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1. Let k be the real quadratic field Q(
√

37), χ̃ the associated Legendre
character modulo 37, σ the generator of the Galois group Gal(k/Q), and

Γ0 = Γ0(37) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod 37)
}
.

Then

χ :
(
a b
c d

)
7→ χ̃(a)

is a homomorphism of Γ0 onto {±1}. Set Γχ = ker(χ). Denote by X0

(resp. Xχ) the modular curve corresponding to Γ0 (resp. Γχ) with Jaco-
bian J0 (resp. Jχ). Put J = coker(J0 → Jχ), where the map J0 → Jχ is
induced by the natural inclusion Γχ → Γ0. The algebraic variety J is an
abelian variety of dimension 2 defined over Q that is obtained from the
eigenform in the space S2(Γ0, χ̃) of cusp forms of “Neben”-type of weight
two. Moreover, J splits over k as a product E37 × Eσ37 of elliptic curves
defined over k, where Eσ37 stands for the conjugate curve of E37. It is also
shown that the Hasse–Weil L-function of E37 has an analytic continuation
to the whole complex plane and satisfies the functional equation (cf. [13]).
Note that the elliptic curve E37 has no complex multiplication (cf. [11]).
Further, the curve E37, which we call Shimura’s elliptic curve over k, has
the following interesting properties:

(I) E37 has good reduction at every finite place of the ring of algebraic
integers in k (see [2] and [5], V, 3.7(ii));

(II) E37 is isogenous to Eσ37.

It is known that the degree of the isogeny in (II) is one, i.e., E37 is
isomorphic to its Galois conjugate. (Such elliptic curves are usually called
Q-curves.) For the fact cited above, we refer to [13], §§7.5, 7.7, [14],
and [15].

[157]
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In this paper, we shall give the following characterization of Shimura’s
elliptic curve E37.

Theorem. Every elliptic curve defined over k with good reduction every-
where that is isomorphic to its Galois conjugate is isogenous to Shimura’s
elliptic curve E37 over k.

To prove this, we shall find all elliptic curves with the above properties.
In the next section, by using Setzer’s result [12], we reduce the problem
to solving a set of Diophantine equations and, in Section 3, we solve these
equations by the method of Steiner [18] and Tzanakis–de Weger [19]. We
prove the theorem in the last section.

Here we should mention a result of Shiota. In his paper [16], he computed
an explicit model of E37 and characterized it by its torsion point structure.
Our characterization, on the other hand, is more intrinsic (see the end of
Section 4).

The notations introduced in this section will be used throughout the
paper. In addition, for an elliptic curve E, let j(E) denote the j-invariant
of E.

2. An elliptic curve defined over k is called special if it has good reduction
everywhere and is isomorphic to the conjugate curve. Now let E be a spe-
cial curve. Since E and Eσ are isomorphic, we have j(E) = j(Eσ) = j(E)σ.
Therefore the j-invariant of a special curve is rational. Further, it is a ratio-
nal integer, because the curve has good reduction at every finite place.

Let A be the set consisting of rational integers A that satisfy the three
conditions below:

(P1) If 2 divides A, then 16 divides A or A− 4.
(P2) If 3 divides A, then 27 divides A− 12.
(P3) The square free part of A3 − 1728 divides 37.

Proposition 1. There is a one-to-one correspondence between A and
the set of special curves over k.

R e m a r k. The two sets appearing in the statement of this proposition
are both finite. The finiteness of A follows from Siegel’s theorem ([17], §IX.3)
and Shafarevich’s theorem ([17], §IX.6) guarantees that of the latter set.

P r o o f o f P r o p o s i t i o n 1. Put
R = the set of elliptic curves over k having good reduction everywhere

with rational j-invariant,
S = the set of special curves over k.

By the argument above, we have S ⊂ R.
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For A ( 6= 0, 12) ∈ Z, u ∈ k×, define the elliptic curve EA,u by

y2 = x3 − 3A(A3 − 1728)u2x− 2(A3 − 1728)2u3.

We have j(EA,u) = A3.
Theorems 1 and 2(a) of [12] yield that every curve in R is isomorphic

to EA,u for some A ∈ {A ∈ Z | A satisfies (P1) and (P2)} and u ∈ k×.
From Theorem 2(b) in the same paper, it follows that the square-free part
of A3 − 1728 must divide the discriminant of k. The same theorem shows
that there is only one u ∈ k× for A ∈ A. So we have shown that A 7→ EA,u
gives a one-to-one correspondence between A and R.

