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On the distribution of primitive abundant numbers
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A number m is primitive abundant if it is abundant (o(m) > 2m), and
all its proper divisors d are deficient (o(d) < 2d), where o(m) is the sum
of the divisors of m. Let P(n) represent the number of primitive abundant
numbers (p.a.n.) < n. In 1935, Erdés [2] proved the following result. For n
sufficiently large,

n - exp|—ciy/logn - loglogn] < P(n) < n-exp|—cay/logn - loglogn|
with ¢; = 8 and co = 1/25. In 1985, Ivié [4] improved this, proving the
inequalities with ¢; = v6 4+ ¢ and ¢, = 1/V/12 — e. In this paper, we
improve it to the following.

THEOREM. For n > ng(e)
n - exp[—(V2 + ¢)y/logn - loglogn] < P(n)
< n-exp[—(1 —¢e)/logn -loglogn].

I would like to thank Professor Carl Pomerance for suggesting the prob-
lem and for his abundant assistance.

The following notation will be standard throughout:
® h(m) = o(m)/m,
o [} =eVloenloglosn 1 — . /logn /loglogn,
e p; = p1(m) = largest prime divisor of m,
e ¢ = largest squarefull divisor of m
(n is squarefull means p|n = p? |n for all primes p),
e f = squarefree part of m; i.e. f =m/q,
® p,p; = prime numbers,
e ¢ = arbitrarily small, positive numbers, not necessarily the same at
each occurrence.

The method of proof, for both bounds, is a refinement of the one in [2]
and [4]. For the upper bound, rather than divide into 3 cases (small pq,
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large ¢, or large p; and small ¢), we divide into many cases, where both p;
and ¢ are restricted to short intervals. We are consequently able to combine
either 2 or 3 bounds from the 3 original cases (Lemmas 7 and 9). Further,
in the main case (large p; and small ¢), we are able to get an improvement
by removing the restriction that the map constructed is 1-1 (Lemmas 10
and 11).

As for the lower bound, we still consider only numbers of the form
2! . pi...p1. Rather than choosing all the primes from one small inter-
val, the smallest is chosen to essentially be as small as possible, which has
the effect of allowing the others to be chosen larger; hence there are more
choices. At the same time, one must still restrict each to a short interval,
to get sharp approximations of h(p;).

The upper bound. We first state some results from other papers that
are used.

LEMMA 1. Let F(x) be the number of squarefull numbers n < x. Then

Fla) ~ ¢(3/2) 172

¢(3)
This result is proved in [3].

LEMMA 2. Let (z,y) = >
logz <y < z°M. Then

n<a, p1(n)<y 1 and u = logx/logy. Suppose

Bla,y) < o fullto,
This result is proved in [1].
LEMMA 3. Supposen>1, m=p1...ps, P1 > ... > pp and
pi <n-(Pit1--.pe), 1<i<t-—1
Then for any D with 1 < D < m, there exists d|m with
D/(npy) <d < D.
This is equivalent to Lemma 4 of [5], with a; = log p;.
We now prove some preliminary results.

LEMMA 4. If m is a p.a.n., m < n, and m = py...ps, where p; > ...
> pt, then

pi <2logn-piy1...pe+1, t=1,...,t

Proof. Let v =p1...p; and u = pjy1...ps (if i = ¢, then uw = 1). If
the lemma is false, there exists ¢ such that p; — 1 > 2logn - u. Note that u
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is deficient, and since v < n, the number of distinct prime divisors v has is
<logn. Thus

1 1 1 1 fog
<(2-= 1+—— )< (2= )14 ——
< u>H( +2logn-u> ( u)< * 2logn-u>
plv

This contradicts the abundance of m.

COROLLARY. If m is a p.a.n., m <n, and 1 < D < m, then there exists
d|m with

D/(2logn +1)* < d < D.

Proof. This follows immediately from Lemmas 3 and 4, since p; <
2logn + 1.

