Sumsets of Sidon sets

by

Imre Z. Ruzsa (Budapest)

1. Introduction. A Sidon set is a set A of integers with the property that all the sums $a+b, a, b \in A, a \leq b$ are distinct. A Sidon set $A \subset$ $[1, N]$ can have as many as $(1+o(1)) \sqrt{N}$ elements, hence $\sim N / 2$ sums. The distribution of these sums is far from arbitrary. Erdős, Sárközy and T. Sós $[1,2]$ established several properties of these sumsets. Among other things, in [2] they prove that $A+A$ cannot contain an interval longer than $C \sqrt{N}$, and give an example that $N^{1 / 3}$ is possible. In [1] they show that $A+A$ contains gaps longer than $c \log N$, while the maximal gap may be of size $O(\sqrt{N})$.

We improve these bounds. In Section 2, we give an example of $A+A$ containing an interval of length $c \sqrt{N}$; hence in this question the answer is known up to a constant factor. In Section 3, we construct A such that the maximal gap is $\ll N^{1 / 3}$. In Section 4, we construct A such that the maximal gap of $A+A$ is $O(\log N)$ in a subinterval of length $c N$.
2. Interval in the sumset. The constructions of Sections 2 and 3 are variants of Erdős and Turán's classical construction of a dense Sidon set (see e.g. [3]). We quote the common idea in the form of a lemma.

Lemma 2.1. If p is a prime and i, j, k, l are integers such that

$$
i+j \equiv k+l(\bmod p) \quad \text { and } \quad i^{2}+j^{2} \equiv k^{2}+l^{2}(\bmod p),
$$

then either $i \equiv k$ and $j \equiv l$, or $i \equiv l$ and $j \equiv k$.
Theorem 2.2. Let c be a positive number, $c<1 / \sqrt{54}$. For sufficiently large N there is a Sidon set $A \subset[1, N]$ of integers such that $A+A$ contains an interval of length $c \sqrt{N}$.

Proof. Let p be the largest prime below $\sqrt{2 N / 3}-4$. For an integer i let a_{i} denote the smallest nonnegative residue of i^{2} modulo p. Write $q=$ $2[p / 4]+1$. Let

[^0]\[

$$
\begin{gathered}
s_{i}=2 i+q a_{i}, \quad t_{i}=N-i-q a_{i}, \\
A_{1}=\left\{s_{i}: p / 6<i<p / 3\right\}, \quad A_{2}=\left\{t_{i}: p / 6<i<p / 3\right\} .
\end{gathered}
$$
\]

Our set will be $A=A_{1} \cup A_{2}$. Clearly $s_{i}+t_{i}=N+i \in A+A$, thus $A+A$ contains an interval of length

$$
[p / 3]-[p / 6]=p / 6+O(1) \sim \sqrt{N / 54} .
$$

It remains to show that A is a Sidon set.
Suppose that A contains four numbers that form a nontrivial solution of the equation $x+y=u+v$. These numbers can be distributed between A_{1} and A_{2} in five ways. Let Case $m, 0 \leq m \leq 4$, refer to the possibility that m are in A_{1} and $4-m$ in A_{2}.

Case 0 . This leads to the equation $s_{i}+s_{j}=s_{k}+s_{l}$, or

$$
2(i+j-k-l)=q\left(a_{k}+a_{l}-a_{i}-a_{j}\right) .
$$

Since q is odd, we have

$$
\begin{equation*}
q \mid i+j-k-l . \tag{2.1}
\end{equation*}
$$

These numbers satisfy

$$
\begin{equation*}
(p+1) / 6 \leq i, j, k, l \leq(p-1) / 3, \tag{2.2}
\end{equation*}
$$

hence

$$
|i+j-k-l|<p / 3<q,
$$

thus (2.1) implies $i+j=k+l$, hence also $a_{i}+a_{j}=a_{k}+a_{l}$. This implies

$$
i^{2}+j^{2} \equiv k^{2}+l^{2}(\bmod p) .
$$

We conclude by Lemma 2.1 that (i, j) is a permutation of (k, l).
Case 1. This leads to the equation $s_{i}+s_{j}=s_{k}+t_{l}$. Since $0<s_{i}<$ $p(q+1)$ and $t_{l}>N-p(q+1)$, the right side is always larger than the left, as

$$
3 p(q+1)<3 p \frac{p+4}{2}<N .
$$

Case 2. This means either $s_{i}+s_{j}=t_{k}+t_{l}$ or $s_{i}+t_{j}=s_{k}+t_{l}$. The first is clearly impossible, since the left side is smaller than the right. The second can be rewritten as

