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1. Introduction. A Sidon set is a set A of integers with the property
that all the sums a + b, a, b ∈ A, a ≤ b are distinct. A Sidon set A ⊂
[1, N ] can have as many as (1 + o(1))

√
N elements, hence ∼ N/2 sums. The

distribution of these sums is far from arbitrary. Erdős, Sárközy and T. Sós
[1, 2] established several properties of these sumsets. Among other things, in
[2] they prove that A+A cannot contain an interval longer than C

√
N , and

give an example that N1/3 is possible. In [1] they show that A+A contains
gaps longer than c logN , while the maximal gap may be of size O(

√
N).

We improve these bounds. In Section 2, we give an example of A + A
containing an interval of length c

√
N ; hence in this question the answer is

known up to a constant factor. In Section 3, we construct A such that the
maximal gap is� N1/3. In Section 4, we construct A such that the maximal
gap of A+A is O(logN) in a subinterval of length cN .

2. Interval in the sumset. The constructions of Sections 2 and 3 are
variants of Erdős and Turán’s classical construction of a dense Sidon set (see
e.g. [3]). We quote the common idea in the form of a lemma.

Lemma 2.1. If p is a prime and i, j, k, l are integers such that

i+ j ≡ k + l (mod p) and i2 + j2 ≡ k2 + l2 (mod p),

then either i ≡ k and j ≡ l, or i ≡ l and j ≡ k.

Theorem 2.2. Let c be a positive number , c < 1/
√

54. For sufficiently
large N there is a Sidon set A ⊂ [1, N ] of integers such that A+A contains
an interval of length c

√
N .

P r o o f. Let p be the largest prime below
√

2N/3 − 4. For an integer i
let ai denote the smallest nonnegative residue of i2 modulo p. Write q =
2[p/4] + 1. Let
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si = 2i+ qai, ti = N − i− qai,
A1 = {si : p/6 < i < p/3}, A2 = {ti : p/6 < i < p/3}.

Our set will be A = A1 ∪ A2. Clearly si + ti = N + i ∈ A+ A, thus A+ A
contains an interval of length

[p/3]− [p/6] = p/6 +O(1) ∼
√
N/54.

It remains to show that A is a Sidon set.
Suppose that A contains four numbers that form a nontrivial solution of

the equation x+ y = u+ v. These numbers can be distributed between A1

and A2 in five ways. Let Case m, 0 ≤ m ≤ 4, refer to the possibility that m
are in A1 and 4−m in A2.

C a s e 0. This leads to the equation si + sj = sk + sl, or

2(i+ j − k − l) = q(ak + al − ai − aj).
Since q is odd, we have

(2.1) q | i+ j − k − l.
These numbers satisfy

(2.2) (p+ 1)/6 ≤ i, j, k, l ≤ (p− 1)/3,

hence

|i+ j − k − l| < p/3 < q,

thus (2.1) implies i+ j = k + l, hence also ai + aj = ak + al. This implies

i2 + j2 ≡ k2 + l2 (mod p).

We conclude by Lemma 2.1 that (i, j) is a permutation of (k, l).

C a s e 1. This leads to the equation si + sj = sk + tl. Since 0 < si <
p(q + 1) and tl > N − p(q + 1), the right side is always larger than the left,
as

3p(q + 1) < 3p
p+ 4

2
< N.

C a s e 2. This means either si + sj = tk + tl or si + tj = sk + tl. The
first is clearly impossible, since the left side is smaller than the right. The
second can be rewritten as

2i− 2k + l − j = q(aj + ak − ai − al).
By (2.2) we have

|2i− 2k + l − j| ≤ (p− 3)/3 < q,

thus we conclude that

(2.3) 2(i− k) = l − j
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and
ak − ai = al − aj .

This equation implies

k2 − i2 = (k − i)(k + i) ≡ l2 − j2 = (l − j)(l + j) (mod p).

By substituting 2(i− k) in place of l − j this is transformed into

(k − i)(2l + 2j − k − i) ≡ 0 (mod p).

By (2.2), the second factor satisfies 0 < 2l + 2j − k − i < p, thus it is not
a multiple of p. Hence k ≡ i, which implies k = i and we have a trivial
solution.

Case 3 is treated like Case 1, and Case 4 like Case 0.

3. An ubiquitous sumset. We say that a set X forms a d-chain in an
interval if every subinterval of length d contains at least one element of X.

Theorem 3.1. For all sufficiently large N there is a Sidon set A ⊂ [0, N ]
with the property that A + A forms a CN1/3-chain in the interval [0, 2N ].
Here C is an absolute constant.

