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Explicit 4-descents on an elliptic curve
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1. Introduction. We wish to investigate how to find generators of an
elliptic curve, E(Q), modulo 2E(Q) defined over Q. As is usual we can
reduce this to the study of certain homogeneous spaces

(1) y2 = f(x, 1),

where f(X,Z) is a binary quartic form (or quartic for short) with integer
coefficients. One wishes to know whether equation (1) has a Q-rational point
and if so to exhibit one. One can often show that equation (1) has no Q-
rational points by local methods. However, even if (1) is everywhere locally
soluble, it does not follow necessarily that a Q-rational point exists; this
failure of the “Hasse principle” is well known and gives rise to an element
of the Tate–Shafarevich group.

Further, it is not necessarily the case that a rational point on equa-
tion (1) will have “small” coordinates. Hence searching for a rational point
(even when one is known to exist) may be futile. This is important in some
conditional algorithms, e.g. [13], for determining generators of E when one
computes, for instance, the rank of the curve by assuming the conjectures of
Birch and Swinnerton-Dyer. In such methods one then just needs to search
for enough points with the correct regulator. One has a bound on the search
region on the elliptic curve, but this can often be too large for practical use,
especially if the curve has a generator with a large height. To get around
this problem one could perform a 2-descent and then search in a bounded
region on the descendants; this should be easier as this new region should
be smaller. If however the search region is still too large, performing a fur-
ther descent and obtaining a 4-descent will again reduce the search region,
hopefully to something more manageable.

Interest in practical algorithms to find the generators of the Mordell–
Weil group has grown in recent years due to the need to find the gener-
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ators to compute all the integral points using elliptic logarithms. This is
the most efficient way known to compute integral points see ([23], [12], [21]
and [22]).

In this paper we give an explicit method, suitable for machine calcu-
lation, to deal with such troublesome homogeneous spaces by considering
further descents on equation (1). This has been done before in the literature
(see [2] and [16]) for special types of elliptic curves. However, we could find
no general account which was of use for systematic machine computations.
We explain an explicit method for performing such further descents and
we show this is equivalent to constructing elements of order dividing 4 in
the Tate–Shafarevich group of the elliptic curve. Our method resembles that
in [3] and [4]. The associated problem of finding generators of the Mordell–
Weil group given generators of E/mE we shall not discuss here. However,
a very efficient solution to this problem has recently been given by Sik-
sek [18].

This work grew out of the PhD thesis [17] of the second author. However,
it was not until John Cremona pointed out to us the link to us between clas-
sical invariant theory and 2-descents that we could see how to put everything
together.

We would like to thank John Cremona and Nelson Stephens for their
help and encouragement in the course of our work. We would also like to
thank EPSRC who funded the research contained in this paper.

2. Background. Before we proceed to 4-descents we recap on the me-
thod of 2-descent. Let E be an elliptic curve over Q given by

Y 2 = X3 + IX + J.

Now consider the set of all binary quartics with rational coefficients with
the standard invariants I and J :

f = ax4 + bx3z + cx2z2 + dxz3 + ez4.

We only consider such quartics up to the relation of equivalence: f and g
are equivalent if

g(x, z) = u2f(αx+ βz, γx+ δz)

for u, α, β, γ, δ ∈ Q, with u 6= 0. It is well known (see [1]) that such quartics
represent elements of the 2-Selmer group. They can be efficiently computed
by the methods in [1] and [11].

As the curves D2 : y2 = f(x, z) are elements of the 2-Selmer group there
is a map φ2 : D2 → E defined over Q which commutes with the birational
map from D2 to its jacobian (which is E) and the multiplication by 2 map
on E, i.e. we have the commutative diagram:
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E E

D2

[2] //

²²

OO
φ2

}}}}}}>>

Given a rational point on D2 and φ2 we can compute its image on E. This
is what one does in the standard method of 2-descent on an elliptic curve.
By [10], one can take φ2 to be the following map derived from the syzygy
between the covariants of f . Let H(x, z) denote the hessian determinant of
f(x, z) and T (x, z) denote the Jacobian determinant of f(x, z) and H(x, z).
Then we have

φ2(x, y) = (−H(x, 1)/(4y2), 3T (x, 1)/(32y3)).

Such curves y2 = f(x, 1) correspond to elements of order dividing 2 in
the Weil–Châtelet group of E. Now by [5], elements of order dividing 4 in
WC(E) correspond to curves D4 whose jacobian is E and for which there
is a map φ4 defined over Q such that the following diagram is commutative:

E E E

D4 D2

²²

[2] // [2] //

²²

OO

φ4 //

OO
φ2

}}}}}}>>

Of course we are only interested in finding D4’s which cover a D2 which is
locally soluble everywhere. This could be for one of two reasons:

• To show that D2 has no rational solutions and hence is an element of
order 2 in the Tate–Shafarevich group of E.
• To produce a point on D2 and hence via φ2 produce a point on E.

This last reason is useful as the heights of rational points on D4 should
be much smaller than the height of equivalent points on D2 and hence we
expect them to be easier to find. In addition we will only be interested
in D2’s which do not possess an obvious rational point. Hence we assume
that either f(x, z) is irreducible or that it is a product of two irreducible
quadratic factors.