$$
2 i-2 k+l-j=q\left(a_{j}+a_{k}-a_{i}-a_{l}\right) .
$$

By (2.2) we have

$$
|2 i-2 k+l-j| \leq(p-3) / 3<q,
$$

thus we conclude that

$$
\begin{equation*}
2(i-k)=l-j \tag{2.3}
\end{equation*}
$$

and

$$
a_{k}-a_{i}=a_{l}-a_{j}
$$

This equation implies

$$
k^{2}-i^{2}=(k-i)(k+i) \equiv l^{2}-j^{2}=(l-j)(l+j)(\bmod p)
$$

By substituting $2(i-k)$ in place of $l-j$ this is transformed into

$$
(k-i)(2 l+2 j-k-i) \equiv 0(\bmod p)
$$

By (2.2), the second factor satisfies $0<2 l+2 j-k-i<p$, thus it is not a multiple of p. Hence $k \equiv i$, which implies $k=i$ and we have a trivial solution.

Case 3 is treated like Case 1, and Case 4 like Case 0.
3. An ubiquitous sumset. We say that a set X forms a d-chain in an interval if every subinterval of length d contains at least one element of X.

Theorem 3.1. For all sufficiently large N there is a Sidon set $A \subset[0, N]$ with the property that $A+A$ forms a $C N^{1 / 3}$-chain in the interval $[0,2 N]$. Here C is an absolute constant.

Proof. Let p be the smallest prime satisfying $2 p^{3}>3 N$. As before, we denote by a_{i} the smallest nonnegative residue of i^{2} modulo p. Our set will contain the numbers

$$
s_{i}=a_{i}+2 i p+2 b_{i} p^{2}, \quad 0 \leq i \leq p-1
$$

with certain integers b_{i}.
First we show that these numbers form a Sidon set for an arbitrary choice of the integers b_{i}. Indeed, suppose that $s_{i}+s_{j}=s_{k}+s_{l}$, or
(3.1) $\quad a_{i}+a_{j}+2 p(i+j)+2 p^{2}\left(b_{i}+b_{j}\right)=a_{k}+a_{l}+2 p(k+l)+2 p^{2}\left(b_{k}+b_{l}\right)$.

By comparing the residues modulo $2 p$ we find that

$$
a_{i}+a_{j} \equiv a_{k}+a_{l}(\bmod 2 p)
$$

Since the left and right sides are both in the interval $[0,2 p-2]$, this congruence implies equality. It also implies that

$$
i^{2}+j^{2} \equiv k^{2}+l^{2}(\bmod p)
$$

Now we delete the a 's from (3.1), divide by p and find that

$$
i+j \equiv k+l(\bmod p)
$$

From Lemma 2.1 we conclude that (i, j) is a permutation of (k, l).
Now we choose b_{i} so that A lies in $[0, N]$ and $A+A$ is dense in $[0,2 N]$. Certainly $s_{i} \geq 0$ if $b_{i} \geq 0$, and $s_{i} \leq N$ holds if we require that

$$
\begin{equation*}
i+p b_{i} \leq \frac{N-p}{2 p} \tag{3.2}
\end{equation*}
$$

Write

$$
M=\left[\frac{N}{2 p^{2}}\right]-1 .
$$

The largest value of b_{i} that satisfies (3.2) is either M or $M+1$; it is $M+1$ for

$$
\begin{equation*}
i \leq i_{0}=\left[p\left\{\frac{N}{2 p^{2}}\right\}-\frac{1}{2}\right], \tag{3.3}
\end{equation*}
$$

and M otherwise.
Observe that since $3 N \leq 2 p^{3}$, we have $3 M \leq p-1$.
We put $b_{3 r}=r$ for $0 \leq r \leq M, b_{3 r}=0$ for $M<r<p / 3, b_{3 r+1}=0$ for all r and $b_{3 r+2}=M+1$ if $3 r+2 \leq i_{0}, b_{3 r+2}=M$ otherwise.

We have to show that the numbers $s_{i}+s_{j}$ appear in any interval of length $C N^{1 / 3}$. Since $0 \leq a_{i}<p=O\left(N^{1 / 3}\right)$, we have

$$
s_{i}+s_{j}=2 p\left(i+j+p\left(b_{i}+b_{j}\right)\right)+O\left(N^{1 / 3}\right),
$$

and it is sufficient to show that the numbers $i+j+p\left(b_{i}+b_{j}\right)$ form a C-chain in $[0, N / p]$ with a constant C.