P r o o f. Let p be the smallest prime satisfying 2p3 > 3N . As before, we
denote by ai the smallest nonnegative residue of i2 modulo p. Our set will
contain the numbers

si = ai + 2ip+ 2bip2, 0 ≤ i ≤ p− 1,

with certain integers bi.
First we show that these numbers form a Sidon set for an arbitrary choice

of the integers bi. Indeed, suppose that si + sj = sk + sl, or

(3.1) ai + aj + 2p(i+ j) + 2p2(bi + bj) = ak + al + 2p(k+ l) + 2p2(bk + bl).

By comparing the residues modulo 2p we find that

ai + aj ≡ ak + al (mod 2p).

Since the left and right sides are both in the interval [0, 2p−2], this congru-
ence implies equality. It also implies that

i2 + j2 ≡ k2 + l2 (mod p).

Now we delete the a’s from (3.1), divide by p and find that

i+ j ≡ k + l (mod p).

From Lemma 2.1 we conclude that (i, j) is a permutation of (k, l).
Now we choose bi so that A lies in [0, N ] and A+ A is dense in [0, 2N ].

Certainly si ≥ 0 if bi ≥ 0, and si ≤ N holds if we require that

(3.2) i+ pbi ≤ N − p
2p

.
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Write

M =
[
N

2p2

]
− 1.

The largest value of bi that satisfies (3.2) is either M or M + 1; it is M + 1
for

(3.3) i ≤ i0 =
[
p

{
N

2p2

}
− 1

2

]
,

and M otherwise.
Observe that since 3N ≤ 2p3, we have 3M ≤ p− 1.
We put b3r = r for 0 ≤ r ≤ M , b3r = 0 for M < r < p/3, b3r+1 = 0 for

all r and b3r+2 = M + 1 if 3r + 2 ≤ i0, b3r+2 = M otherwise.
We have to show that the numbers si+sj appear in any interval of length

CN1/3. Since 0 ≤ ai < p = O(N1/3), we have

si + sj = 2p(i+ j + p(bi + bj)) +O(N1/3),

and it is sufficient to show that the numbers i+j+p(bi+bj) form a C-chain
in [0, N/p] with a constant C.

Write
B0 = {a3r + pb3r : 0 ≤ r ≤M},
B1 = {a3r+1 + pb3r+1 : 0 ≤ r ≤ (p− 2)/3},
B2 = {a3r+2 + pb3r+2 : 0 ≤ r ≤ (p− 3)/3}.

The elements of B0 are the multiples of p+ 3 from 0 till M(p+ 3). The
elements of B1 are the numbers ≡ 1 (mod 3) between 1 and p− 1, so they
form a 6-chain in [0, p + 3]. Hence B0 + B1 forms a 6-chain in the interval
[0, (M + 1)(p+ 3)].

The elements of B2 are the numbers

(3.4) 2 + p(M + 1), 5 + p(M + 1), . . . , 2 + 3R+ p(M + 1),

where R is such that

(3.5) 2 + 3R+ p(M + 1) ≤ N − p
2p

< 2 + 3(R+ 1) + p(M + 1),

and after these the numbers

(3.6) 2 + 3(R+ 1) + pM, . . . , 2 + 3
[
p− 3

3

]
+ pM.

The length of the gaps within a block is 3. By (3.5), the first element of
the block in (3.6) is at most N/(2p)− p+ 3, the difference between the last
element of (3.6) and the first of (3.4) is at most 6, while the last element
of (3.4) is at least N/(2p) − 4 again by (3.5). Hence B2 forms a 6-chain in
[N/(2p)− (p+3), N/(2p)]. (One of the blocks may be empty; in this case we
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easily get the same conclusion.) Consequently, B0 +B2 forms a 6-chain in

[N/(2p)− (p+ 3), N/2 +M(p+ 3)].

By the definition of M we see that

N/(2p)− (p+ 3) < (M + 1)(p+ 3),

thus the intervals overlap and B0 + (B1 ∪B2) forms a 12-chain in

[0, N/2 +M(p+ 3)].

Finally, we consider B2 + B2. It forms a 6-chain in [N/p − 2(p + 3), N/p]
which overlaps with the previous interval, so together they form a 18-chain
in [0, N/p] as required.

4. With small gaps through a long interval. We show that if instead
of the whole interval [0, 2N ] we are content with a positive portion, then the
N1/3 of the previous theorem can be reduced to logN .

Theorem 4.1. For all c < 1/5 and sufficiently large N there is a Sidon
set A ⊂ [0, N ] with the property that A + A forms a C logN -chain in the
interval [N, (1 + c)N ]. Here C is a positive absolute constant.

The proof of this theorem is based on a different construction of a Sidon
set, which we describe below.