LEMMA 5. Let S be the set of m that satisfy (i) m < n and (ii) ¢ > ES.
Then

S| < n/E/2.
Proof. Using Lemma 1 and partial summation we obtain
n - dt
Yoas Y ol= Y e [ (X 1)a

m<n E¢<q<n E<<q<n E¢ E¢<qg<t
a>E°

n
<n'? +n f 32 dt < m- E=¢/2,

ES
LEMMA 6. Let S be the set of m that satisfy (i) m < n and (i) py < EP.
Then for each € > 0 there is a number ng(e) such that if n > ng(e) then

S| < n/El/(Zﬁ)—e_

Proof. This follows from Lemma 2 with z = n,y = E®, since

u" = explu - logu]

logn

>

= P [ﬂ logn - loglogn
1/2 —

= exp[ /ﬁ 5Vlogn-loglogn].

1og<[logn11/2-€>]
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LEMMA 7. Let S be the set of m that satisfy (i) m < n, (ii) p1 < EP,
and (iii) B¢ < q. Then for each ¢ > 0 there is a number ng(c) such that if
n > no(e) then

S| < n/EY@0)+c/2=¢

Proof. By Lemma 5, we may assume that ¢ < E'/#*+¢. Then we may

apply Lemma 6 to obtain

.8 n/q

Then, as in Lemma 5,

o1 > Yn/gEY)

m<n, p1 <E° E¢<q<EY/A+c

E<<q<E1/é ¢
<— E 208)—e Z
EC<q<E}1/5+C

< n
= F1/@B)+¢/2—<

<3

LEMMA 8. Let m be a p.a.n. with py > E® and p?tm. Then
2 < h(m) <2+2/EP.
Proof. Since p?{m, we have (m/p1,p1) = 1. Also m/p; is deficient.
Therefore

h(m) = h(m/p1)h(p1) < 2(1+1/p1) < 2(1+ 1/E).

LEMMA 9. Let S be the set of p.a.n.s m that satisfy (1) m < n, (ii)
EP <p <EY 0<fB<a,(iii) B<q< E",0< (<7, and 3 > /2,
(iv) there exists d| f such that B¢ < d < 1EP/2. Then for each € > 0 there
is a number ng(e) such that if n > no(e) then

|S| < TL/EC+1/(2&)+C/2_€.
Proof. Define a map from S to [1,n/E°] by m — m/d. We claim that
this map is 1-1.
If my # mg and d; = dy then my/dy # ma/ds. So consider my # mo
and dy # dy and suppose that my/d; = mo/ds. Then
h(ml/dl) = h(mg/d2>
Since (m;/d;,d;) = 1 we have
It follows that
24 2/EP 1
h(d) _ h(ma) _2+2/E7 1
h(dz)  h(ma) 2 EP
using Lemma 8 (which is valid by (ii) and (iii)).
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On the other hand, since d; and dy are squarefree, h(dy) # h(dz). There-
fore, we may assume that h(d;)/h(ds) > 1. Thus, since ds is deficient,
h(dl) o O'(dl)dg > 1 1 2

_ I+ — >14 =
Wdy)  dio(dy) = dvo(da) ©2didy — T EP

by (iv), which is a contradiction. Hence, the map is 1-1.

This gives us a 1-1 correspondence between S and a subset T of [1,n/E*€].
Since d| f, the squarefull part of m/d is the same as that of m, and since
d < 1EP/2, p; is the same for both. Thus m/d satisfies (i) and (iii).
Applying Lemma 7 to T yields the result.

LEMMA 10. Let S be the set of p.a.n.s m that satisfy (i) m < n, (ii)
EP < p < E°, (iii) E¢ < q¢ < E7, where 8 > 7/2, (iv) there exists d| f
such that E* < d < E", where n > 3/2. Then

|S| < n/EQ)\—3T]+[3+1/(2a)+C/2—€‘

Proof. We follow the proof of Lemma 9, except that the map is not
necessarily 1-1. Suppose it is at worst N to 1. If d; and ds are divisors as
in (iv), we know that repeats satisfy

O'(dl )dg

1
1+ —>——=>1
+ EB = dlo'(dz) >

with o(d;) < 2d;. It follows that

2d;d
5ﬁ2 > o(dy)dy — dyo(da) >0
and thus, by (iv),
2E—F
>D >0,

where

d d

D= o l)dz — Lo(dy) and 7= (dy,0(dy)).
T T

For given values of D and d;, d is fixed mod d; /7, so the number of possi-
bilities for ds is
En
dl /’7'
Thus, given d;, the total number of possibilities for ds is
9 E2n—p8
-
This is a bound for N. It follows, as in Lemma 9, that

