A note on the number of solutions of the generalized Ramanujan–Nagell equation $x^2 - D = k^n$

by

MAOHUA LE (Zhanjiang)

1. Introduction. Let \mathbb{Z} , \mathbb{N} be the sets of integers and positive integers respectively. Let D be a nonzero integer, and let k be a positive integer such that k > 1 and gcd(D, k) = 1. Further let N(D, k) denote the number of solutions (x, n) of the generalized Ramanujan–Nagell equation

(1)
$$x^2 - D = k^n, \quad x, n \in \mathbb{N}.$$

There have been many papers concerned with upper bounds for N(D, k). Let C_i (i = 1, 2, ...) denote effectively computable absolute constants. The known results include the following:

1 (Apéry [1, 2]). If D < 0, k is a prime and $(D, k) \neq (-7, 2)$, then $N(D, k) \leq 2$.

2 (Beukers [3]). If D < -7, then $N(-23, 2) = N(-2^r + 1, 2) = 2$ for some $r \in \mathbb{N}$, otherwise $N(D, 2) \le 1$.

3 (Le [10]). If D < 0, k is an odd prime and $|D| > C_1$, then $N(-3s^2 - 1, 4s^2 + 1) = 2$ for some $s \in \mathbb{N}$, otherwise $N(D, k) \leq 1$.

4 (Xu and Le [15]). If $D < 0, 2 \nmid k$ and $|D| > C_2$, then

$$N(D,k) \leq \begin{cases} 2^{\omega(k)-1} + 1 & \text{if } D = -3s^2 \pm \text{ and } k^r = 4s^2 \mp 1 \\ & \text{for some } r, s \in \mathbb{N}, \\ 2^{\omega(k)-1} & \text{otherwise,} \end{cases}$$

where $\omega(k)$ is the number of distinct prime factors of k.

5 (Beukers [3, 4]). If D > 0 and k is a prime, then $N(D, k) \le 4$.

6 (Le [9]). If D > 0, then $N(2^{2r} - 3 \cdot 2^{r+1} + 1, 2) = 4$ for some $r \in \mathbb{N}$, otherwise $N(D, 2) \leq 3$.

7 (Le [8]). If D > 0, k is an odd prime and $\max(D, k) > C_3$, then $N(D, k) \leq 3$.

¹⁹⁹¹ Mathematics Subject Classification: 11D61.

Supported by the National Natural Science Foundation of China and the Guangdong Provincial Natural Science Foundation.

^[11]

M.-H. Le

8 (Chen and Le [6]). If $D > 0, 2 \nmid k$ and $\max(D, k) > C_4$, then $N(D, k) \le 3 \cdot 2^{\omega(k)-1} + 1$.

So far we have not been able to find references to the case where $2 \mid k$ and k is not a power of 2. In this note we prove the following general result:

THEOREM. Let $\omega(D)$ be the number of distinct prime factors of |D|. Then

$$N(D,k) \le \begin{cases} 2^{\omega(D)+1} & \text{if } D < 0, \\ 2^{\omega(D)+1}+1 & \text{if } D > 0. \end{cases}$$

2. Preliminaries

LEMMA 1. If D > 0 and D is not a square, then (1) has at most one solution (x, n) with $k^n < \sqrt{D}$.

Proof. By [7, Theorem $10 \cdot 8 \cdot 2$], if $k^n < \sqrt{D}$, then x/1 must be a convergent of \sqrt{D} with $x/1 > \sqrt{D}$. Notice that \sqrt{D} has at most one convergent p/q satisfying q = 1 and $p/q > \sqrt{D}$. The lemma is proved.

LEMMA 2. If k is not a square and the equation

(2)
$$X^2 - kY^2 = D, \quad X, Y \in \mathbb{Z}, \ \gcd(X, Y) = 1$$

has solutions (X, Y), then all solutions of (2) can be put into at most $2^{\omega(D)-1}$ classes. Moreover, every solution (X, Y) in the class T can be expressed as

$$X + Y\sqrt{k} = (X_0 + \delta Y_0\sqrt{k})(u + v\sqrt{k}), \quad \delta \in \{-1, 1\},$$

where (X_0, Y_0) is a fixed positive integer solution in T, (u, v) is a solution of the equation

(3)
$$u^2 - kv^2 = 1, \quad u, v \in \mathbb{Z}$$

Proof. This is a special case of [11, Theorem 2] for $D_1 = 1$ and z = 1.

