Irregularities in the distribution of primes in an arithmetic progression

by

TI ZUO XUAN (Beijing)

1. Introduction. For $x \ge 2$ real, and q and a coprime positive integers, set

$$\theta(x;q,a) = \sum_{\substack{p \le x \\ p \equiv a \pmod{q}}} \log p = \frac{x}{\varphi(q)} (1 + \Delta(x;q,a)),$$

where φ is Euler's function.

The prime number theorem for arithmetic progressions is equivalent to the statement that $\Delta(x;q,a) = o(1)$ as $x \to \infty$, for fixed q and a. The Siegel–Walfisz theorem gave a uniform upper estimate for the function Δ , and the Bombieri–Vinogradov theorem gave a mean value estimate for Δ .

Montgomery conjectured that if (a,q) = 1 then

(1)
$$|\Delta(x;q,a)| \ll_{\varepsilon} (q/x)^{1/2-\varepsilon} \log x$$

uniformly for $q \leq x$, for any given $\varepsilon > 0$.

Recently, Friedlander and Granville [1] disproved Montgomery's conjecture (1). They showed that for any A > 0 there exist arbitrarily large values of x and integers $q \leq x/(\log x)^A$ and a with (a,q) = 1 for which $|\Delta(x;q,a)| \gg 1$.

Then Friedlander, Granville, Hildebrand and Maier [2] further showed that (1) fails to hold for almost all moduli q as small as $x \exp\{-(\log x)^{1/3-\delta}\}$, for any fixed $\delta > 0$, if the parameter ε in (1) is sufficiently small.

They also showed the following

THEOREM A [2]. Let $\varepsilon > 0$. There exist $N(\varepsilon) > 0$ and $q_0 = q_0(\varepsilon) > 0$ such that for any $q > q_0$ and any x with

$$q(\log q)^{N(\varepsilon)} < x \le q \exp\{(\log q)^{1/3}\},\$$

Project supported by the National Natural Science Foundation of the People's Republic of China.

^[173]

there exist numbers x_{\pm} with $x/2 < x_{\pm} \leq 2x$ and integers a_{\pm} coprime to q such that

(2)
$$\Delta(x_+; q, a_+) \ge (\log x)^{-5} y^{-(1+\varepsilon)\delta_1(x,y)},$$

(3)
$$\Delta(x_{-};q,a_{-}) \leq -(\log x)^{-5}y^{-(1+\varepsilon)\delta_{1}(x,y)},$$

where y = x/q and $\delta_1(x, y) = 3\log(\log y/\log_2 x)/\log(\log x \log y)$. (Here $\log_2 x = \log \log x$.)

It follows from Theorem A that (1) fails to hold for all moduli q with

$$x/(\log x)^{N(\varepsilon)} \ge q > x \exp\{-(\log x)^{1/5-\delta}\}$$

In this note, our purpose is to extend the above result by showing the following

THEOREM. For $\varepsilon > 0$, there exists $q_0(\varepsilon) > 0$ such that for any $q > q_0(\varepsilon)$ and any x with

(4)
$$q(\log q)^{1+\varepsilon} < x \le q \exp\{(\log q)^{1/3}\},$$

there exist numbers x_{\pm} with $x/2 < x_{\pm} \leq 2x$ and integers a_{\pm} coprime to q such that

(5)
$$\Delta(x_+; q, a_+) \ge (\log x)^{-3} y^{-(1+\varepsilon)\delta_2(x,y)},$$

(6)
$$\Delta(x_{-};q,a_{-}) \leq -(\log x)^{-3}y^{-(1+\varepsilon)\delta_{2}(x,y)},$$

where y = x/q and $\delta_2(x, y) = 2 \log_2 y / \log_2 x$.

It follows from the Theorem that (1) fails to hold for all moduli q with

$$x/(\log x)^{6+\varepsilon} \ge q > x \exp\{-(\log x)^{1/4-\delta}\}$$

The exponent 1/4 is the best possible, using this method.

Moreover, we note that the estimates (5) and (6) are slightly better than (2) and (3) for $q < x \exp\{-(\log_2 x)^4\}$.

2. Some lemmas. The following two lemmas are Theorem B2 and Proposition 11.1 of [2], respectively.

LEMMA 1 [2]. For $z \ge z_0$, $h \le z/2$, $k \ge 1$, and P the product of any k primes all of which are in the interval (z - h, z], we have

$$(-1)^{j-1}r_P(y) := (-1)^{j-1} \left(\sum_{n \le y, (n,P)=1} 1 - \frac{\varphi(P)}{P}y\right) \ge \frac{1}{4}y \binom{k}{j} z^{-j},$$

for every integer j with $1 \le j \le k/5$ and every real y with $(z-h)^j \ge y \ge 4jz^j/(k-j+1)$.

LEMMA 2 [2]. Fix $\varepsilon > 0$. For any squarefree integer n > 1 all of whose prime factors are $\leq n^{1-\varepsilon}$, there exists a divisor P of n, with n/P prime, such that if (a, P) = 1, $x \ge P^2$, and $x \ge h \ge x \exp(-\sqrt{\log x})$, then

$$\theta(x+h;P,a) - \theta(x;P,a) = \frac{h}{\varphi(P)} (1 + O(e^{-c\log x/\log P} + e^{-c\sqrt{\log x}})).$$

where c is a constant depending only on ε .

3. Proof of Theorem. For the proof of this result we use combinatorial means. This is a simple modification of the argument in [2]. We only prove (5), the proof of (6) is similar.

Let y = x/q. Define v to be the positive solution of the equation

(7)
$$(\lambda v \log_2 x \cdot \log x / \log y)^v = y,$$

where $\lambda = 1 + N/\log y$, $1 \le N \le 9 \log y$, and the positive integer N will be given in the latter part of the proof.