Write

$$
\begin{aligned}
& B_{0}=\left\{a_{3 r}+p b_{3 r}: 0 \leq r \leq M\right\}, \\
& B_{1}=\left\{a_{3 r+1}+p b_{3 r+1}: 0 \leq r \leq(p-2) / 3\right\}, \\
& B_{2}=\left\{a_{3 r+2}+p b_{3 r+2}: 0 \leq r \leq(p-3) / 3\right\} .
\end{aligned}
$$

The elements of B_{0} are the multiples of $p+3$ from 0 till $M(p+3)$. The elements of B_{1} are the numbers $\equiv 1(\bmod 3)$ between 1 and $p-1$, so they form a 6 -chain in $[0, p+3]$. Hence $B_{0}+B_{1}$ forms a 6 -chain in the interval $[0,(M+1)(p+3)]$.

The elements of B_{2} are the numbers

$$
\begin{equation*}
2+p(M+1), 5+p(M+1), \ldots, 2+3 R+p(M+1), \tag{3.4}
\end{equation*}
$$

where R is such that

$$
\begin{equation*}
2+3 R+p(M+1) \leq \frac{N-p}{2 p}<2+3(R+1)+p(M+1) \tag{3.5}
\end{equation*}
$$

and after these the numbers

$$
\begin{equation*}
2+3(R+1)+p M, \ldots, 2+3\left[\frac{p-3}{3}\right]+p M . \tag{3.6}
\end{equation*}
$$

The length of the gaps within a block is 3 . By (3.5), the first element of the block in (3.6) is at most $N /(2 p)-p+3$, the difference between the last element of (3.6) and the first of (3.4) is at most 6 , while the last element of (3.4) is at least $N /(2 p)-4$ again by (3.5). Hence B_{2} forms a 6 -chain in $[N /(2 p)-(p+3), N /(2 p)]$. (One of the blocks may be empty; in this case we
easily get the same conclusion.) Consequently, $B_{0}+B_{2}$ forms a 6 -chain in

$$
[N /(2 p)-(p+3), N / 2+M(p+3)]
$$

By the definition of M we see that

$$
N /(2 p)-(p+3)<(M+1)(p+3)
$$

thus the intervals overlap and $B_{0}+\left(B_{1} \cup B_{2}\right)$ forms a 12-chain in

$$
[0, N / 2+M(p+3)]
$$

Finally, we consider $B_{2}+B_{2}$. It forms a 6 -chain in $[N / p-2(p+3), N / p]$ which overlaps with the previous interval, so together they form a 18 -chain in $[0, N / p]$ as required.
4. With small gaps through a long interval. We show that if instead of the whole interval $[0,2 N]$ we are content with a positive portion, then the $N^{1 / 3}$ of the previous theorem can be reduced to $\log N$.

Theorem 4.1. For all $c<1 / 5$ and sufficiently large N there is a Sidon set $A \subset[0, N]$ with the property that $A+A$ forms a $C \log N$-chain in the interval $[N,(1+c) N]$. Here C is a positive absolute constant.

The proof of this theorem is based on a different construction of a Sidon set, which we describe below.

Let p be a prime, g a primitive root modulo p and write $q=p(p-1)$. For each $1 \leq i \leq p-1$ let a_{i} denote the solution of the congruence

$$
a_{i} \equiv i(\bmod p-1), \quad a_{i} \equiv i(\bmod p), \quad 1 \leq a_{i} \leq q
$$

The set $B=\left\{a_{i}\right\}$ forms a Sidon set modulo q, that is, the sums $a_{i}+a_{j}$ have all distinct residues modulo q [4, Theorem 4.4].

We need the following additional property of B.
Lemma 4.2. For a suitable choice of g no interval of length $M=$ $\phi(p-1)^{1 / 3}$ contains more than two numbers whose residues modulo q are elements of B.

Proof. All elements of B satisfy $g^{b} \equiv b(\bmod p)$. Hence if there are three in an interval of length M, say $a, a+u, a+v$ with $0<u<v \leq M$, then the congruences

$$
g^{a} \equiv a, \quad g^{a+u} \equiv a+u, \quad g^{a+v} \equiv a+v(\bmod p)
$$

hold. On substituting the first into the others we obtain

$$
a\left(g^{u}-1\right) \equiv v, \quad a\left(g^{v}-1\right) \equiv u(\bmod p)
$$

hence (observe that $a \equiv g^{a} \not \equiv 0$)

$$
u\left(g^{u}-1\right) \equiv v\left(g^{v}-1\right)(\bmod p)
$$

For fixed u, v this is an equation of degree v in g, hence has at most v solutions. By summing this for all pairs u, v we conclude that there are less than M^{3} values of g for which such triplets exist. Since there are altogether $\phi(p-1)=M^{3}$ primitive roots, there must be a value of g for which no such triplet exists.

Though it is likely that other dense Sidon sets, constructed via finite fields, also have a similar property, we were unable to establish it.

Proof of Theorem 4.1. Let p be the largest prime satisfying $5 p(p-$ 1) $\leq N$. We consider the set B described above, with a g as provided by Lemma 4.2.