LEMMA 3. For $1 \le D \le 5$, the equation

$$X^{2} + D = Y^{n}, \quad X, Y, n \in \mathbb{N}, \ \gcd(X, Y) = 1, \ n > 3$$

has no solutions (X, Y, n).

Proof. This follows immediately from the results of [5], [12] and [13].

LEMMA 4. For $r, r' \in \mathbb{N}$ with r < r', let S, S' be the sets of positive integer solutions (u, v) of (3) satisfying

(4)
$$k^r | v, \quad \gcd(k, v/k^r) = 1,$$

and

(5)
$$k^{r'} | v, \quad \gcd(k, v/k^{r'}) = 1,$$

respectively. If $S \neq \emptyset$, $S' \neq \emptyset$, (U, V) and (U', V') are least solutions of S and S' respectively, then

(6)
$$U' + V'\sqrt{k} = (U + V\sqrt{k})^{k^{r'-r}}.$$

Proof. Since (U, V) is the least solution of S, $U + (V/k^r)\sqrt{k^{2r+1}}$ is the fundamental solution of the equation

(7)
$$u'^2 - k^{2r+1}v'^2 = 1, \quad u', v' \in \mathbb{Z}$$

Further, since $(U', V'/k^r)$ is a positive integer solution of (7), there exists a suitable $t \in \mathbb{N}$ such that

$$U' + \frac{V'}{k^r}\sqrt{k^{2r+1}} = \left(U + \frac{V}{k^r}\sqrt{k^{2r+1}}\right)^t,$$

whence we get

(8)
$$U' + V'\sqrt{k} = (U + V\sqrt{k})^t.$$

Let s = [(t - 1)/2]. From (8), we get

(9)
$$V' = V \sum_{i=0}^{s} {t \choose 2i+1} U^{t-2i-1} (kV^2)^i.$$

Notice that $r < r',\,k^r\,|\,V,\,k^{r'}\,|\,V'$ and $\gcd(k,V/k^r) = \gcd(k,U) = 1.$ We see from (9) that $k\,|\,t$ and

(10)
$$\frac{V'}{V} = \sum_{i=0}^{s} {t \choose 2i+1} U^{t-2i-1} (kV^2)^i \equiv 0 \pmod{k^{r'-r}}.$$

Let $k = p_1^{\alpha_1} \dots p_m^{\alpha_m}$ be the factorization of k, and let $p_j^{\beta_j} || t$ for $j = 1, \dots, m$. Further, let $p_j^{\gamma_{ij}} || 2i + 1$ for any $i \in \mathbb{N}$ and $j = 1, \dots, m$. Then we have $\gamma_{ij} \leq (\log(2i+1))/\log p_j < 2i$, and hence,

(11)
$$\binom{t}{2i+1} U^{t-2i-1} (kV^2)^i = tU^{t-2i-1} \binom{t-1}{2i} \frac{(kV^2)^i}{2i+1}$$

 $\equiv 0 \pmod{p_j^{\beta_j+1}}, \quad j = 1, \dots, m.$

By (10) and (11), we get $k^{r'-r} | t$ and $t = k^{r'-r}t_1$, where $t_1 \in \mathbb{N}$. Therefore, by (4), if (U', V') satisfies (6), then it is the least positive integer solution of (3) satisfying (5). The lemma is proved.

LEMMA 5 ([14, Theorem I·2]). If k is not a square and (x, n) is a solution of (1) satisfying $k^n \ge 4^{1+s/r}D^{2+s/r}$ for some $r, s \in \mathbb{N}$, then

$$\left|\frac{x'}{k^{n'/2}} - 1\right| > \frac{8}{2187k^{n(3+\nu/2)}} \left(\frac{81k^n}{4}\right)^{1/s} k^{-n'(1+\nu)/2}$$

for any $x', n' \in \mathbb{N}$ with $2 \nmid n'$, where ν satisfies $k^{n\nu} = 9(81k^n/4)^{r/s}$.

LEMMA 6. If k is not a square and (1) has a solution (x, n) such that $k^n \ge \max(10^5, 4^3D^4)$, then every solution (x', n') of (1) with $2 \nmid n'$ satisfies n' < 39n.

