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1. Introduction. In a recent article [6], the positive definite ternary
quadratic forms that can possibly represent all odd positive integers were
found. There are only twenty-three such forms (up to equivalence). Of these,
the first nineteen were proven to represent all odd numbers. The next four
are listed as “candidates”. The aim of the present paper is to show that one
of the candidate forms h = x2 +3y2 +11z2 +xy+7yz does represent all odd
(positive) integers, and that it is regular in the sense of Dickson. We will
consider a few other forms, including one in the same genus as h that is a
“near miss”, i.e. it fails to represent only a single number which it is eligible
to represent. Our methods are similar to those in [4]. A more recent arti-
cle with a short history and bibliography of work on regular ternary forms
is [3].

2. Techniques. Our main tool is the relation of a form with diagonal
forms of known behavior. For instance, with the form h above, we represent
a number 4n as r2 + s2 + 2t2, and arrange for certain congruence conditions
to hold among {r, s, t}. Then we are able to represent the original n by the
form h. In this framework, a particular representation of some number may
not be suitable, requiring a different expression using the diagonal form.
There are two major types of revision.

Given a square m2, we may need an alternative way to write m2 as
r2 + as2 + bt2. All cases we consider are covered among four alternatives,
separated by ways of expressing m itself:

(r2 + as2)2 = (r2 − as2)2 + a(2rs)2,(1)

(r2 + bt2)2 = (r2 − bt2)2 + b(2rt)2,(2)

(r2 + as2 + bt2)2 = (r2 − as2 − bt2)2 + a(2rs)2 + b(2rt)2.(3)

Finally, if m is not itself represented by r2 + as2 + bt2, we might still get a
nontrivial expression for m2 from
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(4)
{

r2 + as2

+ bt2 + abu2

}2

=
{

(r2 − as2 − bt2 + abu2)2

+ a(2rs− 2btu)2 + b(2rt+ 2asu)2

}
.

The formula (4) was found using the quaternions underlying the quaternary
form r2 + as2 + bt2 + abu2, searching for a way to make the ab term vanish
upon squaring.

The second type of revision is present in a variety of articles, including
[5] and [6]. It deals with a binary diagonal form r2 + ks2, k ≥ 1. We give
the formulation (Theorem 9, p. 51) in the unpublished Ph.D. dissertation
of Burton Jones, Univ. of Chicago, 1928.

Lemma (Jones). If f = r2 + ks2 represents an odd prime p, where k is
a positive integer prime to p, then every mp represented by f (m a positive
integer) is represented by f with r and s prime to p.

Some of the amusing behavior of ternary forms arises precisely because
the lemma fails when m = 0.

It is worthwhile to make a digression on an interesting process, used in
the present work, for finding diagonal ternary forms that are related to a
given nondiagonal form. We begin by expressing an integer multiple of the
form as the sum of three squares (when possible). The original form f (or
twice the form) can be represented by an integer 3×3 matrix B that is sym-
metric and positive definite. We use a test based on the local-global principle
in number theory, due to Minkowski, Hasse, and Witt. Among other appli-
cations, the test decides whether or not such a matrix B is congruent to the
identity over the rationals, i.e. B = QQ′, with Q a matrix of rationals and
Q′ its transpose. The determinant of B is not necessarily a square, so we
apply the test to mB, where the determinant of mB is a square.

Once mB is congruent to the identity over the rationals, it is congruent
to the identity matrix over the integers, by a theorem of Hsia [2]. That
theorem applies to matrices of size 7 × 7 or smaller, as well as to 8 × 8
matrices that have at least one odd entry on the diagonal. Simple examples
that exhibit a distinction (between rational and integer congruence to the
identity) are the k × k matrices with every diagonal element 2 and every
nondiagonal element 1, where k = 8, 15, 24, 35, . . . is a square minus 1, and
k ≥ 8.

When the numbers in this mB are small, it is generally quite easy to
guess an integer matrix H such that mB = HH ′. The result is an expression
for mf or 2mf as the sum of squares of three linear polynomials with integer
coefficients, the coefficients found as the columns of H. Further manipulation
sometimes gives useful expressions for f . Two common steps are

2(r2 + s2) = (r − s)2 + (r + s)2
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and

(5) 4(r2 + s2 + 2t2) = (r + s− 2t)2 + (r + s+ 2t)2 + 2(r − s)2.