3. The intersection of two quadric surfaces. An element of order
4 in the Tate–Shafarevich group, X, of an elliptic curve will be represented
by a principal homogeneous space H of period 4 and, by a well established
result due to Lang and Tate (see for example [20, Exercise 10.11]), the index
of this homogeneous space is also 4. This means that the minimum degree
of a divisor on the curve, rational over Q, is 4. We must therefore discuss
the properties of curves of genus 1 with this property. Fortunately there is
an excellent exposition in [26, Chapter 2, Appendix II], although we will
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need to supplement this with some more detailed algebraic information. For
convenience, we briefly summarise the geometry.

Suppose our divisor is Z0. Then since H is a curve of genus 1, the lin-
ear system |Z0| is very ample and by Riemann–Roch has dimension 3. The
image of H under the associated (bi-)rational mapping is therefore a non-
singular quartic curve in P3. The projective coordinates x1, x2, x3, x4 cut
out a basis for this linear system and, further, since the linear system |2Z0|
has dimension 7 but contains the divisors corresponding to the 10 quadratic
monomials xixj , it is clear that H is contained in the intersection of two
quadrics. Since H has genus 1 it is in fact a complete intersection of any
pair of quadrics containing it. For convenience we will fix a pair, say Q1(x)
and Q2(x), which we identify with their corresponding quadratic forms

Q1(x) = xtAx, Q2(x) = xtBx

where x = (x1 : x2 : x3 : x4)t. Hence H is given by the simultaneous
equations Q1(x) = Q2(x) = 0.

For any curve X one can construct a family of varieties Picn(X ) para-
metrising divisor classes of degree n on X . Thus, J = Pic0(X ) is just the
Jacobian variety of X . Each Picn(X ) for n ≥ 1 is a principal homogeneous
space for J and our next construction amounts to a birational identification
of the curve Pic2(H) for our curve H of genus 1. We consider the pencil of
quadrics Qλ(x) = λ1Q1(x)+λ2Q2(x), for λ = (λ1 : λ2) ∈ P1, which contain
H and let

F (λ) = F (λ1, λ2) = det(λ1A+ λ2B),
a homogeneous quartic polynomial in λ1, λ2. This defines a curve of genus
1 which is the double covering of P1 ramified at the 4 points corresponding
to the zeros of F . The coefficients of F (λ1, λ2) are the basic invariants of
Q1(x) and Q2(x) (see below) and we denote by D2 the curve Y 2 = F (λ1, 1).
Using the notation of [26, Appendix III] we can construct a rational mapping
(defined over Q)

ω : H×H → D2

by the recipe: if P1, P2 denote points of H there is a unique point λ = (λ1 :
λ2) ∈ P1 such that the line P1P2 (tangent if P1 = P2) lies in the quadric
Qλ. As explained in [26, Appendix III], F (λ1, λ2) is a square and hence we
obtain a point, ω(P1, P2), on the double cover. This construction yields a
rational mapping with the properties

ω(P1, P2) = ω(P ′1, P
′
2)⇔ P1 + P2 ∼ P ′1 + P ′2

and therefore induces a birational mapping of Pic2(H) with D2. When we
fix a point on H, say P0, the mapping P 7→ ω(P, P0) induces a birational
map between D2 ×Q Q(P0) and H ×Q Q(P0) and both are identified with
the elliptic curve which is their Jacobian over Q(P0), i.e. J ×QQ(P0). Were



4-descents on an elliptic curve 389

H to have a Q-rational divisor of degree 2 then Pic2(H) ' Pic0(H) and H
would correspond to a 2-covering of J and so correspond to an element of
order dividing 2 in X.

We now assume that a point P0 on H has been fixed and assume we
are working over a field of definition for H and P0. Then H itself has the
structure of an elliptic curve isomorphic to that of its Jacobian.

Geometrically the group law is given as follows: P1, P2, P3 have the prop-
erties

P1 + P2 + P3 = 0⇔ P0, P1, P2, P3 are coplanar.

Further −P1 is the residual intersection of the plane through P1 containing
the tangent line to H at P0. From this description it is then clear that points
of order 2 on H are those points at which the tangent line to H is coplanar
with the tangent line at P0. If P1 denotes such a point, a simple geometrical
argument shows that the unique quadric in the pencil Qλ which contains the
line P0P1 must be a cone and this is precisely the condition that F (λ) = 0,
i.e. ω(P1, P0) is a ramification point of the double covering D2 → P1.

We now turn our attention to the invariant theory of our pair of quadric
surfaces in P3. Much of what follows will be found in Todd, [25, Chapter 7],
but using a different notation. As above let

Q1(x) = xtAx, Q2(x) = xtBx,

where A and B are two symmetric 4 × 4 matrices, denote our two quadric
surfaces with transversal intersection. We then define the basic invariants,
σ0, . . . , σ4, of Q1(x) and Q2(x) by the equation

det(t1A+ t2B) = t41σ0 + t31t2σ1 + t21t
2
2σ2 + t1t

3
2σ3 + t42σ4.

To determine the fundamental covariants we first set A′ = adj(A), B′ =
adj(B) and then define d1 and d2 to be the two symmetric matrices deter-
mined by

adj(t1A′ + t2B
′) = t31σ

2
0A+ t21t2σ0d1 + t1t

2
2σ4d2 + t32σ

2
4B.

We then define two more quadratic forms

F1(x) = xtd1x, F2(x) = xtd2x.

The five fundamental covariants of Q1(x) and Q2(x) are then given by
Q1(x), Q2(x), F1(x), F2(x) and the jacobian

G(x) =
1
16
∂(Q1, Q2, F1, F2)
∂(x1, x2, x3, x4)

.