For E = EA,u ∈ R, the conjugate curve Eσ has good reduction every-
where and the same j-invariant as E. Therefore Eσ is of the form EA,u′ . By
the uniqueness of u for A, Eσ is isomorphic to E. Hence R ⊂ S.

3. In this section, we explicitly determine the set A defined at the be-
ginning of the previous section.

We first consider the condition (P3). To find A’s satisfying it, the fol-
lowing Diophantine equations must be solved in rational integers A and B:

A3 − 1728 = B2,(1)

A3 − 1728 = −B2,(2)

A3 − 1728 = 37B2,(3)

A3 − 1728 = −37B2.(4)

Lemma 1. The Diophantine equations (1) and (2) have only one solution
(A,B) = (12, 0).

P r o o f. Setting x = A/4 (resp. x = −A/4) and y = B/8, we obtain

C1 : y2 = x3 − 27, C2 : y2 = x3 + 27,

respectively. These equations define elliptic curves over Q and their Mordell–
Weil groups are cyclic of order 2. In fact, C1 (resp. C2) is the curve 36C
(resp. 144C) in the tables in [1] (see also [4]). It is easy to see that the point
(x, y) = (3, 0) (resp. (−3, 0)) generates the group.

To solve the equations (3) and (4), we need the following result due to
Hemer.

Lemma 2 (Hemer [6], Theorems 4 and 5). Consider the equation y2 −
κf2 = x3, where κ is a square-free integer 6=1, f ∈ Z, and gcd(f, x3) is
cube-free. Suppose that the class number of the quadratic field L = Q(

√
κ)

is not divisible by 3. Denote by ε the fundamental unit of L if κ > 1.
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(i) If 2f does not contain primes that decompose in L, then all the
integral solutions of the equation y2 − κf2 = x3 can be found by solving the
equations

±y + f
√
κ = ηα3,

where α is an integer in L and η = 1 or ε if κ > 1 and η = 1 if κ < 0 and
also η = (1 +

√−3)/2 if κ = −3.
(ii) If 2f contains r different primes that decompose in L, say , pi = PiP

′
i ,

then all the integral solutions of the equation y2−κf2 = x3 can be found by
solving the equations

r∏

i=1

pqii (±y + f
√
κ) =

∏
Phii α3 = ηβα3,

where α is an integer in L and hi = 0 or the least positive integer such that
Phii is a principal ideal and all combinations of these values are considered.
When hi = 0, we put qi = 0, and when hi > 0 (and thus hi 6≡ 0 (mod 3)),
we put

qi =
{
hi − 2 if hi ≡ 1 (mod 3),
hi − 1 if hi ≡ 2 (mod 3).

Further , if κ > 0, then η = 1, ε, or ε′ (the conjugate of ε). If κ < 0 and
κ 6= −3, then η = 1, and if κ = −3, then η = 1 or (1 +

√−3)/2.

We solve the equation (4) first.

Lemma 3. The Diophantine equation (4) has only one solution (A,B) =
(12, 0).

P r o o f. Multiplying the equation by 373 and setting x = −37A and
y = 372B, we have

(5) y2 − 111(23 · 3 · 37)2 = x3.

Assume first that gcd(f, x3) is not cube-free. In this case, x is divisible
by 2. Then an elementary argument shows that 22 |x and 23 | y. Setting
x = 22x′ and y = 23y′, we obtain

y′2 − 111(3 · 37)2 = x′3.

Since 2, 3, and 37 do not decompose in L = Q(
√

111) and the class number
of L is 2, we can apply Lemma 2(i) with κ = 111 and f = 3 · 37. Thus all
the integral solutions of (5) are contained in the solutions of the equations

(6) ±y′ + 3 · 37
√

111 = ηα3,

where η = 1 or ε = 295 + 28
√

111. We set α = a+ b
√

111.
When η = 1, the equation (6) yields 37 = b (a2 + 37b2). It is easy to

solve this equation and we get only one solution (a, b) = (0, 1), from which
we obtain (x′, y′) = (−111, 0) and (A,B) = (12, 0).



Shimura’s elliptic curve 161

If η = ε, then we have

111 = 28a3 + 885a2b+ 9324ab2 + 32745b3.

It is readily seen that a ≡ 0 (mod 3). Putting a = 3a′ gives

37 = 252a′3 + 2655a′2b+ 9324a′b2 + 10915b3.

