that

T2,1 � x%(
√

log x)4/5 � xe−(2/5)
√

log x log2 x(4.2)

� xδ(x)
(log x)2 �

1
(log x)2

∑

n≤x

1
P (n)

.

The sums T2,2 and T2,3 can be estimated as follows: Applying Theorem 1,
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Lemmas 2.6 and 2.8, we see that

T2,2 �
∑

M<p<L−

1
p
Ψ

(
x

p− 1
, p

)
�

∑

M<p<L−

1
p
Ψ

(
x

p
, p

)
(4.3)

� 1
(log x)2

∑

n≤x

1
P (n)

and

T2,3 �
∑

L+<p≤
√
x+1

1
p
Ψ

(
x

p− 1
, p

)
�

∑

L+<p≤
√
x+1

1
p
Ψ

(
x

p
, p

)
(4.4)

� 1
(log x)2

∑

n≤x

1
P (n)

.

It is very easy to estimate T2,4:

T2,4 � x
∑

√
x+1<p≤x+1

1
(p− 1)p log p

�
√
x

(log x)2(4.5)

� 1
(log x)2

∑

n≤x

1
P (n)

.

Combining (4.2)–(4.5) leads to the inequality

(4.6) T2 � 1
log x

∑

n≤x

1
P (n)

.

Next we evaluate T1. For this, we write

(4.7) T1 =
∑

p∈I

1
p

∑

ϕ(n)≤x
P (n)=p, p‖n

1 +
∑

p∈I

1
p

∑

ϕ(n)≤x
P (n)=p, p2|n

1

=
∑

p∈I

1
p

∑

ϕ(m)≤x/(p−1)
P (m)≤p

1−
∑

p∈I

1
p

∑

ϕ(m)≤x/(p−1)
P (m)=p

1 +
∑

p∈I

1
p

∑

ϕ(n)≤x
P (n)=p, p2|n

1.

Denote by T1,1, T1,2, T1,3 the three sums on the right-hand side of (4.7),
respectively. For p ∈ I, it is easy to verify that x/(p − 1), p satisfy the
condition (1.4). Thus Theorem 1 and Lemma 2.7 yield immediately that

T1,1 =
∑

p∈I

1
p
A

(
x

p− 1
, p

)
=
{
A+O

((
log2 x

log x

)1/2)}∑

p∈I

1
p
Ψ

(
x

p− 1
, p

)

=
{
A+O

((
log2 x

log x

)1/2
+

1
L−

)}∑

p∈I

1
p
Ψ

(
x

p
, p

)
.
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Therefore Lemma 2.8 implies

T1,1 =
{
A+O

((
log2 x

log x

)1/2)}∑

n≤x

1
P (n)

.

By Theorem 1 and Lemma 2.6, we have

T1,2 � log x
∑

p∈I

1
p
A

(
x

(p− 1)2 , p

)

� log x
∑

p∈I

1
p
Ψ

(
x

(p− 1)2 , p

)
� log x

∑

p∈I

1
p
Ψ

(
x

p2 , p

)

and

T1,3 � log x
∑

p∈I

1
p
A

(
x

p(p− 1)
, p

)

� log x
∑

p∈I

1
p
Ψ

(
x

p(p− 1)
, p

)
� log x

∑

p∈I

1
p
Ψ

(
x

p2 , p

)
.

For p ∈ I, we easily see that β(x/p, p) = 1 +O(log2 x/
√

log x) > 1/2. Thus
Lemmas 2.4 and 2.8 yield that

∑

p∈I

1
p
Ψ

(
x

p2 , p

)
� 1√

L−

∑

p∈I

1
p
Ψ

(
x

p
, p

)
� 1√

L−

∑

n≤x

1
P (n)

.

Inserting these estimates in (4.7), we obtain

(4.8) T1 =
{
A+O

((
log2 x

log x

)1/2)}∑

n≤x

1
P (n)

.

Now the desired result (4.1) follows from (4.6) and (4.8).

5. Proof of Theorem 3. Let U be the sum to be evaluated. We have

(5.1) U = A(x) log x−
∑

ϕ(n)≤x

x\
P (n)

dy

y
= A(x) log x−

x\
1

A(x, y)
dy

y
.

To estimate the last integral, we decompose it into two parts:

U1 :=
exp{(ε log2 x)2}\

1

A(x, y)
dy

y
, U2 :=

x\
exp{(ε log2 x)2}

A(x, y)
dy

y
.

Using the trivial inequality (see Theorem III.5.1 of [14])

A(x, y)� Ψ(x log2 x, y)� x(log2 x)e−u/2,
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we can find that

(5.2) U1 �ε x exp{−(log x)1−ε}.
For U2, Corollary 2 allows us to write U2 = AxU ′2 +O(xU ′′2 ), where

U ′2 :=
x\

exp{(ε log2 x)2}
%

(
log x
log y

)
dy

y
,

U ′′2 :=
x\

exp{(ε log2 x)2}
%

(
log x
log y

)
log(log x/ log y) + log2 y log3 y

log y
dy

y
.

By the change of variables t := log x/ log y, a simple calculation shows that

U ′2 =
∞\
1

%(t)t−2 dt log x+Oε(exp{−(log x)1−ε}),

U ′′2 �
(log x)/(ε log2 x)2\

1

%(t)
log t+ log2 x log3 x

t
dt� log2 x log3 x,

which implies

(5.3) U2 = A

∞\
1

%(t)t−2 dt x log x+O(x log2 x log3 x).

Inserting (5.2)–(5.3) in (5.1) and using (1.2), we obtain the result of Theo-
rem 3.
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