Lemma 1. The invariants σi and the covariants F1(x), F2(x) are of
weight two, the covariants Q1(x) and Q2(x) are of weight zero, whilst the
covariant G(x) is of weight 5.
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P r o o f. Let x = Ty denote a change of variable. Putting U t = adj(T )
we have

adj(U t) = adj((detT )T−1) = (detT )2T.

Let A∗ = T tAT , A′∗ = U tA′U etc. Then we have

• The invariants σi have weight two because

det(t1A∗ + t2B
∗) = (detT )2 det(t1A+ t2B).

• The covariants Q1(x) and Q2(x) have weight zero because

Q∗1(y) = ytA∗y = ytT tATy = xtAx = Q1(x).

• The covariants F1(x) and F2(x) are of weight two because

adj(t1A′∗ + t2B
′∗) = (detT )4 adj(t1A′ + t2B

′)

and so σ∗0d
∗
1 = (detT )4σ0T

td1T . Hence d∗1 = (detT )2T td1T . Similarly
for d2.
• The fact that the covariant G(x) has weight 5 then follows from the

definition by applying the rule for computing the partial derivatives of a
composition of functions.

One then finds that the syzygy given by

(∗) F2
2Q1Q2σ1σ3

2 − 2F2
2Q1Q2σ1σ2σ4 + F2

3Q2σ1σ4 − 2σ0
2F1

2Q2
2σ4

−3σ0
2Q1

2Q2
2σ3

2σ4 − 3σ0F1
2F2Q2σ3 − F2

3Q1σ3
2

+ σ0F1Q1
2Q2σ1σ3σ4 − σ0F1

2Q2
2σ2

2 + 3σ0
2Q1

2Q2
2σ2σ4

2 + 2F2
3Q1σ2σ4

− 2σ0F1
2Q1Q2σ2σ3 + F1

2F2Q2σ1σ2 − F2
4σ4 − σ0Q1

2Q2
2σ2

3σ4

+ 4σ0F1
2F2Q1σ4 − F1

2F2Q1σ1σ3 + 2σ0
2F1Q2

3σ2σ4 − σ0F1
2Q1Q2σ1σ4

+ 2σ0F1
2Q2

2σ1σ3 − σ0
2F1Q2

3σ3
2 + 3σ0Q1

2Q2
2σ1σ2σ3σ4 + 2σ0F1

3Q2σ2

− σ0F2Q1
2Q2σ2σ3σ4 + 3σ0

2Q1
3Q2σ3σ4

2 − F1
3Q2σ1

2 + σ0F1
3Q1σ3

+ 5σ0F2Q1
2Q2σ1σ4

2 + 4σ0F1F2
2Q2σ4 + F1

3F2σ1 − σ0F1
4

+ F2Q1
2Q2σ1σ2

2σ4 + σ0F1F2Q2
2σ2σ3 − F1F2

2Q2σ1σ3 − 3σ0Q1
2Q2

2σ1
2σ4

2

− 3σ0F1F2Q2
2σ1σ4 − 3σ0Q1

3Q2σ1σ2σ4
2 − 4σ0

2F1Q1
2Q2σ4

2

+ F1F2
2Q1σ2σ3 + 2σ0F1Q1

2Q2σ2
2σ4 − σ0F2

2Q2
2σ2σ4 + σ0

2F2Q2
3σ3σ4

+ F1
2Q1Q2σ1

2σ3 − 3F1F2
2Q1σ1σ4 − 4σ0

2F2Q1Q2
2σ4

2 + F1F2
3σ3

− 2F2Q1
2Q2σ1

2σ3σ4 − σ0F2Q1Q2
2σ2σ3

2 − F1Q1
2Q2σ1

2σ2σ4

+ 2σ0F2Q1Q2
2σ2

2σ4 − 2σ0F2
2Q1

2σ4
2 − F2

2Q1
2σ2

2σ4 + 3σ0F1F2Q1Q2σ3
2

+ σ0F2Q1Q2
2σ1σ3σ4 − σ0F2

2Q1Q2σ3σ4 − 4σ0F1F2Q1Q2σ2σ4

+ 2F2
2Q1

2σ1σ3σ4 − σ0F1
2Q1

2σ2σ4 +Q1
3Q2σ1

3σ4
2 − σ0

2Q1
4σ4

3

− σ0
3Q2

4σ4
2 − F1F2Q1Q2σ1σ2σ3 + 5σ0

2F1Q1Q2
2σ3σ4 + σ0F1Q1Q2

2σ2
2σ3

+ σ0F1Q1
3σ1σ4

2 + 3F1F2Q1Q2σ1
2σ4 + 2σ0F2Q1

3σ2σ4
2
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− 2σ0F1Q1Q2
2σ1σ3

2 − σ0F1Q1Q2
2σ1σ2σ4 − 3σ0

2Q1Q2
3σ2σ3σ4

− 3σ0F1F2Q1
2σ3σ4 + σ0

2Q1Q2
3σ3

3 − F1
2F2

2σ2 + F1F2Q1
2σ1σ2σ4

− F2Q1
3σ1

2σ4
2 + 3σ0

2Q1Q2
3σ1σ4

2 +G2 = 0

holds. This was derived by applying the above weight considerations to the
two quadrics

Q1(x) = µ1x
2
1 +µ2x

2
2 +µ3x

2
3 +µ4x

2
4, Q2(x) = λ1x

2
1 +λ2x

2
2 +λ3x

2
3 +λ4x

2
4.

By a linear change of variable defined over C one can always put our two
quadrics in this form as we have assumed that they are transversal. As it is
a formal identity holding for these two quadrics it must then hold in general.

