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On sums of five almost equal prime squares

by

Jianya Liu and Tao Zhan (Jinan)

1. Introduction and statement of results. In 1938, Hua [6] proved
that every sufficiently large integer N ≡ 5 (mod 24) is a sum of five prime
squares. The purpose of this paper is to establish the following stronger
result subject to the generalized Riemann hypothesis (GRH).

Theorem 1. Assume GRH. Denote by R(N,U) the number of solutions
of the Diophantine equation with prime variables{

N = p2
1 + p2

2 + p2
3 + p2

4 + p2
5,

|pj −
√
N/5| ≤ U, j = 1, . . . , 5.

Then for U = N9/20+ε, we have

R(N,U) =
460
√

5
3

σ(N)
U4

N1/2 log5N
(1 + o(1)),

where

σ(N) =
∞∑
q=1

1
ϕ5(n)

q∑
a=1

(a,q)=1

C5(a, q)e
(
− aN

q

)

with

C(a, q) =
q∑

h=1
(h,q)=1

e

(
ah2

q

)
.

Here σ(N) is the so-called singular series, which is convergent and satisfies
σ(N) > c > 0 for N ≡ 5 (mod 24).

This result seems new of its kind. But there have already been great
advances in related topics. For instance, Wright [14] in 1937 obtained cor-
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responding results for Waring’s problem. It is a well-known theorem of La-
grange that every positive integer is a sum of four squares. While Wright
proved, among other things, that almost all large integers N are expressible
in the form

(1.1)
{
N = n2

1 + n2
2 + n2

3 + n2
4,

|nj −
√
N/4| ≤ N3/10, j = 1, 2, 3, 4,

where nj are positive integers, and an asymptotic formula holds for the
number of representations. On the other hand, the problem of representing
an odd integer as a sum of three almost equal primes has been attacked by
a number of authors. For example, based on the work of the Pan brothers
[10], Balog and Perelli [2], it was proved by Zhan [15] in 1991 that every
large odd integer N can be represented as

(1.2)
{
N = p1 + p2 + p3,

|pj −N/3| ≤ N5/8(logN)c, j = 1, 2, 3,

and an asymptotic formula holds for the number of representations.
At the cost of the asymptotic formulae for the numbers of represen-

tations, the above results have been improved. For example, Auluck and
Chowla [1] in 1937 showed that every large integer N 6≡ 0 (mod 8) is ex-
pressible in the form of (1.1) with 3/10 replaced by 1/4. And Jia [7] in 1994
has reduced the exponent 5/8 in (1.2) to 7/12 + ε.

It seems that one should manage to prove Theorem 1 without GRH, just
as in the related topics mentioned above. But deep investigation reveals that
the problem dealt with in Theorem 1 is essentially different from and more
difficult than the corresponding problems: the method used to treat the later
problems can only give trivial result here. The new difficulty arising in this
situation demands GRH as well as new estimates for exponential sums over
primes, which will be given in Theorems 2 and 3.

To see the new difficulty clearly, one follows the ideas in establishing
(1.2), which suggest that the proof should start from the estimate of the
exponential sum

(1.3) S2(x, y;α) =
∑

x<n≤x+y

Λ(n)e(n2α)

for all α ∈ [0, 1]. Such an estimate has been given in our previous papers
([8], [9]). Let 1 ≤ y ≤ x be real, Λ(n) the von Mangoldt function, and
e(x) = e2πix as usual. Suppose

(1.4) P0 = (log x)c1 , R0 = yx(log x)c2 ,

where c1, c2 are positive constants, and write α in the form

(1.5) α =
a

q
+ λ, 1 ≤ a ≤ q, (a, q) = 1.
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Then the interval [0,1] is the disjoint union of F1 and F2 defined as

F1 = {α : q ≤ P0, |λ| ≤ 1/(qR0)}, F2 = [0, 1]− F1.

It was proved in [8] that the estimate

(1.6) S2(x, y;α) =
{
M2(x, y;α) +O(y(log x)−A), α ∈ F1,
O(y(log x)−A), α ∈ F2,

holds for x11/16+ε ≤ y ≤ x, where M2(x, y;α) is the main term, which can
be expressed as

(1.7) M2(x, y;α) =
1

ϕ(q)

q∑

h=1
(h,q)=1

e

(
ah2

q

) x+y\
x

e(λu2) du.