3. The form h. The twenty-second form in [5] can be written as

h = x2 + 3y2 + 11z2 + xy + 7yz,

or

(6) 4h = (2x+ y)2 + (3y + 6z)2 + 2(−y + 2z)2.

A different representative for the equivalence class of this form is given
in [1]. Equation (6) shows that h cannot represent any numbers of the form
4k(16m + 14). Furthermore, h does not represent any numbers congruent
to 2 (mod 4): note that h ≡ (x + z)2 + (x + z)y + y2 (mod 2), and h ≡
(y + x + z)(x − z) − y2 (mod 4). If h is even, then y, x + z, and x − z are
even. The mod 4 equivalence then shows that h is 0 (mod 4).

We will show that h represents all odd positive integers. It follows that
h represents every number of the form 4ko, where o denotes an odd positive
integer. We also show that h represents all numbers n ≥ 0 with n ≡ 8
(mod 16) but n 6≡ 56 (mod 64). Together, these will show that h represents
all eligible numbers.

We proceed by showing how to represent numbers 4n as r2 + s2 + 2t2,
with

r ≡ s (mod 2), s ≡ 0 (mod 3), s ≡ t (mod 4).
Once that is achieved, equation (6) shows that n itself is represented by h
with

x =
6r − s+ 3t

12
, y =

s− 3t
6

, z =
s+ 3t

12
.

The first case to consider is n ≥ 0, n even, where it suffices to restrict to

n ≡ 8 (mod 16), but n 6≡ 56 (mod 64).

It follows that n/8 is odd, and n/8 6≡ 7 (mod 8). We may therefore write

n/8 = a2 + b2 + c2.

There must be a match of values mod 3, since we have three squares and
there are only two values {0, 1} for squares mod 3. We re-label and choose
± signs so that a ≡ b (mod 3). We arrive at

4n = (4a+ 4b)2 + (4a− 4b)2 + 2(4c)2,

with all terms congruent (mod 4), the middle term 4a − 4b congruent to 0
(mod 3). It follows that n is represented by h.

Next we consider n odd. To begin, we may write

n = o2 + e2 + 2w2,

with o odd and e even, but w undecided. We separate into subcases.
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A. If o ≡ e ≡ 0 (mod 3), then

4n = (2o)2 + (2e)2 + 2(2w)2

works, because 2w is congruent (mod 4) to either 2o or 2e, depending on
whether w is odd or even.

B. If at most one of the numbers {o, e, w} is divisible by 3, we choose ±
signs for each so that

o+ e+ 2w ≡ 0 (mod 3).

Define s = o + e + 2w and r = o + e − 2w. Then choose t = ±(o − e) such
that s ≡ t (mod 4). From formula (5) we know that

4n = r2 + s2 + 2t2,

with r, s, t all odd, s divisible by 3, and s ≡ t (mod 4). Once again, n is
represented by h.

C. Conditions mod 3 are:

o 6≡ 0, e ≡ w ≡ 0 (mod 3).

If w is even, including w = 0, then 2w ≡ 2e (mod 4), which suffices. If
w is odd, we need to revise the expression for n. With w odd, we have
e2 + 2w2 6= 0, and e2 + 2w2 ≡ 0 (mod 3). The lemma of Jones says that
there are integers e1 and w1 such that e1 6≡ 0 (mod 3), and w1 6≡ 0 (mod 3),
but o2 +e2

1 +2w2
1 = n. The new expression for n has all three numbers prime

to 3, and we complete the argument by repeating case B.
D. Conditions mod 3 are:

o ≡ w ≡ 0, e 6≡ 0 (mod 3).

This time, if w is odd we are finished. If w is even, we still have o 6= 0, and
we are able to adapt the argument in case C, finding a revised expression
n = o2

1+e2+2w2
1 and repeating case B. This completes the proof of regularity

for h.

4. The genus mate of h. A form closely linked with h is

f = 3x2 + 9y2 + 9xy + 3z2 + xz,

or

(7) 4f = (3x+ 6y)2 + (x− 2z)2 + 2(x+ 2z)2.

Notice the similar appearance of (7) to (6). We will show that f is quite
mildly irregular: it does not represent 1, yet represents all other numbers
that are represented by h. Together, h and f give an example of a rare
phenomenon, a genus composed of two forms, one regular and the second
missing exactly one eligible number. For another example, see [4] (Theorem
7, p. 182).
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There is a small change from the treatment of h. For the form f , r
(instead of s) is divisible by 3. That is, we represent numbers 4n as r2 +
s2 + 2t2, with

r ≡ s (mod 2), r ≡ 0 (mod 3), s ≡ t (mod 4).