When x is a point on our intersection of two quadrics the syzygy (∗)
reduces to

G2 = σ0F1
4 − F1

3F2σ1 + F1
2F2

2σ2 − F1F2
3σ3 + F2

4σ4.

So we have a map from H onto a curve of the form

D2 : y2 = σ0x
4 + σ1x

3 + σ2x
2 + σ3x+ σ4

given by

ψ :
H → D2,

x→ (−F1(x)/F2(x), G(x)/F2(x)2).
Now if D2 were a two-covering of an elliptic curve E, then the map above
would correspond to a map φ4, i.e. an extension of the two-covering to a
four-covering, if we could show the following:

• The map ψ above has degree 4.
• Let P0 denote a point on D2 with zero y-coordinate, and let P1, . . . , P4

denote the pre-images of P0 under ψ. If we choose P1 as a zero of the group
law on H then P2, P3, P4 are the points of order two.

In other words, if we consider D2 as an elliptic curve with base point P0

then the following diagram is commutative:

(D2, P0) (D2, P0)

H

[2] //

²²

OO
ψ

qqqqqqqqqq88

The fact that ψ is a degree 4 map can be seen by considering a point
(x, y, z) on D2. Then the point x lies on the three quadric surfaces

Q1(x) = Q2(x) = zF1(x) + xF2(x) = 0.

By Bezout’s Theorem these intersect in eight points and the imposition of
the condition G(x) = y determines a subset of four points.
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Now the condition that the images of the four points P1, . . . , P4 have
zero y coordinate means that G(x) = 0. But this means that the four points
lie on the union of four planes in P3 (to see this consider Todd, [25, p. 249]).
However, as the images of the four points are equal, the ratio of F1(x) and
F2(x) is constant and so the four points all lie on the same plane. Now
consider a plane which contains the tangent at P1 and which also passes
through Pi, for 2 ≤ i ≤ 3. Then, if Pi is not a point of order two, such a
plane intersects H in one other (distinct) point (see our discussion on the
group law above). But then it would be a plane which contained P1, . . . , P4

and the tangent line at P1, which is impossible. Hence Pi is a point of order
two.

4. The descent construction. We wish to parametrise the solutions to
equation (1) overQ. By a change of variable we can assume our homogeneous
space is of the form

(2) C : aY 2 = G(X,Z),

where G(X,Z) is a binary quartic form with Z coefficients, with G(1, 0) = 1
and a ∈ Q∗ is the coefficient of x4 in f(x, z). We wish to determine (X,Z) up
to multiplication by an element of Q∗ and so we can assume that (X,Z) ∈
Z2 \ {(0, 0)} and (X,Z) are coprime. Let A = Q[Θ] denote the algebra

Q[X]/(G(X, 1)) = L1 ⊕ . . .⊕ Lt,
where the Li are number fields such that Li = Q(θi) and G(θi, 1) = 0
and no two distinct pairs θi, θj are conjugate. We can hence assume, as
G(X,Z) is irreducible or a product of two irreducible quadratic factors,
that t = 1 or 2. Put (X − θiZ)OLi = aib

2
i , where ai is square free and∏t

i=1NLi/Q(ai) ∈ aQ∗2.

Lemma 2. If p is a prime ideal of Li and p | ai then either p | a, or
p |∆(G), where ∆(G) is the discriminant of G(X,Z)

P r o o f. Suppose p is a prime ideal of Li such that p|a but p does not
divide a or ∆(G). Let LGal denote the minimal Galois closure of L1∪. . .∪Lt.
As p does not divide∆(G) we see that p does not ramify in LGal. Let q denote
a prime ideal of LGal which divides p. Then

ordq(X − θiZ) = ordp(X − θiZ) ≡ 1 (mod 2),

as ai is square free. But

ordq

( t∏

i=1

NLi/Q(X − θiZ)
)

= ordqG(X,Z) = ordq(aY 2) ≡ 0 (mod 2),

as q does not divide a.
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So there is a θ with G(θ, 1) = 0 such that θ 6= θi and q | (X − θY ). Then
we find that q divides (θ − θi)X and (θ − θi)Z. But as q does not divide
θ − θi we find that q | (X,Z). But this is true for all prime ideals q of LGal

which divide p, hence p | (X,Z). But this means that p is the trivial ideal.

Let Si denote the set of prime ideals in Li which divide a or ∆(G). We
let Li(Si, 2) denote the set of elements of Li modulo squares such that if we
add a square root of an element of Li(Si, 2) to Li we obtain an extension
unramified away from Si. This finite set can be determined by the methods
of [19]. Using the above lemma we can then write

(3) X − θiZ = εiγ
2
i ,

where εi ∈ Li(Si, 2) and γi ∈ L∗i . For each tuple (ε1, . . . , εt) we reject those
for which

t∏

i=1

NLi/Q(εi) 6∈ aQ∗2.

We can obviously assume that (ε1, . . . , εt) is determined modulo an element
of Q∗. We then have a map

µ :
C → A∗/Q∗A∗2,

(X,Y, 1)→ X −ΘZ (mod Q∗A∗2),

which should be familiar as the usual map one uses to perform 2-descents
on a curve of the form (1) when f(x, z) is monic (see [6]).

We finally obtain a finite set of equations of the form (3); from each
one of these sets of equations we shall derive the descendants. We now look
at the two various cases corresponding to the factorization of G(X,Z). In
all cases we obtain a new “homogeneous space” as an intersection of two
quadrics.