Thus the problem considered in Theorem 1 reduces to the estimation of

I1 =
\
F1

S5(α)e(−Nα) dα, I2 =
\
F2

S5(α)e(−Nα) dα,

where
S(α) =

∑

N1<n≤N2

Λ(n)e(n2α)

with

N1 =

√
N

5
− U, N2 =

√
N

5
+ U.

The first integral can be eventually calculated, on appealing to (1.6), as

(1.8) I1 = c3σ(N)
U4

N1/2
(1 + o(1)),

where c3 > 0 is a suitable constant. While if we also apply (1.6) to estimate
the second integral, we will arrive at

(1.9) I2 � { sup
α∈F2

|S(α)|}
\
F2

|S(α)|4 dα� U

(logN)A

1\
0

|S(α)|4 dα.

Now if we could show

(1.10)
1\
0

|S(α)|4 dα� U3/N1/2,

then Theorem 1 would hold for U = N11/32+ε without GRH. Unfortunately,
such a result cannot be true, since one can easily verify that

1\
0

|S(α)|4 dα� U2 � U3/N1/2,

on noting that U ≤ N1/2.
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Therefore we need estimates of S2(x, y;α) different from (1.6). The sec-
ondary purpose of this paper is to give such estimates, which are formulated
as Theorems 2 and 3.

Let P,Q be parameters such that

(1.11) 2P 2 < Q < x2,

and α has the form of (1.5). Then the interval [0,1] is the disjoint union of
E1 and E2 defined as

(1.12) E1 = {α : q ≤ P, |λ| ≤ 1/(qQ)}, E2 = [0, 1]− E1.

It therefore follows from Dirichlet’s lemma on rational approximations that

(1.13) E2 ⊂ {α : P < q ≤ Q, |λ| ≤ 1/(qQ)}.
The estimate of S2(x, y;α) on E2 is contained in

Theorem 2. Let ε > 0 be arbitrary. Then

(1.14) S2(x, y;α)� y1+ε
(

1
q

+
x1/2

y
+
x4/3

y2 +
qx

y3

)1/4

holds for α satisfying

1 ≤ q ≤ xy, |λ| ≤ 1/q2.

On taking y = x in this theorem, we get the result of Ghosh [4] and of
Harman [5]:

Corollary 1. The estimate

(1.15)
∑

n≤x
Λ(n)e(n2α)� x1+ε

(
1
q

+
1

x1/2
+

q

x2

)1/4

holds for α satisfying |λ| ≤ q−2.

The estimate for α ∈ E1 is given in the following theorem, where GRH
is introduced because, in some applications, one has to take P as large as a
certain positive power of x.

Theorem 3. Assume GRH. Then for α ∈ E1 we have

S2(x, y;α) = M2(x, y;α) + E(x, y),

where M2(x, y;α) is defined as in (1.7), and

(1.16) E(x, y)� x1/2+ε
(
P 1/2 +

y

Q1/2
+
yx1/2

Q

)
.

Throughout this paper, we will use all the notations introduced in this
section. In addition, the letter c without subscript stands for an absolute
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positive constant, while δ is an arbitrary positive constant; both of them
may be different at each occurrence. For example, we may write

(log x)c(log x)c � (log x)c, xδ(log x)c � xδ.

2. Proof of Theorem 2. Let am, bn be any real numbers satisfying
am � τ c(m), bn � τ c(n), where τ(n) is the divisor function. In addition
to the condition of Theorem 2, we assume without loss of generality that
y ≥ x1/2 throughout this section; the theorem is trivial otherwise.

The proof of Theorem 2 depends on Vaughan’s identity and the two
propositions below. In the proof of the propositions the following estimates
(see [3] for example) will be used several times:

(2.1) τ c(n)� nδ;

(2.2)
∑

n≤Y
min

(
X,

1
‖nα‖

)
�
(
Y

q
+ 1
)

(X + q log q),

where ‖u‖ denotes the smallest distance between u and all integers.

Proposition A. Let M,N ≥ 1, x�MN � x and

J1 =
∑

m∼M

∑

n∼N
x<mn≤x+y

ambne(m2n2α),

where m ∼ M and n ∼ N denote M < m ≤ 2M and N < n ≤ 2N
respectively. Then

J1 � y1+ε
(

1
q

+
M

y
+

x2

M2y2 +
qx

y3

)1/4

.