We pick j = [v] - 1 or j = [v] so that j is odd. Then we take

(8)
$$l = y^{1/j} (\log y / \log x),$$

(9)
$$z = (l+1/2)\log x/\log y, \quad h = (1/2)\log x/\log y,$$

so that $(z-h)^j = y$. By the definition of v, we have $v \leq \log y$ and

(10)
$$v \ge (\log y / \log_2 x)(1 + O(\log_3 x / \log_2 x)).$$

From this and the definition of v, we deduce

(11)
$$v \le \log y / \log_2 x.$$

Using the estimates (10) and (11), we obtain

(12)
$$\lambda \log y (1 + O(\log_3 x / \log_2 x)) \le l \le \lambda \log y \exp\{(5/2) \log_2^2 x / \log y\}.$$

Now take $k = 1 + [c \log x/(20j \log_2^2 x)]$, where c is the constant c of Lemma 2. From this, the definition of j, (10), (11) and the first inequality of (12), we deduce

(13)
$$(z-j)^j = y \ge 4jz^j/(k-j+1).$$

Let n be the product of any k+1 primes in (z-h, z] that do not divide q. By Huxley's theorem (cf. [2]) we have $\pi(z) - \pi(z-h) \sim h/\log z$ as $z \to \infty$. Now we choose N in (7). First we note that the number of distinct prime factors of q does not exceed $(1 + \varepsilon) \log x/\log_2 x$. When N runs over $1, 2, \ldots, [9 \log y]$, the intervals (z - h, z] do not overlap. Thus, there is at least one N such that the corresponding interval (z - h, z] contains less than $\nu_q = [(1 + \varepsilon) \log x/(8 \log y \cdot \log_2 x)]$ primes that divide q. By this we see that the interval (z - h, z] contains at least $\nu_q + k + 1$ primes. Moreover, we choose P as in Lemma 2, with $\varepsilon = 1/2$. As in [2], we consider the matrix $\mathcal{M} = (a_{rs})$, where $a_{rs} = \log(rP + qs)$ if rP + qs is prime, and $a_{rs} = 0$ otherwise, and where r and s run over the values $R < r \leq 2R$ and $1 \leq s \leq y$ with

(14)
$$R = (x/P) \exp\{-\sqrt{\log x}\}.$$

Let $|\mathcal{M}|$ denote the sum of the entries of \mathcal{M} . For given s, the sum of entries in the sth column equals

$$\theta(2RP+qs; P, qs) - \theta(RP+qs; P, qs).$$

This vanishes if (qs, P) > 1. Now we consider the case when s satisfies (qs, P) = 1. Applying Lemma 2 with x = PR + qs, h = PR, a = qs yields

$$|\mathcal{M}| = \sum_{n \le y, (n,P)=1} \frac{RP}{\varphi(P)} (1 + O(y^{-3})),$$

where we have used the inequalities

$$c \log x / \log P \ge c \log x / (k \log z) \ge 3 \log y,$$

which follows from (9)-(11) and the second inequality of (12).

By the definition of $r_P(y)$, we further have

(15)
$$|\mathcal{M}| = R\{y + (P/\varphi(P))r_P(y)\}(1 + O(y^{-3})).$$

On the other hand, the number of r satisfying $R < r \leq 2R$ and (r,q) = 1 equals

$$R\varphi(q)/q + O(\tau(q)) = R\varphi(q)/q(1 + O(y^{-3})).$$

Therefore we may choose some such row (say row r_0) such that the sum of the entries in this row is more than

(16)
$$(q/\varphi(q))\{y + (P/\varphi(P))r_P(y)\}(1 + O(y^{-3})).$$

Let $x_0 = x_+ = r_0 P + qy$ and $a = a_+ = r_0 P$, so (a, q) = 1. Now, the sum of the entries in row r_0 equals

$$\theta(r_0P + qy; q, r_0P) - \theta(r_0P; q, r_0P) = \theta(x_0; q, a).$$

(Since, by (14), $r_0P \leq 2RP < q$, we have therefore $\theta(r_0P; q, r_0P) = 0$.) By the definitions of θ and Δ and (14) we obtain

(17)
$$\theta(x_0; q, a) = (qy/\varphi(q))(1 + \Delta(x_0; q, a))(1 + O(y^{-3}))$$

Combining (16) and (17) yields

$$(-1)^{j-1}\Delta(x_0;q,a) \ge (-1)^{j-1}\frac{P}{\varphi(P)} \cdot \frac{r_P(y)}{y} + O(y^{-2}).$$

Thus, by Lemma 1, (9)–(11) and the second inequality of (12) we obtain

$$(-1)^{j-1} \frac{r_P(y)}{y} \ge \frac{1}{4} \binom{k}{j} \frac{1}{z^j} \gg \frac{1}{\sqrt{j}} \left(\frac{ek}{jz}\right)^j \gg \left(\frac{c_1 \log y}{j^2 l \log_2^2 x}\right)^j$$
$$\gg \exp\left\{-(1+\varepsilon) \frac{\log y}{\log_2 x} \left(2\log_2 y + \frac{5\log_2^2 x}{2\log y}\right)\right\}$$

(where $c_1 = ce/30$). From this, the desired estimate (5) follows.

References

- [1] J. Friedlander and A. Granville, *Limitations to the equi-distribution of primes I*, Ann. of Math. 129 (1989), 363–382.
- [2] J. Friedlander, A. Granville, A. Hildebrand and H. Maier, Oscillation theorems for primes in arithmetic progressions, J. Amer. Math. Soc. 4 (1991), 25–86.

Department of Mathematics Beijing Normal University Beijing 100875, China

Received on 12.7.1995

(2830)