4.1. G(X,Z) is irreducible. For convenience we make the change of vari-
able such that the coefficient of X3Z in G(X,Z) is zero. We have the equa-
tion

X − θZ = ε(x1 + x2θ + x3θ
2 + x4θ

3)2

from which we obtain (on equating coefficients of θj) the four equations

X = Q3(x), Z = Q4(x), 0 = Q1(x), 0 = Q2(x),

where Qi(x) is a quadratic form in four variables. The last two equations
give us our two quadrics.

Given the above change of variable, one can easily check that if F1(x)
and F2(x) denote the corresponding covariants of Q1(x) and Q2(x) then a
point x such that Q1(x) = Q2(x) = 0 satisfies the identities

Q3(x) ≡ F1(x), Q4(x) ≡ −F2(x).
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And in addition

det(Q1(x)t1 +Q2(x)t2) = aG(t1, t2).

Hence in this case the above construction does indeed give rise to a 4-descent
extending the 2-descent (1).

4.2. G(X,Z) is a product of two irreducible quadratics. Here we find the
equations

X − θ1Z = ε1(x1 + θ1x2)2, X − θ2Z = ε2(x3 + θ2x4)2.

Again equating coefficients of θ1 we find the X (resp. Z) in terms of two dif-
ferent quadratic forms. Then equating coefficients of θ2 we find two quadrics
Q1(x) and Q2(x) which must be equal to zero. Again we find

det(Q1(x)t1 +Q2(x)t2) = aG(t1, t2).

But this time for a point x satisfying Q1(x) = Q2(x) = 0 we find that

X(x) ≡ c1F1(x) + c2F2(x), Z(x) ≡ c3F1(x) + c4F2(x)

for some constants ci depending only on the coefficients of G(t1, t2). How-
ever, we then notice that

G(c1F1(x) + c2F2(x), c3F1(x) + c4F2(x)) = G(F1(x),−F2(x))/δ2,

where δ is also some constant depending only on the coefficients of G(t1, t2).
Hence in this case we also find that the above construction does produce a
4-descent extending the 2-descent (1).

We now discard every 4-descent which is not locally soluble everywhere.
To do this we need to test whether the intersection of two quadrics is soluble
in every completion of Q. However, we note the following result which can
often speed up this search, given that the methods below for local solubility
are quite cumbersome. We shall denote by Ap the obvious localisation of the
algebra A.

Lemma 3. Suppose we know that equation (2) has three solutions over
Qp, say P1, P2 and P3. (This may be because we know that some element in
L1(S1, 2)× . . .× Lt(St, 2) gives rise to an intersection of two quadrics that
we know to be soluble in Qp by the methods below.) Suppose the curve

Y = b2X
2 + b1XZ + b0Z

2

intersects (2) at the three points P1, P2, P3. Then the fourth point of inter-
section, P4, is also defined over Qp and we have

4∏

i=1

µ(Pi) ≡ 1 (mod A∗p/Q
∗
pA
∗
p

2).
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P r o o f. That P4 is also defined over Qp is obvious. For the other part
we set X = Θ on both sides of the identity

a(b2X2 + b1X + b0)2 −G(X, 1) = l(X − x(P1)) . . . (X − x(P4)).

5. Local solubility of an intersection of two quadrics. We first
consider the non-archimedean case, then we shall go onto the archimedean
case.

5.1. The non-archimedean case. We let v denote the non-archimedean
valuation of Q we shall be considering, p the corresponding prime number
and Pp = {(x : y) : x, y ∈ Zp and min(v(x), v(y)) = 0}.

Let A, B be 4 × 4 symmetric matrices with entries in Q such that
det(XA − Y B) has distinct roots. We shall give an algorithm for deter-
mining the solubility of

H :
{

xtAx = 0,
xtBx = 0

over Qp. We can assume without loss of generality that A and B have entries
in Z and hence that ∂(A,B) (the discriminant of det(XA− Y B)) is in Z.

The algorithm we will give relies on searching for points on H modulo p
and then attempting to lift the points found to points modulo powers of p
until it is certain that they will lift to points defined over Z4

p. We need two
pieces of information:

1. For which of the infinitely many v ∈M0
Q is it necessary to do this?

2. Modulo which power of the corresponding p is it sufficient to find a
solution, to be sure that this solution will lift?

Theorem 4. Suppose A, B are 4×4 symmetric matrices with entries in
Zp such that ∂(A,B) 6= 0. We have

1. If v(2∂(A,B)) = 0 then H has a non-trivial solution over Zp.
2. Suppose that there exists x0 ∈ Z4

p\pZ4
p such that

xt0Ax0 ≡ xt0Bx0 ≡ 0 (mod p2δ+1)

and there is no pair (λ : µ) ∈ Pp such that 2(λAx0−µBx0) ≡ 0 (mod pδ+1).
Then there exists x ∈ Z4

p such that x ≡ x0 (mod pδ+1) and x is a non-trivial
point on H.

P r o o f. For the first part it is sufficient to note that if v(2∂(A,B)) = 0
then xtAx ≡ xtBx ≡ 0 (mod p) has genus 1 and it then follows that there
is a non-trivial solution to H. The second part is a special case of Theorem
5.21 on page 64 of [14].

Thus it is clear that to test local solubility at the non-archimedean
places, it is sufficient to check solubility over Qp only for those p for which
v(2∂(A,B)) is not equal to 0. For any such p, we can do this using the
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above theorem in a standard way (cf. the book [11] where a similar algo-
rithm is given for the case y2 = f(x, 1)). That such a process terminates is
guaranteed by the following lemma.