P r o o f. Without loss of generality we assume thatM≤x1/2. By Cauchy’s
inequality and (2.1) we obtain

|J1|2� N1+δ
∑

n∼N

∣∣∣
∑

m∼M
x<nm≤x+y

ame(m2n2α)
∣∣∣
2

= N1+δ
∑

m1∼M

∑

m2∼M
m1 6=m2

am1am2

∑

n∼N
x<nmi≤x+y

e(n2(m2
1 −m2

2)α) +O(Ny1+δ)

� N1+δ
∑

m1∼M

∑

m2∼M
0<m1−m2�yN−1

∣∣∣
∑

n∼N
x<nmi≤x+y

e(n2(m1 −m2)(m1 +m2)α)
∣∣∣

+Ny1+δ.
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Let r = m1 −m2, m2 = m. Then 0 < r � yN−1, and it follows that

|J1|2 � N1+δ
∑

0<r�yN−1

∑

m∼M

∣∣∣
∑

n∼N
x
m<n≤ x+y

m+r

e(n2r(2m+ r)α)
∣∣∣+Ny1+δ.

Applying Cauchy’s inequality once again, by (2.1) we get

|J1|4 � x1+δy
∑

0<r�yN−1

∑

m∼M

∣∣∣
∑

n∼N
x
m<n≤ x+y

m+r

e(n2r(2m+ r)α)
∣∣∣
2

+N2y2+δ

= x1+δy
∑

0<r�yN−1

∑

m∼M

∑

n1∼N
x
m<n1≤ x+y

m+r

∑

n2∼N,n2 6=n1
x
m<n2≤ x+y

m+r

e(r(2m+ r)(n2
1 − n2

2)α)

+O(xy3+δN−1) +O(N2y2+δ).

Let k = n1 − n2 � yM−1, n1 = n. It follows that

|J1|4 � x1+δy
∑

0<r�yN−1

∑

0<k�yM−1

∑

m∼M

∣∣∣
∑

n∼N
N1<n≤N2

e(r(2m+ r)k(2n+ k)α)
∣∣∣

+ xy3+δN−1 +N2y2+δ

� x1+δy
∑

0<r�yN−1

∑

0<k�yM−1

∑

m∼M

∣∣∣
∑

n∼N
N1<n≤N2

e(2rk(2m+ r)α)
∣∣∣

+ xy3+δN−1 +N2y2+δ,

where

N1 =
x

m
, N2 =

x+ y

m+ r
− k, N2 −N1 � y

M
.

Then by (2.2) we obtain

|J1|4� x1+δy
∑
r

∑

k

∑
m

min
(
y

M
,

1
‖2rk(2m+ r)α‖

)
+ xy3+δN−1+N2y2+δ

� x1+δy
∑

0<n�y2N−1

τ c(n) min
(
y

M
,

1
‖nα‖

)
+ xy3+δN−1 +N2y2+δ

� y4+δ
(

1
q

+
M

y
+

x2

M2y2 +
qx

y3

)
.

This proves the desired result.

Proposition B. Let x�MN � x, and

J2 =
∑

m∼M
am

∑

n∼N
x<mn≤x+y

e(m2n2α).
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If α satisfies |λ| � q−2, then

J2 � y1+ε
(

1
q

+
M2

y
+

q

y2

)1/2

.

P r o o f. By squaring out |J2|, we get

|J2|2 =
∑

m1∼M
am1

∑

m2∼M
am2

×
∑

n1∼N
x<m1n1≤x+y

∑

n2∼N,x<m2n2≤x+y
m1n1 6=m2n2

e((m1n1 −m2n2)(m1n1 +m2n2)α)

+O(y1+δ).

Let r = m1n1−m2n2, d = (m1,m2), m1 = dµ1, m2 = dµ2. Then (µ1, µ2) =
1, d | r and d � M. Write r = %d. It follows that µi ∼ Md−1 and % ≤ yd−1

for r > 0. By (2.1) we obtain

|J2|2 � xδ
∑

d�M

∑

0<%�yd−1

∑

µ1∼Md−1

∑

µ2∼Md−1

∣∣∣
∑
n2

e(2d2%µ2n2α)
∣∣∣(2.3)

+ y1+δ,

where the summation
∑
n2

is taken over

N1 < n2 ≤ N2, n2 ≡ −%µ2 (mod µ1),

with µ2 satisfying µ2µ2 ≡ 1 (mod µ1) and

N1 = max
(

x

dµ1
,
x

dµ2
,
µ1N − %

µ2

)
,

N2 = min
(
x+ y

dµ1
,
x+ y

dµ2
,

2µ1N − %
µ2

)
,

N2 −N1 � yM−1.