Reducing this equation modulo 32 yields 7b3 ≡ 1 (mod 32), which is impos-
sible. So there is no solution in this case.

Next we consider the case where gcd(f, x3) is cube-free. Applying Lemma
2(i) with κ = 111 and f = 23 · 3 · 37, we get the equations

±y + 23 · 3 · 37
√

111 = ηα3.

A similar argument to that above shows that the equation has one solution
(x, y) = (−444, 0), which does not meet the condition on gcd(f, x3).

The rest of this section is devoted to solving the Diophantine equation
(3). We prove:

Lemma 4. The solutions of the Diophantine equation (3) are

(A,B) = (12, 0), (16,±8), (120,±216), (3376,±32248).

P r o o f. As in the preceding lemma, multiplying the equation by 373 and
setting x = 37A and y = 372B, we get

(7) y2 + 111(23 · 3 · 37)2 = x3.

First suppose that gcd(f, x3) is cube-free. Put κ = −111 and f = 23·3·37.
It is readily shown that the class number of L = Q(

√−111) is 8 and that,
among the prime divisors of f , only 2 splits in L. Also we can show

28 =
(

5 + 3
√−111
2

)(
5− 3

√−111
2

)

is the least power of 2 dividing into principal ideals. That is, the prime
ideals lying above 2 have order 8 in the ideal class group of L. According to
Lemma 2(ii), we have to solve the equations below:

(8) ± y + 23 · 3 · 37
√−111 =

(
a+ b

√−111
2

)3

,

(9) 27(±y + 23 · 3 · 37
√−111) =

(
5 + 3

√−111
2

)(
a+ b

√−111
2

)3

.

The equation (8) yields b (a2− 37b2) = 26 · 37, from which we can derive
the solution (a, b) = (0,−4). The corresponding solution of (7) does not
satisfy the condition on gcd(f, x3).

From (9), it follows that

a3 + 5a2b− 333ab2 − 185b3 = 606208.
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Set a = x+ y and b = y. We obtain

x3 + 8x2y − 320xy2 − 512y3 = 606208.

It is easily seen that x ≡ 0 (mod 8). Writing x = 8x′, we get

x′3 + x′2y − 5x′y2 − y3 = 1184.

By putting x′ = A+B and y = A, this yields

−4A3 + 4AB2 +B3 = 1184.

By an easy argument, this implies 2 |A and 4 |B. On setting A = −2X,B =
4Y , the equation finally becomes

(10) X3 − 4XY 2 + 2Y 3 = 37.

Next we assume that gcd(f, x3) is not cube-free. Then 2 divides x. As
before, it can be shown that 4 |x and 8 | y. Replacing x (resp. y) by 4x′ (resp.
8y′) in (7), we obtain

y′2 + 111(3 · 37)2 = x′3.

Applying Lemma 2(ii) with κ = −111 and f = 3 · 37, we have the following
equations:

±y′ + 3 · 37
√−111 =

(
a+ b

√−111
2

)3

,

27(±y′ + 3 · 37
√−111) =

(
5 + 3

√−111
2

)(
a+ b

√−111
2

)3

.

The first equation yields 23 · 37 = b (a2 − 37b2). So we have the solution
(a, b) = (0,−2), which implies (A,B) = (12, 0).

From the second equation, we have

a3 + 5a2b− 333ab2 − 185b3 = 75776.

Setting a = x+ y and b = y yields

x3 + 8x2y − 320xy2 − 512y3 = 75776.

It is easily seen that x ≡ 0 (mod 8). Putting x = 8x′, we get

x′3 + x′2y − 5x′y2 − y3 = 148.

The substitution x′ = −A+B and y = −A yields

4A3 − 4AB2 +B3 = 148.

Finally, by putting A = X and B = 2Y , we again obtain the equation (10).
Therefore our problem is reduced to finding the solutions of the Thue

equation (10).
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Here we should note that, in his paper [18], Steiner solved the Thue
equation

X3 − 4XY 2 + 2Y 3 = 1.

So we make use of a part of his computation.
Let F (X,Y ) = X3 − 4XY 2 + 2Y 3 be the left hand side of (10) and set

g(X) = F (X, 1). The equation g(X) = 0 has three real roots. We denote
one of them by ϑ and consider the cubic field K = Q(ϑ). By Steiner’s
computation (cf. [18]), the ring of integers of K has a basis (1, ϑ, ϑ2) and
the fundamental units are given by

ε1 = 1− ϑ, ε2 = 1− 2ϑ.