Lemma 5. Suppose that there exists x1 ∈ Z4
p such that

x1Ax1 ≡ x1Bx1 ≡ 0 (mod pα)

and there exists (λ : µ) ∈ Pp such that (λAx1−µBx1) ≡ 0 (mod pβ). Then
min(α, β) ≤ v(∂(A,B)).

P r o o f. Let γ = min(α, β). Choose x2,x3,x4 ∈ Z4
p such that x1,x2,

x3,x4 are linearly independent modulo p. Let T be the 4 × 4 matrix with
columns x1, x2, x3, x4. Further, choose (λ′ : µ′) ∈ Pp such that λµ′−λ′µ 6≡
0 (mod p). Write

C = T t(λA− µB)T, D = T t(λ′A− µ′B)T.

Then v(∂(C,D)) = v(∂(A,B)). Now note that

C ≡
(

0 0
0 C1

)
(mod pγ),

where C1 is a 3× 3 matrix with entries in Zp. Also

D ≡
(

0 vt

v D1

)
(mod pγ),

where D1 is a 3× 3 matrix with entries in Zp, and v ∈ Z3
p. It is now easily

seen that the coefficients of X4 and X3Y in G(X,Y ) = det(XC − Y D) are
congruent to 0 modulo pγ . By considering the formula for the discriminant
of G in terms of its coefficients, we see that pγ | ∂(C,D). This completes the
proof.

5.2. The archimedean case. Let A, B be n× n symmetric matrices with
entries in Z. Suppose further that F (X,Y ) = det(XA−Y B) is non-zero and
does not have any repeated roots. We want to determine the local solubility
of

H :
{

xtAx = 0,
xtBx = 0

over R. As det(XA − Y B) is non-zero, by taking appropriate linear com-
binations of A and B (if necessary), we can assume that detA and detB
are non-zero. Hence F (λ) = det(A − λB) is a polynomial of degree n with
distinct roots.

The following lemma of Swinnerton-Dyer allows us to get a better grip
on the problem.

Lemma 6 (Swinnerton-Dyer). Let f , g be homogeneous real quadratic
forms. Then the manifold f = g = 0 contains non-zero real points if and
only if the quadratic form λf − µg is not definite for all real λ, µ.
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P r o o f. This is part of Lemma 1 of [24].

We are now ready for a simplification:

Lemma 7. Suppose that F (λ) = det(A− λB) has a non-real root. Then
H has a non-trivial solution over R.

P r o o f. This is standard (see for example [15, p. 263–264]).

By Lemma 7, we may restrict our attention to the case where F (X,Y ) =
det(XA−Y B) has n real roots. Hence by the next lemma, the two matrices
A, B are simultaneously diagonalisable over R. Naturally, it is much easier
to ask if there is a definite linear combination of two matrices when they
are diagonal.

Lemma 8. Suppose that detA,detB are non-zero, and that det(A −
Y B) is a polynomial of degree n, which has n real roots, λ1, . . . , λn say. Let
x1, . . . ,xn be non-trivial vectors in Rn such that

(4) (A− λiB)xi = 0.

Let P = (x1, . . . ,xn), the n × n matrix with the xi as its columns. Then
P ∈ GLn(R) and

(5) P tAP =



α1

. . .
αn


 , P tBP =



β1

. . .
βn


 ,

where αi = λixitBxi, βi = xitBxi.

P r o o f. This is straightforward.

Lemma 9. Under the hypotheses and notation of Lemma 8, H has a
non-trivial real solution if and only if there do not exist real λ∗, µ∗ (not both
zero) such that the real numbers µ∗αi − λ∗βi all have the same sign.

P r o o f. This is immediate from Lemmas 6 and 8.

From this we can then deduce

Lemma 10. Under the hypotheses and notation of Lemma 8, H has no
non-trivial real solution if and only if there exists λj , one of the roots of
F (λ) = det(A− λB), such that A− λjB is semi-definite.

P r o o f. Suppose first that H has no non-trivial real solution. By Lemma
10 above, there exist real λ∗, µ∗ such that µ∗αi − λ∗βi all have the same
sign. If µ∗ = 0 then we can replace it by a very small non-zero real number
and still have all µ∗αi − λ∗βi of the same sign. Hence, we will assume that
µ 6= 0. By dividing by µ∗, we see that there is a real λ∗∗ such that αi−λ∗∗βi
all have the same sign. Let λj be the root of F (λ) which is closest to λ∗∗.
We note that as we vary λ along the real line, none of the αi − λβi change
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sign until we cross a root of
∏

(αi−λβi) = F (λ). Since λj is the closest root
of F (λ) to λ∗∗, it follows that αi − λjβi, i 6= j, all have the same sign and
that, of course, αj − λjβj = 0. Hence A− λjB is semi-definite, as required.

Conversely, suppose that A− λjB is semi-definite, where λj is a root of
F (λ). Write

(6) A =



α1

. . .
αn


 , B =



β1

. . .
βn




as in Lemma 8. Recall that the α’s and β’s are all non-zero, since by as-
sumption detA, detB 6= 0. Since A−λjB is semi-definite, the αi−λjβi are
all of the same sign except αj − λjβj = 0. Note αj − (λj + ε)βj = −εβj ;
hence, since βj 6= 0, by choosing ε small enough and with appropriate sign,
we will have all αi − (λj + ε)βi of the same sign. Hence A − (λj + ε)B is
definite and the lemma follows.

Theorem 11. Under the notation and hypotheses of Lemma 8, H has
a non-trivial solution in R if and only if , for each λj , the real numbers
αi − λjβi (i 6= j) do not all have the same sign.