It therefore follows from (2.3) that

(2.4) |J2|2

� xδ
∑

d≤M

∑

0<%≤yd−1

∑

µ1∼Md−1

∑

µ2∼Md−1

∣∣∣
∑

N ′1<n≤N ′2
e(2d2µ1µ2%nα)

∣∣∣+ y1+δ,

where

(2.5) N ′1 =
N1 + %µ2

µ1
, N ′2 =

N2 + %µ2

µ1
, N ′2 −N ′1 � dyM−2.

Consequently,
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|J2|2 � xδ
∑

d�M

∑

0<%≤yd−1

∑

µ1∼Md−1

∑

µ2∼Md−1

min
(
dy

M2 ,
1

‖2d2µ1µ2%α‖
)

+ y1+δ

� xδ
∑

D

∑

d∼D

∑

0<%≤yd−1

∑

µ1∼Md−1

∑

µ2∼Md−1

min
(
Dy

M2 ,
1

‖2d2µ1µ2%α‖
)

+ y1+δ,

where
∑
D is taken over D = 2−jM, j � log x. From (2.1) and (2.2) it

follows that

|J2|2 � xδ
∑

D

∑

n�yM2D−1

τ c(n) min
(
Dy

M2 ,
1
‖nα‖

)
+ y1+δ

� xδ
∑

D

(
y2

q
+
yM2

D
+
Dy

M2 + q

)
+ y1+δ

� xδ
(
y2

q
+ yM2 + q

)
.

This proves the proposition.

Proof of Theorem 2. For x1/3 ≤M ≤ x1/2, we have

M

y
+

x2

M2y2 �
x1/2

y
+
x4/3

y2 .

Thus Proposition A gives

J1 � y1+ε
(

1
q

+
x1/2

y
+
x4/3

y2 +
qx

y3

)1/4

.

While for M ≤ x1/3, one deduces from Proposition B that

J2 � y1+ε
(

1
q

+
x2/3

y
+

q

y2

)1/2

� y1+ε
(

1
q2 +

x4/3

y2 +
q2

y4

)1/4

� y1+ε
(

1
q

+
x1/2

y
+
x4/3

y2 +
qx

y3

)1/4

,

since 1 ≤ q ≤ xy. The theorem now follows from Vaughan’s identity [12].

3. Proof of Theorem 3. To prove the theorem, we need the following
lemma, whose proof may be found in Titchmarsh [11], Lemmas 4.3 and 4.4.

Lemma 3.1. Suppose that H(x) and F (x) are real functions defined in
[a, b], H(x) and 1/F ′(x) are monotonic, |H(x)| ≤M .
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(1) If F ′(x) ≥ m > 0, or F ′(x) ≤ −m < 0, then
b\
a

H(x)e(F (x)) dx�M/m.

(2) If F ′′(x) ≥ r > 0, or F ′′(x) ≤ −r < 0, then
b\
a

H(x)e(F (x)) dx�M/
√
r.

We now give

P r o o f o f T h e o r e m 3. We start by transforming the exponential
sum S2(x, y;α) as follows:

(3.1) S2(x, y;α)

=
1

ϕ(q)

∑

χmod q

q∑

h=1
(h,q)=1

χ(h)e
(
ah2

q

) ∑

x<n≤x+y

χ(n)Λ(n)e(n2α),

where χ is a Dirichlet character mod q. Under GRH, the Siegel–Walfisz the-
orem takes the form (see [3])

ψ(x;χ) =
∑

n≤x
χ(n)Λ(n) = E(χ)x−

∑

|γ|≤T

x%

%
+O

(
xL2

T
+ L

)
,

where E(χ0) = 1, E(χ) = 0 for other χ, and % = 1/2 + iγ denotes a
non-trivial zero of ζ(s). Take T = x, it follows from partial summation that
the innermost sum in (3.1) is

(3.2)
x+y\
x

e(λu2) du−
∑

|γ|≤x

x+y\
x

u%−1e(λu2) du+O(|λ|yxL2 + L2).