3n—A—p3 n
S =< 28 /a4 e

<

< B

< E"Ar = 93128,

and the result follows.
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LEMMA 11. Let S be the set of p.a.n.s m that satisfy (i) m < n, (ii)
EP < p; < EPFe) (iii) ES < q < ESTe, where B > (¢ +¢)/2, (iv) there
exists d | f with EP/2=¢/4 < d < EP/2HC/270 where § = (¢/2)-(2/3)7~ and
J = E°D) . Then

|S| <n/E'"E.

Proof. Let n; = 8/2+¢/2— (3/2)77 16 and \; = nj41 for j=1,...,J.
Note that n; = /2. Let S; be the set of p.a.n.s that satisfy (i)-(iii) and
for which there exists d| f with E* < d < E". Then S = U}]=1 S; and

therefore |S| < ijl |S;]. Now Lemma 10 applies to S; and
2\ — By + B+ 1/(20) + (/2 — £ = B/2+ 1/(26) — ¢
so it follows that
95| < TL/E/8/2+1/(2/3)*E <n/E'"¢.
Since J = E°M) | the result follows.

LEMMA 12. Let S be the set of p.a.n.s m that satisfy (1) m < n, (ii)
EP <py < EPtTe (i) BES < q < ES*e, where 8> (C+¢)/2, (iv) there exists
d| f with EP/?=C¢/2=0= < q < EB/2=C/4 where § = o(1). Then

|S| < n/E'"E.

Proof. This follows immediately from Lemma 9, since min(3/2+1/(23))
=1

We now proceed to establish

P(n) <n/E'"°.

First, by Lemma 5, those m with ¢ > E? can be ignored. Next, it
follows from the Corollary to Lemma 4 that if ¢ < E?, there exists d| f with
E'"¢ < d < JE3. Thus, by Lemma 9, those m with p; > ES and ¢ < E?
also can be ignored.

We take the remaining set of p.a.n.s m < n, with p; < E% and ¢ < E?,
divide it into < (logn)? = E°}) subsets, and establish the desired bound
on each of these.

Specifically, let S; . be the set of p.a.n.s m < n, with

eI/ L <p < eU+HD/L and e/ L <q< ek+1)/L
for 0 < j <6logn and 0 < k < 2logn.

First, we will handle those S;, with j < k. Noting that, with 8 =
(j+1)/logn and ¢ = k/logn, we have  — e < ¢, Lemma 7 yields

ISj,kI < n/El/(2B)+ﬁ/2—s < ’I’L/EI_E.

Now, for those with j > k, we will use Lemmas 11 and 12. First note
that, by the Corollary to Lemma 4, if ¢ < EST¢ then there exists a d| f



Distribution of primitive abundant numbers 201

with EP/2-¢/2-0—c < g < EP/2+C/2=0  With J and ¢ as in Lemma 11, let
J =logn = E°M) so that § = o(1). Since j > k, setting 8 = j/logn and
¢ = k/logn, we have § > (. Thus the conditions of Lemmas 11 or 12 are
satisfied by the p.a.n.s in S}, and hence we have the desired bound.

The lower bound. Here we construct a set of numbers, show them to
be primitive abundant, and underestimate the cardinality of the set. We
first need to define many parameters.

(1) ae(V2-1/L,V?2]

is chosen so that

(2) k=aL € N.
Now define

1
(4) t = [Sk2eF].

We consider sequences (k;) with
¢
(5) ki €{0,1}, > kj=k-2, and kyy =1
j=1

For each sequence we will define a set of numbers which will be shown to be
primitive abundant. These sets will be disjoint, so P(n) is at least the sum
of their cardinalities. Now define 8 by

(6) n = SEPED) (4f)k=1(1 4 §) %51k

We can now define

(™) I= [ﬁli)ogg2E]
t .
® SRPSETET
j=1
Note that, by (5),
9) 0<S<1/2

We claim that it follows from (6) that
(10) B=1/V2+o0(1).
Therefore, from (2) and (7),

(11) k= o(l).
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Indeed, since we have n = EL from the definitions of F and L, (6) implies
EPk ~ gL o pPk+B klogdk tks Eﬂk+/36k2(1+a) _ EBkto(k)
Thus faL < L < faL + o(L) by (2), which implies 1 — o(1) < fa < 1.