We divide B into three subsets B_{1}, B_{2}, B_{3} randomly, that is, all 3^{p-1} partitions are considered with equal probability. We put

$$
A=B_{1} \cup\left(B_{2}+q\right) \cup\left(5 q-B_{3}\right) \subset[1,5 q] \subset[1, N] .
$$

First we show that A is a Sidon set for each partition. Suppose that A contains four elements x, y, u, v satisfying $x+y=u+v$. We call $B_{1} \cup\left(B_{2}+q\right)$ the lower half and $5 q-B_{3}$ the upper half of A.

If all four are from the lower half or all from the upper half, then this would violate the Sidon property of the residues modulo q.

If one is from the lower and three from the upper half, or three from the lower and one from the upper one, then we get a contradiction by comparing the magnitudes.

If two variables come from each half, then there are two possibilities. If x, y are from one half and u, v from the other, then again the magnitude of the sides leads to a contradiction. Assume finally that both sides contain a number from the lower and one from the upper half, say x, u from the lower and y, v from the upper. The residues of $x, u,-y,-v$ are elements of A and they satisfy

$$
x+(-v) \equiv(-y)+u(\bmod q)
$$

which again contradicts the Sidon property of A modulo q.
Now we begin to establish the chain property.
The numbers $a_{i}-a_{j}, i \neq j$, are all incongruent modulo q, and none of them is divisible by p or $p-1$. Their number is $(p-1)(p-2)$, which is the same as the total number of residues modulo q that are not divisible by p or $p-1$. Hence for every u such that $p \nmid u$ and $p-1 \nmid u$ there is exactly one pair i, j such that

$$
\begin{equation*}
a_{i}-a_{j} \equiv u(\bmod q) \tag{4.1}
\end{equation*}
$$

In particular, if $1 \leq u \leq q$, then there is a pair i, j such that

$$
a_{i}-a_{j}=u \quad \text { or } \quad a_{i}-a_{j}=u-q .
$$

If the first case holds, then we have

$$
5 q+u=a_{i}+\left(5 q-a_{j}\right)
$$

hence $5 q+u \in A+A$ if $a_{i} \in A_{1}$ and $a_{j} \in A_{3}$. In the second case we have

$$
5 q+u=\left(a_{i}+q\right)+\left(5 q-a_{j}\right)
$$

hence $5 q+u \in A+A$ if $a_{i} \in A_{2}$ and $a_{j} \in A_{3}$. In both cases

$$
\operatorname{Prob}(5 q+u \in A+A)=1 / 9 .
$$

Now take any interval $(s, s+t]$ of length $t=[C \log N]$ contained in [$5 q, 6 q]$. In this interval there may be at most one multiple of p and one of $p-1$; each other has a chance $1 / 9$ of being in $A+A$. These events are not independent; we can claim independence only if the numbers a_{i}, a_{j} used in the representations (4.1) are all distinct. For a fixed $n=5 q+u \in(s, s+t]$ we have to exclude those numbers that are in $a_{i}-B, a_{j}-B, B-a_{i}$ or $B-a_{j}$ modulo q. By Lemma 4.2 each of these sets has at most 2 elements in an interval of length $t<M$ (we have $M>p^{1 / 3-\varepsilon}$ by the familiar estimates for the ϕ function). Thus for any n there are at most 8 other numbers that can spoil the independence. By the greedy algorithm we find $(t-2) / 9$ numbers in $(s, s+t]$, none divisible by p or $p-1$, such that all the a_{i}, a_{j} in their representations (4.1) are distinct. Hence the probability that none of them is in $A+A$ is less than $(8 / 9)^{(t-2) / 9}<1 / N$ if C is large enough. Consequently, with positive probability this does not happen for any choice of s, which means that $A+A$ forms a $C \log N$-chain in $[5 q, 6 q] \supset[N,(6 / 5-\varepsilon) N]$.

Acknowledgements. This work was stimulated by conversations with Prof. P. Erdős.

References

[1] P. Erdős, A. Sárközy and V. T. Sós, On sum sets of Sidon sets I, J. Number Theory 47 (1994), 329-347.
[2] -, —, —, On sum sets of Sidon sets II, Israel J. Math. 90 (1995), 221-234.
[3] H. Halberstam and K. F. Roth, Sequences, Clarendon, 1966.
[4] I. Z. Ruzsa, Solving a linear equation in a set of integers I, Acta Arith. 65 (1993), 259-282.

Mathematical Institute
Hungarian Academy of Sciences
Budapest, Pf. 127
H-1364 Hungary
E-mail: ruzsa@math-inst.hu

[^0]: Supported by Hungarian National Foundation for Scientific Research, Grant No. T 017433.