P r o o f. Immediate from Lemma 10.

This allows us to test for the real solubility of H.

6. A special case. In this section we consider the problem of deter-
mining the local solubility at non-archimedean primes of an intersection of
two quadric surfaces. As before we assume that these two surfaces are given
by two symmetric 4 × 4 matrices, A and B. Using the method of the pre-
vious section can be very inefficient in terms of computing time. However,
in this section we show how one can find a faster method in the case where
det(AX+BY ) has a linear factor over Qp. We shall assume for convenience
that p 6= 2. So for the rest of this section we assume that det(AX+BY ) has
a linear factor over Qp. Now by a linear change of variable, defined over Qp,
and taking appropriate linear combinations of Q1(x) and Q2(x), we can as-
sume that Q1(x) = xtAx contains no x4 terms and Q2(x) = xtBx contains
only one term involving x4 and this is of the form x2

4.
In this situation Q1(x) determines a curve of genus zero. By another

change of variable defined over Qpwe may assume that Q1(x) is of the form

(7) aX2 + bY 2 + cZ2 = 0

with a, b, c ∈ Zp, and v(a) = v(b) = 0 and v(c) = 0 or 1. If v(c) = 1, then
−ab−1 must be a square in Zp, otherwise (7) does not have a solution over
Qp and we may stop. So if α2 = −ab−1 then (1, α, 0) is a non-trivial solution
to (7), and we are finished. If v(c) = 0, then heuristically, for 50% of pairs
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(x, y), −c−1(ax2 + by2) is a square in Zp. Thus we expect to find a solution
to Q1(x) = 0 in O(1) steps, if Q1(x) is soluble. If Q1(x) is not soluble then
certainly its intersection with Q2(x) = 0 will not be either.

Given one solution to Q1(x) = 0 we can parametrise all others in the
form

(8) z1 : z2 : z3 = q1(X1, X2) : q2(X1, X2) : q3(X1, X2),

where qi(X1, X2) are binary quadratic forms which can be explicitly deter-
mined. Suppose that zi = αqi(X1, X2) for some α ∈ Q∗p. Substituting this
into ztBz = 0 we obtain an equation of the form x2

4 = g(X1, X2), where
g(X1, X2) is a binary quartic form with coefficients in Zp.

So we are reduced to finding whether

Y 2 = g(X)

has any solutions in Qp (including any at infinity), where g(X) ∈ Zp[X] is of
degree 4 and has non-zero discriminant. First we note that this curve has a
pair of points at infinity if and only if the leading coefficient of g is a square
in Zp.

There are standard algorithms to solve this problem in the literature,
see for instance [11] and [1]. However these methods have polynomial time
complexity in p. In this section we give an algorithm with probabilistic poly-
nomial time complexity in log p based on root extraction in finite fields. The
method is deterministic polynomial time in log p assuming the Generalised
Riemann Hypothesis [9, pp. 31–34 and 37].

If f is a polynomial in Zp[X], we write f for the image of f under the
map Zp[X]→ Fp[X] induced by the natural map Zp → Fp. If deg f = 4 but
deg f ≤ 3 we shall say that f has a root at infinity ; if deg f ≤ 2 we shall say
that f has a multiple root at infinity . These conventions should be borne in
mind in what follows. We shall make repeated use of the following lemma.

Lemma 12. Suppose the curve

(9) C : aY 2 = f(X)

is given with f(X) ∈ Zp[X], a ∈ Zp. Let x1, y1 ∈ Zp such that ay2
1 ≡

f(x1) (mod p). Then there exist x, y ∈ Zp with x ≡ x1, y ≡ y1 (mod p)
such that ay2 = f(x) except possibly when ay1 ≡ f ′(x1) ≡ 0 (mod p).

P r o o f. The conclusion follows by applying Hensel’s Lemma to the poly-
nomial

G1(X) = f(X)− ay2
1

in the case f ′(x1) 6≡ 0 (mod p), and to the polynomial

G2(Y ) = aY 2 − f(x1)

in the case ay1 6≡ 0 (mod p).
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Corollary 1. Suppose f(X) ∈ Zp[X] such that f 6≡ 0 (mod p), and
deg f ≤ 4. Then pY 2 = f(X) has a solution in Qp if f has a root defined
over Fp which is not a repeated root.

Using the above lemma, and its corollary, we shall give an algorithm to
determine in probabilistic polynomial time whether

(10) Y 2 = f(X)

has a solution in Qp. Before giving the complete algorithm we deduce two
lemmas from Lemma 12.

Lemma 13. Suppose that f(X) ∈ Zp[X] is such that deg f = 4 and
deg f = 3 or 4. Suppose f(X) has no repeated factors. Then equation (10)
has solutions over Qp.

P r o o f. Under the hypotheses of the lemma, the equation Y 2 = f(X)
is a curve of genus 1 defined over Fp. It follows (see [8, p. 119]) that it has
at least one point defined over Fp. Again, since f does not have repeated
factors, we can use Lemma 12, with a = 1, to show that this solution lifts
to one defined over Qp.

Lemma 14. Suppose f(X) ∈ Zp[X] is such that 1 ≤ deg f ≤ 4. Suppose
that f = g2h where deg g ≥ 0, deg h ≥ 1 and h is a square-free polynomial.
Then equation (10) has solutions in Qp.