Let p be a prime, g a primitive root modulo p and write q = p(p − 1).
For each 1 ≤ i ≤ p− 1 let ai denote the solution of the congruence

ai ≡ i (mod p− 1), ai ≡ i (mod p), 1 ≤ ai ≤ q.
The set B = {ai} forms a Sidon set modulo q, that is, the sums ai+aj have
all distinct residues modulo q [4, Theorem 4.4].

We need the following additional property of B.

Lemma 4.2. For a suitable choice of g no interval of length M =
φ(p − 1)1/3 contains more than two numbers whose residues modulo q are
elements of B.

P r o o f. All elements of B satisfy gb ≡ b (mod p). Hence if there are
three in an interval of length M , say a, a + u, a + v with 0 < u < v ≤ M ,
then the congruences

ga ≡ a, ga+u ≡ a+ u, ga+v ≡ a+ v (mod p)

hold. On substituting the first into the others we obtain

a(gu − 1) ≡ v, a(gv − 1) ≡ u (mod p),

hence (observe that a ≡ ga 6≡ 0)

u(gu − 1) ≡ v(gv − 1) (mod p).
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For fixed u, v this is an equation of degree v in g, hence has at most v
solutions. By summing this for all pairs u, v we conclude that there are less
than M3 values of g for which such triplets exist. Since there are altogether
φ(p− 1) = M3 primitive roots, there must be a value of g for which no such
triplet exists.

Though it is likely that other dense Sidon sets, constructed via finite
fields, also have a similar property, we were unable to establish it.

P r o o f o f T h e o r e m 4.1. Let p be the largest prime satisfying 5p(p−
1) ≤ N . We consider the set B described above, with a g as provided by
Lemma 4.2.

We divide B into three subsets B1, B2, B3 randomly, that is, all 3p−1

partitions are considered with equal probability. We put

A = B1 ∪ (B2 + q) ∪ (5q −B3) ⊂ [1, 5q] ⊂ [1, N ].

First we show that A is a Sidon set for each partition. Suppose that A
contains four elements x, y, u, v satisfying x+y = u+v. We call B1∪(B2 +q)
the lower half and 5q −B3 the upper half of A.

If all four are from the lower half or all from the upper half, then this
would violate the Sidon property of the residues modulo q.

If one is from the lower and three from the upper half, or three from the
lower and one from the upper one, then we get a contradiction by comparing
the magnitudes.

If two variables come from each half, then there are two possibilities. If
x, y are from one half and u, v from the other, then again the magnitude of
the sides leads to a contradiction. Assume finally that both sides contain a
number from the lower and one from the upper half, say x, u from the lower
and y, v from the upper. The residues of x, u,−y,−v are elements of A and
they satisfy

x+ (−v) ≡ (−y) + u (mod q),

which again contradicts the Sidon property of A modulo q.
Now we begin to establish the chain property.
The numbers ai − aj , i 6= j, are all incongruent modulo q, and none of

them is divisible by p or p− 1. Their number is (p− 1)(p− 2), which is the
same as the total number of residues modulo q that are not divisible by p
or p− 1. Hence for every u such that p -u and p− 1 -u there is exactly one
pair i, j such that

(4.1) ai − aj ≡ u (mod q).

In particular, if 1 ≤ u ≤ q, then there is a pair i, j such that

ai − aj = u or ai − aj = u− q.
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If the first case holds, then we have

5q + u = ai + (5q − aj),
hence 5q + u ∈ A+A if ai ∈ A1 and aj ∈ A3. In the second case we have

5q + u = (ai + q) + (5q − aj),
hence 5q + u ∈ A+A if ai ∈ A2 and aj ∈ A3. In both cases

Prob(5q + u ∈ A+A) = 1/9.

Now take any interval (s, s + t] of length t = [C logN ] contained in
[5q, 6q]. In this interval there may be at most one multiple of p and one of
p− 1; each other has a chance 1/9 of being in A+ A. These events are not
independent; we can claim independence only if the numbers ai, aj used in
the representations (4.1) are all distinct. For a fixed n = 5q + u ∈ (s, s+ t]
we have to exclude those numbers that are in ai−B, aj−B, B−ai or B−aj
modulo q. By Lemma 4.2 each of these sets has at most 2 elements in an
interval of length t < M (we have M > p1/3−ε by the familiar estimates for
the φ function). Thus for any n there are at most 8 other numbers that can
spoil the independence. By the greedy algorithm we find (t− 2)/9 numbers
in (s, s + t], none divisible by p or p − 1, such that all the ai, aj in their
representations (4.1) are distinct. Hence the probability that none of them is
in A+A is less than (8/9)(t−2)/9 < 1/N if C is large enough. Consequently,
with positive probability this does not happen for any choice of s, which
means that A+A forms a C logN -chain in [5q, 6q] ⊃ [N, (6/5− ε)N ].
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