Our set of numbers will be those of the form m = 2!p,...p;, where
Pr < Prp_1 < ... < p are primes chosen as follows:

1 140
12 2l+1 2l+1 )
(12) P < 1-5 "1-8

We define intervals I; by

(13) I = [k(1+ 677122 k(1 4+06)722),  j=1,...,t,

and we choose k; primes from I; to give us py_1,...,p2. Finally, we choose
p1 with

(14) p1 € [k(1+0)122, k(1 4 §)123).

Note that, for any number m with p; > 2¢, which holds for the numbers
m of the above form (here ¢ = 2!), if we have h(m/p1) < 2 then it follows
that h(d) < 2 for all proper divisors d of m. Thus, we need to establish:

Proof of (A). Since ¢ = 2!,
1 1

From (12) we have
1-S

1

From (13) we have

t
kj
h(pk—1...p2) < ]1;11 (1 T 21+2>'

Note that [T(1+¢e;) < 14> e+ (> e;)? wheneache; > 0and > e; < 1/2.
Using this fact with (8) and the above, we have

52

(17) h(pr—1...p2) <1+ GREGE

2l+1 +
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Combining (15)—(17) with (9), we have

h(m/pr1) = M@)h(pr)h(Pr—1 - p2)

1 1-5 S 52
1= 9l+1 1+ 9l+1 1+ i+l 52e
1 1 S 1
=20 ) [ g+ ()

1 1 1
[1 ©920+2 T 921+3 +O(23l>] <2

Proof of (B). From (12) and (14) we have

1-8
(1+0)- 2071
1
k(14 0) - 2148

<2

(18) hpk) > 1+
(19) h(p1) > 1+
From (13) and (8) we have

(20)  h(pe-1...p2) > H1 (1 + ;MW)

t
k; - s
>1+;2k(1+6)j-2l+1 =t as

Combining (15), (18)—(20) and (9) gives

1 1-5 S
h(m>>2<1‘2l+1> (” <1+6>-2l+1)<” <1+6>-2l+l>
1
x <1+ k(1+5)t.2l+3>
1-8 S 1 1 1
2[1+<_1+ 1+6 +1+6+4k(1+5)t)2l+1 +O<2Ql>]

-5 1 1 1
Q[H <1+5 * 4k(1+5)t)2l+1 +O<22l>]'

By (3) and (4), (14 6)* < (1 +0)¥/? < ¥ and therefore
1 ) 1 1 1

1 10) 116  dker  Shek  Bhek

It follows from (11) that h(m) > 2.
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Proof of (C). Using (7), (12)—(14), and (9) we have
m = 2'p(pr—1. .. p2)p1
< EP . A(1 4 §)EP(4KEP)2(1 4 6)%i=19% . 8kEP(1 + 6)*
= 8B (4f)F—1(1 4 §)%iT7ks
Thus, by (6), m < n.
Proof of (D). By (12)—(14), (7) and the prime number theorem,
R i—1pB ki tps
P> 5355 1 it £ 7% ot £ 578
Note that (3), (4), (11), and (7) tell us
4k(1 4 0)7 < 4k(1 4 0)*/° < 4ke* = e < EF.
Likewise, for any constant ¢, ¢* = E°(). Thus, using (5),
gE=1 . gkl BBk(1 4 5)221113‘1@_,-
E°M) . (log E)*

P(n)> >
(kj)

Note that, by (2)’ (log E)k — eaLloglogE — 6(04/2)L10g10gn(1—§—o(1))
Eo/2+o()  Therefore, using (6) we find
51«—1 .n
P(n) > Z Fal2+8+o(1) "
k)

)

Applying (1), (10), (5), (3), and (4) shows that
§F1n t k_1 N
P(n) > (;)E = (k_2>5 A

n n

k—2
- 5k—1 _
— \k EV2+o(l)  EV24o(1)’
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