Define

µ1 = 13− 2ϑ− 3ϑ2, µ2 = 1 + ϑ+ ϑ2

and M = {±µ1,±µ2}. Then we have a factorization 37 = µ1µ
2
2 in K. Now

the equation (10) implies N(X −Y ϑ) = 37, where N is the norm map from
K to Q. Thus we obtain

(11) X − Y ϑ = εa1
1 εa2

2 µ, a1, a2 ∈ Z, µ ∈M.

In the range H = max(|a1|, |a2|) < 26, we can find the following solutions
by a machine computation:

(µ, a1, a2;X,Y ) = (µ1,−2, 1;−3, 2),(12)

(−µ1,−1, 2;−5,−9),

(µ2,−2, 0; 7,−3),

(−µ2, 1, 0;−3,−4),

(−µ2, 9,−4;−67,−40).

On the other hand, by searching solutions of (10) in the range |X| and
|Y | < 500, we again get the above five solutions. We claim that these are all
the integral solutions of (10).

To show this, we use the algorithm due to Tzanakis and de Weger [19]
(see also [20]). In the following, we explain the algorithm and present the
computed numerical values. Let ϑ(1), ϑ(2), ϑ(3) be the roots of g(X) = 0:

ϑ(1) .= −2.21431974337753519,

ϑ(2) .= 0.53918887281088912,

ϑ(3) .= 1.67513087056664607.

Set β(i) = X − ϑ(i)Y (i ∈ I), where I = {1, 2, 3}. We define ε(i)
1 , etc., in a

similar way. Moreover, we put
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C1 =
22 · 37

mini∈I |g′(ϑ(i))| =
22 · 37
|g′(ϑ(2))|

.= 47.31720891589014404,

C2 =
mini,j∈I,i<j |ϑ(i) − ϑ(j)|

2
=
|ϑ(2) − ϑ(3)|

2
.= 0.567970998877878477,

Y1 = [(4C1)] = 189.

Lemma 5 ([19], Lemma 1.1). If |Y | > Y1, then X/Y is a convergent of
the continued fraction expansion of ϑ(i0), where i0 ∈ I is taken such that
|β(i0)| = mini∈I |β(i)|.

Now assume |Y | > Y1. Choose j, k ∈ I such that i0, j, k are pairwise
distinct. We eliminate X and Y from two of β(i) (i = i0, j, k) and obtain

β(i0)(ϑ(j) − ϑ(k)) + β(j)(ϑ(k) − ϑ(i0)) + β(k)(ϑ(i0) − ϑ(j)) = 0,

or equivalently

(13)
ϑ(i0) − ϑ(j)

ϑ(i0) − ϑ(k)
· β

(k)

β(j)
− 1 = − ϑ

(k) − ϑ(j)

ϑ(k) − ϑ(i0)
· β

(i0)

β(j)
.

Combining this with (11) yields

ϑ(i0) − ϑ(j)

ϑ(i0) − ϑ(k)
· µ

(k)

µ(j)
·
(
ε

(k)
1

ε
(j)
1

)a1

·
(
ε

(k)
2

ε
(j)
2

)a2

− 1

= − ϑ
(k) − ϑ(j)

ϑ(k) − ϑ(i0)
· µ

(i0)

µ(j)
·
(
ε

(i0)
1

ε
(j)
1

)a1

·
(
ε

(i0)
2

ε
(j)
2

)a2

.

Define

(14) Λ = log
∣∣∣∣
ϑ(i0) − ϑ(j)

ϑ(i0) − ϑ(k)
· µ

(k)

µ(j)

∣∣∣∣+ a1 log
∣∣∣∣
ε

(k)
1

ε
(j)
1

∣∣∣∣+ a2 log
∣∣∣∣
ε

(k)
2

ε
(j)
2

∣∣∣∣,

and H = max(a1, a2). We shall give an upper and a lower bound for |Λ| in
terms of H. Put

C3 = max
i1 6=i2 6=i3 6=i1

∣∣∣∣
ϑ(i1) − ϑ(i2)

ϑ(i1) − ϑ(i3)

∣∣∣∣ =
∣∣∣∣
ϑ(1) − ϑ(3)

ϑ(2) − ϑ(3)