The contribution of the first term in (3.2) to S2(x, y;α) is M2(x, y;α). Ap-
pealing to Vinogradov’s bound (see [13]):

∣∣∣∣
q∑

h=1
(h,q)=1

χ(h)e
(
ah2

q

)∣∣∣∣� q1/2+δ,

the O-term of (3.2) contributes to S2(x, y;α) in an amount

� q1/2+δ(|λ|yxL2 + L2)� yxL2

Q
+ P 1/2+δ,

which is acceptable in (1.16). The theorem thus reduces to

(3.3) q1/2+δ
∑

|γ|≤x

x+y\
x

u%−1e(λu2) du� x1/2+ε
(
P 1/2 +

y

Q1/2

)
.
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Denote by J the sum above. Then

J �
∑

|γ|≤x

∣∣∣∣
x+y\
x

u−1/2e

(
λu2 +

γ

2π
log u

)
du

∣∣∣∣

=
1
2

∑

|γ|≤x

∣∣∣∣
(x+y)2\
x2

v−3/4e

(
λv +

γ

4π
log v

)
dv

∣∣∣∣.

Let V denote the interval [x2, (x+ y)2], and

f(u) = λv +
γ

4π
log v, v ∈ V.

Then we have

f ′(u) = λ+
γ

4πv
� minv∈V |γ + 4πλv|

x2 , −f ′′(v) =
γ

4πv2 �
|γ|
x4 .

Hence by Lemma 3.1, the last integral above is

� x−3/2 min
(
xy,

x2

minv∈V |γ + 4πλv| ,
x2
√
|γ|

)
.

Consequently,

(3.4) J � x−1/2
∑

|γ|≤x
min

(
y,

x

minv∈V |γ + 4πλv| ,
x√
|γ|

)
.

Take H = 32π|λ|yx+ 1, so that the inequality

|γ + 4πλx2| ≥ jH, j ≥ 1,

implies that, for v ∈ V ,

(3.5) |γ + 4πλv| ≥ jH − 4π|λ|((x+ y)2 − x2) ≥ 1
2
jH.

Hence (3.4) becomes

(3.6)

J �x−1/2
∑

|γ+4πλx2|≤H
min

(
y,

x√
|γ|

)
+ x−1/2

∑

1≤j≤J0

∑

|γ|≤x
jH<|γ+4πλx2|≤(j+1)H

x

jH

�x−1/2
∑

|γ+4πλx2|≤H
min

(
y,

x√
|λ|x2

)
+ x1/2

∑

1≤j≤J0

1
j

∑

|γ|≤x
jH<|γ+4πλx2|≤(j+1)H

1

�x−1/2
∑

|γ+4πλx2|≤H
min

(
y,

1√
|λ|

)
+ x1/2+δ,

where we have used the fact that H � 1 and J0 � x2.
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We now consider two cases |λ| ≥ y−2 and |λ| < y−2 separately. If |λ| ≥
y−2, then

J � x−1/2|λ|−1/2H + x1/2+δ � |λ|1/2yx1/2 + x1/2+δ.

While for |λ| < y−2, one can easily deduce that

J � x−1/2yH + x1/2+δ � x−1/2y(|λ|yx+ 1) + x1/2+δ � x1/2+δ.

We thus conclude that J � |λ|1/2yx1/2 + x1/2+δ, which, when inserted into
(3.3), gives the desired result. This completes the proof of the theorem.

4. Proof of Theorem 1. We need the following lemmas.

Lemma 4.1. Let |α| ≤ 1/2, 1 ≤ y ≤ x and

(4.1) T2(x, y;α) =
∑

x<n≤x+y

n−1/2e(nα).

Then

T2(x, y;α)� x−1/2 min(y, |α|−1).

Lemma 4.2. Let C(a, q) be defined as in Theorem 1. Then

(4.2)
∑

q≤P

1
ϕ5(q)

q∑
a=1

(a,q)=1

C5(a, q)e
(
− aN

q

)
= σ(N) +O(P−1/2+ε),

where the singular series σ(N), defined as in Theorem 1, is convergent , and
σ(N) > c > 0 for N ≡ 5 (mod 24).

The first lemma can be easily verified by routine methods. For the proof
of the second lemma, see [6].

Lemma 4.3. We have

(4.3)
∑

n1+...+n5=0
|nj |≤U

1 =
115
12

U4 +O(U3).

The lemma follows readily from elementary calculations.

We now give

P r o o f o f T h e o r e m 1. Let

U = N9/20+ε, N1 =

√
N

5
− U, N2 =

√
N

5
+ U,

and

S2(α) =
∑

N1<n≤N2

Λ(n)e(n2α).
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Define

(4.4) R∗(N,U) =
1\
0

S5
2(α)e(−Nα) dα.

It is easily seen that

R∗(N,U) =
∑

N=n2
1+...+n2

5

|nj−
√
N/5|≤U

Λ(n1) . . . Λ(n5) =
log5N

25 R(N,U)(1 + o(1)).

The theorem therefore reduces to

(4.5) R∗(N,U) =
115
√

5
24

σ(N)
U4

N1/2
(1 + o(1)).