P r o o f. The curve Y 2 = h(X) has genus 0, and hence has p + 1 points
defined over Fp. Of these at most 2 are at infinity. Further, there is at most 1
root of g. If this root is x0 say, then there are at most 2 points on Y 2 = h(X)
whose x-coordinate is x0. Hence if p ≥ 5 then Y 2 = h(X) has at least one
point (x1, y1) ∈ F2

p with x1 6≡ x0. Then the point (x1, y1g(x1)) lifts to a
point on Y 2 = f(X) by Lemma 12. For the case p = 3 the lemma can be
established by a lengthy but straightforward case-by-case check which we
omit.

The following corollary easily follows from the above lemmas.

Corollary 2. Suppose f 6≡ 0. If equation (10) has no points over Qp
then f ≡ αg2 where g(X) ∈ Fp[X] and α ∈ F∗p\F∗2p .

P r o o f. The only case that remains to be checked is that if f 6≡ 0 and
f ≡ g2 then (10) has a solution over Qp. For this it is sufficient to choose
any x0 such that g(x0) 6≡ 0 (mod p), and then note that (x0, g(x0)) lifts by
Lemma 12.

Using these results the following algorithm is immediate.
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Algorithm 1. Testing

(11) Y 2 = f(X)

for solubility over Qp, where f(X) ∈ Zp[X], deg f = 4, and the discriminant
of f is non-zero.

S t e p I

• If f ≡ 0 (mod p), then go to Step II.
• Check if f = a g2 for some g ∈ Fp[X], and a ∈ Fp. If this is not the

case, or if a ∈ F∗2p then we have local solubility by the above theorems and
we can stop.
• Hence we can assume that f = a g2, and a 6∈ F∗2p . So any solution

(X0, Y0) ∈ Z2
p to (11) must satisfy Y0 ≡ 0 and g(X0) ≡ 0. Now g has at

most two solutions ε1, ε2 (mod p); if g has no solutions in Fp then (11) has
no solutions in Zp and we can stop.
• Hence

Y0 = pY1 and X0 = pX1 + εi

where Y1, X1 ∈ Zp. Choose a ∈ Zp and g ∈ Zp[X] such that the images
of a and g under Zp → Fp are a and g. Then f = ag2 + ph where h has
coefficients in Zp. Since p2 |Y 2

0 = f(X0) and p | g(X0), we find that p |h(X0).
Hence if neither of ε1 and ε2 is a root of h then (11) is not soluble and we
can stop.
• If say εi is a root of h then p divides the trailing coefficient of h(pX+εi).

So we will get at most 2 equations of the form

Y 2 = fi(X)

where fi(X) = 1
p2 f(pX + εi) ∈ Zp[X]. It is now necessary and sufficient

that one of these should have solutions in Zp, and we use Step I again with
fi instead of f .

S t e p II

• Here f is divisible by p. If f is divisible by p2 then we can replace f
by 1

p2 f and go to Step I.

• So suppose that f1 = 1
pf 6≡ 0 (mod p). We see that we want to deter-

mine if

pY 2
1 = f1(X)

has solutions in Zp. If f1 has no roots in Fp then (11) is not soluble and we
can stop.
• If f1 has a root which is not a repeated root then (11) is soluble and

we can stop.
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• Suppose that f1 has repeated roots εi where i = 1, or i = 1, 2. Then it
is necessary and sufficient to determine if either of

Y 2
1 =

1
p
f1(pX1 + εi)

is soluble, and 1
pf1(pX1 + εi) ∈ Zp[X]. So we use Step I again.

Lemma 15. Suppose r = v(∂g) where ∂g is the discriminant of g. In the
above algorithm, if we are still undecided after r+1 steps, then the equation
(11) has a solution defined over Qp and we can stop.

P r o o f. It is clear that after r steps, we may write down a Z ∈ Zp
such that f(Z) ≡ 0 (mod p2(r+1)). By [7, p. 52], f has a root in Zp. This
immediately implies that (11) has a solution defined over Qp.

7. Examples. We give an example which shows how you can prove the
2-primary part of the Tate–Shafarevich group is a given number. We look
at the curve

Y 2 + Y = X3 −X2 − 929X − 10595.

This has conductor 571, and conjectured rank equal to 0 with no two torsion.
The Birch–Swinnerton-Dyer conjectures imply that the Tate–Shafarevich
group has order 4.

Applying mwrank we find that the three rogue homogeneous spaces in
the 2-Selmer group are given by

Y 2 = −229X4 − 135X3 − 238X2 − 84X − 8,

Y 2 = −108X4 − 4X3 − 76X2 − 112X − 31,

Y 2 = −4X4 + 4X3 + 92X2 − 104X − 727.

Note if you start with an elliptic curve with no two-torsion then the first
descents will always involve irreducible quartics.

The first of these is isomorphic to

−229y2 = x4 − 135x3z + 54502x2z2 − 4405044xz3 + 96071912z4.

Working in the field Q(θ), where θ4−2θ3+2θ2−4θ−1 = 0, we find that there
are 8 possible descendants. All of these are, however, insoluble over Q571.

Similarly the second equation is isomorphic to

−3y2 = x4 − 4x3 + 8208x2 − 1306368x+ 39051072.

Working in the field Q(φ) where φ4−2φ2−2φ−3 = 0, we find that there are
at most 8 descendants. Again we find that they are all insoluble over Q571.
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The last equation is isomorphic to

−y2 = x4 + 4x3 − 368x2 − 1664x+ 46528,

and working in the relevant quartic number field we immediately see (by
the norm condition) that this has no descendants and hence has no rational
points. Hence the Tate–Shafarevich group has 2 primary part of order 4.
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