Then n itself is represented by f with

x =
s+ t

2
, y =

2r − 3s− 3t
12

, z =
−s+ t

4
.

The proof for

n ≡ 8 (mod 16), but n 6≡ 56 (mod 64)

is nearly identical to that for h. For odd numbers, in cases A and B, the
proof also differs trivially from that for h. We discuss case D, then case C.
We have written

n = o2 + e2 + 2w2.

D. Conditions mod 3 are:

o ≡ w ≡ 0, e 6≡ 0 (mod 3).

If w is even we are finished, using 4n = (2o)2 + (2e)2 + 2(2w)2. If w is odd,
we have w 6= 0, and we are able to find a revised expression n = o2

1+e2+2w2
1

with all three variables prime to 3, then repeat case B.
C. Conditions mod 3 are:

o 6≡ 0, e ≡ w ≡ 0 (mod 3).

If w is odd we are done. If w is even and e 6= 0 or w 6= 0, then e2 + 2w2 > 0
and we may revise the expression for n appropriately.

If, however, e and w are actually 0, we have n = o2.
Note f does not represent 1. We proceed with n ≥ 9. The result will

follow if we can demonstrate it for n = p2, with p a (positive) odd prime.
First, write

p = r2 + s2 + 2t2.
If p is congruent to 1 mod 4, we may take t = 0 and use

(8) p2 = (r2 + s2)2 = (r2 − s2)2 + (2rs)2.

Since p is a prime, r and s are nonzero in the above. Since p is odd, one of
r and s is even and the other odd, so r2 − s2 6= 0.

If p is congruent to 3 (mod 8), take s = 0, with

(9) p2 = (r2 + 2t2)2 = (r2 − 2t2)2 + 2(2rt)2.

If p is congruent to 7 (mod 8), we have r, s, t 6= 0, and

(10) p2 = (r2 + s2 + 2t2)2 = (r2 − s2 − 2t2)2 + (2rs)2 + 2(2rt)2.

This concludes the proof.
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5. A few other forms. We begin by showing that a form we shall call
g25 is regular, with

g25 = x2 + 2y2 + 2yz + 13z2,

or

(11) g25 = x2 + (y + 3z)2 + (y − 2z)2.

The genus of g25 misses {(25m±5, 10); 4k(8m+ 7)} but represents all other
nonnegative integers. According to (11), we need only express an eligible
number n as the sum of three squares,

n = r2 + s2 + t2,

with s ≡ t (mod 5). Renaming the variables and choosing ± signs, this is
immediately possible unless the values (mod 5) are 0, ±1, ±2, which can
occur if n is divisible by 5. If n is actually divisible by 25, we can simply
express n/25 as the sum of three squares, then multiply through by 5, getting
a new expression for n as the sum of three squares. Finally, the form g25

does not represent any positive integers that are divisible by 5 but not by
25; this statement follows quickly from the expression

2g25 = (2y + z)2 + 2x2 + 25z2.

This shows regularity for g25.
Two other forms show behavior similar to that of f , which missed 1 but

represented all other numbers allowed to its genus. The first,

f25 = 2x2 + 3y2 + 5z2 + 2yz + 2xz,

or

(12) f25 = (x+ y)2 + (−x+ y − z)2 + (y + 2z)2,

misses 1, and, indeed, all 4k. The genus of f25 represents all nonnegative
integers other than {4k(8m+ 7)}. The proof involves writing

n = a2 + b2 + c2

with 2a + 2b + c ≡ 0 (mod 5). The 4k failure appears when we look for
alternative expressions for squares as the sum of three squares, and there is
no improvement on 4 = 22 + 02 + 02.

Finally, we have

g18 = 2x2 + 2y2 + 2yz + 5z2,

or

(13) g18 = (y + 2z)2 + (y − z)2 + 2x2.

This form misses only the number 1 among those integers represented by its
genus, those being the nonnegative integers other than {9m ± 3, 4k(16m +



Regular ternary quadratic forms 367

14)}. To contrast with the proof for f25, we note that an alternative expres-
sion for 4 is 22 = 12 + 12 + 2 · 12. The proof involves writing

n = a2 + b2 + 2c2

with a ≡ b (mod 3), and proceeding as with the other forms.
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