∣∣∣∣
.= 3.42398698316326030168,

Y ∗2 = max(Y1, [(2C1C3/C2)1/3]) = Y1 = 189,

µ− = min
i∈I,µ∈M

|µ(i)| = µ
(3)
1

.= 1.231547958290,

µ+ = max
i∈I,µ∈M

|µ(i)| = µ
(2)
1

.= 11.049448332688,

C4 =
1 + 2 max1≤i1<i2≤3 |ϑ(i1) − ϑ(i2)|

2µ−
=

1 + 2|ϑ(1) − ϑ(3)|
2µ(3)

1
.= 3.56417351382.
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For a subset I ′ = {h1, h2} of I, let

UI′ =
(

log |ε(h1)
1 | log |ε(h1)

2 |
log |ε(h2)

1 | log |ε(h2)
2 |

)
.

Since detUI′ = ± the regulator of K, we can set

U−1
I′ =

(
u11 u12

u21 u22

)
, N [U−1

I′ ] = max
i

(|ui1|+ |ui2|).

Now we define

C5 = min(2 min
I′⊂I

N [U−1
I′ ],max

I′⊂I
N [U−1

I′ ])

= maxN [U−1
I′ ] = N [U−1

{1,2}]
.= 2.54936575324381,

and

C6 =
1.39C1C3C

3
4

C2

.= 17952.14631285.

Then an upper bound is given by

(15) |Λ| < C6 exp
(−3
C5

H

)
,

if |Y | > Y2 ([19], Lemma 2.2), where

Y2 = max(Y ∗2 , 2
3
√

37, µ+/C2) = Y ∗2 = 189.

We now need a special case of Waldschmidt’s theorem [22] (cf. [19],
Appendix II) to get a lower bound for |Λ|.

Lemma 6. Let α1, . . . , αn be nonzero algebraic numbers and b1, . . . , bn
rational integers (n ≥ 2). Set D = [Q(α1, . . . , αn) : Q]. Define the absolute
logarithmic height for αi by

h(αi) =
1
d

log
(
a0

d∏

j=1

max(1, |α(j)
i |)

)
,

where d = [Q(αi) : Q], a0 is the positive leading coefficient of the minimal
polynomial of αi over Z, and α

(j)
i ’s are the conjugates of αi. Further , let

V0 = 1/D, Vj ≥ max(h(αj), |logαj |/D, Vj−1) for 1 ≤ j ≤ n, and V +
j =

max(Vj , 1) for j = n, n− 1. Finally , put

Λ = b1 logα1 + . . .+ bn logαn,

where log is a fixed determination of the logarithm. If Λ 6= 0, then

(16) |Λ| > exp(−C7(logH + C8)),
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where the constants are defined as follows:

H = max
1≤i≤n

|bi|,

C7 = 2e(n)n2nDn+2V1 . . . Vn log(eDV +
n−1),

C8 = log(eDV +
n ),

e(n) = min(8n+ 51, 10n+ 33, 9n+ 39).

Let us return to our Λ defined by (14). Since the right hand side of (13)
is not zero, we have Λ 6= 0. So we can apply Waldschmidt’s theorem with
b1 = a1, b2 = a2, b3 = 1 and

α1 =
ε

(k)
1

ε
(j)
1

, α2 =
ε

(k)
2

ε
(j)
2

, α3 =
ϑ(i0) − ϑ(j)

ϑ(i0) − ϑ(k)
· µ

(k)

µ(j)
.

Moreover, log is taken as log | · |. For a fixed i0, even if we interchange k and
j, the absolute value of Λ remains unchanged. Hence we may choose the pair
of subscripts that make |α2| > 1. Note that, since α1 and α2 are units, the
leading coefficients of their minimal equations are both 1 and their absolute
logarithmic heights are

h(α1) .= 0.647460923, h(α2) .= 1.412669734.

Depending on the choices of i0 ∈ I and µ ∈ M , we have the following
result.

C a s e 1: µ = ±µ1. The leading coefficient of the minimal polynomial
of α3 is 373 and h(α3) .= 2.683099165.

(1) i0 = 1, j = 2, k = 3, or
(2) i0 = 2, j = 3, k = 1, or
(3) i0 = 3, j = 2, k = 1:

V1
.= 0.64746092309, V2

.= 1.41266973468, V3
.= 2.68309916596,

C7
.= 402529807284373736011187653.22971161315132497876,

C8
.= 3.77873200084140223037.

C a s e 2: µ = ±µ2. The leading coefficient of the minimal polynomial
of α3 is 1 and h(α3) .= 0.4271368408.