To apply the circle method, we divide the interval [0, 1] into major arcs
E1 and minor arcs E2. Take

P =
U

N1/4
, Q =

U2

N1/4

in (1.11), so that E1 and E2 are determined by (1.12). Therefore,

(4.6) R∗(N,U) =
{ \
E1

+
\
E2

}
S5

2(α)e(−Nα) dα.

For α ∈ E2, Theorem 2 and (1.13) now gives

S2(α)� U1+δ
(
N1/4

U
+
N2/3

U2

)1/4

� U3/4N1/16+δ.

Hence the integral on E2 is

� { sup
α∈E2

|S2(α)|}
1\
0

|S2(α)|4 dα� U3/4N1/16+δU2+δ � U11/4N1/16+δ,

which is estimated as o(U4N−1/2) since U = N9/20+ε.

To evaluate the integral on E1, we appeal to Theorem 3, which yields

S2(α) =
C(a, q)
ϕ(q)

N2\
N1

e(λu2) du+O(N3/8+δ)(4.7)

=
C(a, q)
2ϕ(q)

∑

N2
1≤n≤N2

2

e(λn)n−1/2 +O(N3/8+δ),

where C(a, q) is defined as in (4.2). Denote by T2(λ) the sum on the right-
hand side of (4.7). Appealing to the elementary inequality

|a5 − b5| ≤ 5|a− b|max(|a|4, |b|4),
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we deduce from (4.7) that

S5
2(α)− C5(a, q)

25ϕ5(q)
T 5

2 (λ)� N3/8+δ
(
|S2(α)|4 +

C4(a, q)
ϕ4(q)

|T2(λ)|4
)
,

and consequently,\
E1

S5
2(α)e(−Nα) dα

−
(∑

q≤P

q∑
a=1

(a,q)=1

C5(a, q)
25ϕ5(q)

e

(
− aN

q

)) 1/(qQ)\
−1/(qQ)

T 5
2 (λ)e(−Nλ) dλ

� N3/8+δ
( 1\

0

|S2(α)|4 dα+
∑

q≤P

q∑
a=1

(a,q)=1

C4(a, q)
ϕ4(q)

1\
0

|T2(λ)|4 dλ
)

� N3/8+δ
( 1\

0

|S2(α)|4 dα+
1\
0

|T2(λ)|4 dλ
)
.

By Lemma 4.1,

1\
0

|T2(λ)|4 dλ�
1/(N1/2U)\

0

U4 dλ+
∞\

1/(N1/2U)

(N1/2λ)−4 dλ� N−1/2U3.

Also,
1\
0

|S2(α)|4 dα� U2+δ.

We therefore conclude that

(4.8)
\
E1

S5
2(α)e(−Nα) dα

=
(∑

q≤P

q∑
a=1

(a,q)=1

C5(a, q)
25ϕ5(q)

e

(
− aN

q

)) 1/(qQ)\
−1/(qQ)

T 5
2 (λ)e(−Nλ) dλ+O(N3/8+δU2).

The double sum in (4.8) is, by Lemma 4.2,

1
25σ(N) +O(P−1/2+δ) =

1
25σ(N) +O(N−1/8+δU−1/2).

Appealing to Lemma 4.1 again, we obtain
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1−1/(qQ)\
1/(qQ)

|T 5
2 (λ)| dλ�

∞\
1/(qQ)

(N1/2λ)−5 dλ� (qQ)4N−5/2

� (PQ)4N−5/2 � U12N−9/2,

so that the integral on the right-hand side of (4.8) is equal to
1\
0

T 5
2 (λ)e(−Nλ) dλ+O(U12N−9/2)

=
∑

n1+...+n5=N
N2

1≤nj≤N2
2

n
−1/2
1 . . . n

−1/2
5 +O(U12N−9/2)

=
(

5
N

)5/2 ∑

n1+...+n5=N
N2

1≤nj≤N2
2

1 +O(U12N−9/2).

By Lemma 4.3, the last sum above is

115
12

(
2

√
N

5
U

)4

+O(N3/2U3) =
92
15
N2U4 +O(N3/2U3).

Inserting these estimates into (4.8), we conclude that\
E1

S5
2(α)e(−Nα) dα =

115
√

5
24

σ(N)U4N−1/2(1 + o(1)),

which, in combination with the estimate on E2, gives (4.5), hence the theo-
rem.
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