(1) i0 = 1, j = 2, k = 3, or
(2) i0 = 2, j = 3, k = 1, or
(3) i0 = 3, j = 2, k = 1:

V1
.= 0.64746092309, V2

.= 1.41263459880, V3
.= 1.41263459880,

C7
.= 211929376309360982692463534.89361820091842195339,

C8
.= 3.13721593991530433503.
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From the inequalities (15) and (16) on Λ and a result of Pethö and de
Weger [9], an upper bound for H is obtained.

Lemma 7 ([19], Lemma 2.4). If |Y | > Y2, then H < C9. The constant
C9 is given by

C9 =
2C5

3

(
logC6 + C7C8 + C7 log

C5C7

3

)
< 4.44 · 1028,

where the bound on the right hand side takes care of all the cases.

R e m a r k. In general, Y2 is much larger than Y1. The solutions in the
gap Y1 < |Y | < Y2 can be found by Lemma 5.

To lower the bound, we use the generalized lemma of Davenport.

Lemma 8 (Davenport, cf. [18], Lemma 1). Let θ, β be given real numbers,
M,B, p, q rational integers satisfying 6 < B, 1 ≤ q ≤ MB, |θq − p| <
2/(MB). Set H = max(|b1|, |b2|). If ‖qβ‖ ≥ 3/B, then there is no solution
of the inequality

|b1θ + b2 − β| ≤ K−H
in rational integers b1, b2 with log(B2M)/ logK ≤ H ≤ M , where ‖x‖ de-
notes the distance between x and the nearest integer.

From (15), we have

|a1 logα1 + a2 logα2 + logα3| < 17952.147 exp
( −3

2.549
H

)

≤ exp(9.795464− 1.17693H)

< exp(−0.8H) for H ≥ 26.

If i0 = 1 or 3, then it follows that∣∣∣∣a1
logα1

logα2
+ a2 +

logα3

logα2

∣∣∣∣ < exp(−0.8H) for H ≥ 26.

When i0 = 2, we get∣∣∣∣a1
logα1

logα2
+ a2 +

logα3

logα2

∣∣∣∣ < 1.1946 exp(−0.8H) ≤ exp(0.17781− 0.8H)

< exp(−0.794H) for H ≥ 26.

Hence, for all cases,∣∣∣∣a1
logα1

logα2
+ a2 +

logα3

logα2

∣∣∣∣ < exp(−0.794H) for H ≥ 26.

To apply Davenport’s lemma to our case, we must find a rational approx-
imation p/q of δ = logα1/ logα2 such that |δq − p| < 2/(MB). As Steiner
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[18] pointed out, we only have to compute the convergents of the continued
fraction expansion of δ to find the largest q satisfying q ≤MB and check if

‖qβ‖ =
∥∥∥∥−

logα3

logα2
q

∥∥∥∥ ≥ 3/B

holds. We now apply the lemma by taking

M = 4.44 · 1028, B = 100, K = exp(0.794),

where the constant M comes from the calculation of Waldschmidt’s theorem.
The number q for each case is given as follows:

C a s e 1: µ = ±µ1.

(1) i0 = 1:

q = 630290397095961978997661689337, ‖qβ‖ > 0.07217 > 0.03,

(2) i0 = 2:

q = 629151493674521381085747868917, ‖qβ‖ > 0.32283 > 0.03,

(3) i0 = 3:

q = 2873001635974139217734742858594, ‖qβ‖ > 0.11296 > 0.03.

C a s e 2: µ = ±µ2.
(1) i0 = 1:

q = 630290397095961978997661689337, ‖qβ‖ > 0.08325 > 0.03,

(2) i0 = 2:

q = 629151493674521381085747868917, ‖qβ‖ > 0.04176 > 0.03,

(3) i0 = 3:

q = 2873001635974139217734742858594, ‖qβ‖ > 0.25885 > 0.03.

Therefore we obtain H ≤ log(B2M)/ logK ≤ 95. To lower the bound
more, the lemma can be applied again with M = 95, B = 500, and we find

C a s e 1: µ = ±µ1.

(1) i0 = 1: q = 37897, ‖qβ‖ > 0.36234 > 0.006,
(2) i0 = 2: q = 35991, ‖qβ‖ > 0.33319 > 0.006,
(3) i0 = 3: q = 17317, ‖qβ‖ > 0.37880 > 0.006.

C a s e 2: µ = ±µ2.

(1) i0 = 1: q = 37897, ‖qβ‖ > 0.02617 > 0.006,
(2) i0 = 2: q = 11573, ‖qβ‖ > 0.18028 > 0.006,
(3) i0 = 3: q = 17317, ‖qβ‖ > 0.11570 > 0.006.
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Thus H < 22. Since we have computed all the solutions with this range
and obtained the five solutions in (12), these are all solutions of our Thue
equation (10) as claimed.

From (12), the integral solutions of (7) are as follows:

(x, y) = (124912,±44147512), (3144,±176040), (592,±10952),

(1120,±36296), (4440,±295704).

Since x = 37A and y = 372B, we finally obtain all the solutions of (3) listed
in the statement of the lemma.

Combining Lemmas 1, 3 and 4 with the conditions (P1) and (P2), we
have the following complete description of the set A.

Proposition 2. A = {16, 3376}.
All the above calculation is executed with an accuracy of 10−50, which

is sufficient for our purpose. Our programs have been implemented on NEC
PC-9801NS using Yuji Kida’s UBASIC86.

4. We are ready to prove our theorem.
By Proposition 1, for each value A ∈ A = {16, 3376}, there is a special

elliptic curve EA over k with j-invariant A3. So it is enough to show the
following proposition.

Proposition 3. There is an isogeny of degree 5 defined over k between
E16 and E3376.

P r o o f. We shall show that (163, 33763) is a noncuspidal point on the
modular curve X0(5) (cf. [8]). The curve is of genus zero and the rational
parametrization of the point (j, j′) on it is classically known ([7], IV.2.8):

j = j(τ) = (τ2 + 10τ + 5)3/τ, j′ = j(τ ′), ττ ′ = 125.

Taking τ = 1, we have j = 163 and j′ = 33763. The proof of the proposition
is now complete.

R e m a r k. The author was informed that the elliptic curves (1)–(4) are
classified and their ranks can be computed. In fact, the first two curves are
36C and 144C, respectively in the Antwerp IV tables [1]. The curve (3) is
the 37-twist of 36C and (4) is the 37-twist of 144C in the same table. The
rank of the curve (3) is two and all the other curves have rank zero.

Lastly, we make some comments on the general cases. Let N be a prime
number congruent to 1 modulo 4. In a similar manner to the case N = 37,
we can construct an abelian variety as a quotient of the Jacobian varieties
of modular curves. The Q-simple factor J has even dimension 2d and splits
over Q(

√
N) as J = B × Bσ, where dimB = d and B is isogenous to Bσ

with degree c (N) (determined only by N) (cf. [13]–[15]). It is known that
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the factors B and Bσ have good reduction everywhere (cf. [5]). Therefore
the case d = 1 gives a construction of elliptic curves with good reduction
everywhere. For some N , a computation has been carried out by Cremona
[3] to find explicit models of the curves. Our result naturally leads to the
following problem.

Problem. Consider an elliptic curve defined over Q(
√
N) with good

reduction everywhere that is isogenous to its Galois conjugate. Is it isogenous
of degree c (N) to Shimura’s elliptic curve constructed as above?

Pinch stated this problem as a conjecture in his thesis [10]. In fact, he
showed that torsion points of the curves satisfying the conditions in the
problem have the same class field theoretic properties (cf. [13], §7.7) as that
of Shimura’s curve.

Appendix. In this appendix, we give explicit global minimal models
of the curves E16 and E3376. Such models exist, because the class num-
ber of k = Q(

√
37) is one. Note that the model EA,u defined in the

proof of Proposition 1 is not global minimal, since its discriminant is
21236(A3 − 1728)2u3.

As mentioned in the first section, Shiota [16] gave the following global
minimal model of E16:

y2 − εy = x3 +
3ε+ 1

2
x2 +

11ε+ 1
2

x,

where ε = 6 +
√

37 is the fundamental unit of k. On this model, the point
P0 = (0, 0) is of order 5. The group generated by P0 consists of

P0,

(
ε,
ε2 + ε

2

)
,

(
ε,
−ε2 + ε

2

)
, (0, ε), O (the origin).

The isogenous curve E3376 = E16/〈P0〉 can be easily computed by Vélu’s
method [21]:

y2 − εy = x3 +
3ε+ 1

2
x2 − 1669ε+ 139

2
x− 7(5449ε+ 451).

The discriminants of these models are ε6.
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