Proof. Let (x', n') be a solution of (1) with $2 \nmid n'$. Then

(12)
$$\left|\frac{x'}{k^{n'/2}} - 1\right| = \frac{D}{k^{n'/2}(k^{n'/2} + x')} < \frac{D}{k^{n'}}$$

Since $k^n \ge \max(10^5, 4^3D^4)$, by Lemma 5, we get

(13)
$$\left|\frac{x'}{k^{n'/2}} - 1\right| > \frac{8}{2187k^{n(3+\nu/2)}} \left(\frac{81k^n}{4}\right)^{1/2} k^{-n'(1+\nu)/2},$$

where

(14)
$$\nu = \frac{\log 9}{\log k^n} + \frac{\log(81/4)}{2\log k^n} + \frac{1}{2} < 0.8215.$$

The combination of (12) and (13) yields

(15)
$$\frac{D}{k^{n'}} > \frac{8}{2187k^{n(3+\nu/2)}} \left(\frac{81k^n}{4}\right)^{1/2} k^{-n'(1+\nu)/2}.$$

Since $D \leq (k^n/64)^{1/4}$ and $k^n \geq 10^5$, from (5) we get

(16)
$$k^{n(6+\nu)/2} > 60.75Dk^{n(5+\nu)/2} > k^{n'(1-\nu)/2}.$$

This implies that

(17)
$$n' < \left(\frac{6+\nu}{1-\nu}\right)n$$

Substituting (14) into (17), we obtain n' < 39n. The lemma is proved.

3. Proof of Theorem. By the known results of [1]-[4], we may assume that k is not a prime power.

If k is a square, then from (1) we get $x + k^{n/2} = D_1$ and $x - k^{n/2} = D_2$, where D_1 , D_2 are integers satisfying $D_1D_2 = D$, $gcd(D_1, D_2) \le 2$, $D_1 > 0$ and $D_1 > D_2$. Notice that there exist at most $2^{\omega(D)-1}$ such pairs (D_1, D_2) . So we have $N(D, k) \le 2^{\omega(D)-1}$ in this case. From the above, we may assume that k is not a square. Similarly, we see that (1) has at most $2^{\omega(D)-1}$ solutions (x, n) with $2 \mid n$.

If (x, n) is a solution of (1) with $2 \nmid n$, then the equation (2) has a solution $(X, Y) = (x, k^{(n-1)/2})$. By Lemma 2, all solutions (X, Y) of (2) can be put into at most $2^{\omega(D)-1}$ classes.

First we consider the case D > 0. We now suppose that (1) has five solutions (x_i, n_i) (i = 1, ..., 5) such that $n_1 < ... < n_5$, $k^{n_1} < \sqrt{D}$, $2 \nmid n_i$ (i = 1, ..., 5) and $(X, Y) = (x_i, k^{(n_i-1)/2})$ (i = 1, ..., n) belong to the same class

T of (2). By Lemma 2, there exists a fixed positive integer solution (X_0, Y_0) of (2) which satisfies

(18)
$$x_i + k^{(n_i - 1)/2}\sqrt{k} = (X_0 + \delta_i Y_0 \sqrt{k})(u_i + v_i \sqrt{k}),$$

 $\delta_i \in \{-1, 1\}, \ i = 1, \dots, 5,$

where (u_i, v_i) (i = 1, ..., 5) are solutions of (3). We find from (18) that

(19)
$$x_{j+1} + \delta_{j+1} k^{(n_{j+1}-1)/2} \sqrt{k}$$
$$= (x_j + \delta_j k^{(n_j-1)/2} \sqrt{k}) (u'_j + v'_j \sqrt{k}), \quad j = 1, \dots, 4,$$

where (u'_j, v'_j) (j = 1, ..., 4) are also solutions of (3). Since $x_1 < ... < x_5$, we see from (19) that

(20)
$$x_{j+1} + k^{(n_{j+1}-1)/2} \sqrt{k}$$
$$= \begin{cases} (x_j + k^{(n_j-1)/2} \sqrt{k}) (u_j'' + v_j'' \sqrt{k}) & \text{if } \delta_j = \delta_{j+1}, \\ (x_j - k^{(n_j-1)/2} \sqrt{k}) (u_j'' + v_j'' \sqrt{k}) & \text{if } \delta_j \neq \delta_{j+1}, \end{cases}$$

 $j = 1, \ldots, 4$, where (u''_j, v''_j) are positive integer solutions of (3). Notice that $x_{j+1} > x_j$ and

(21)
$$\frac{x_{j+1}}{x_j} > \frac{x_{j+1} + k^{(n_{j+1}-1)/2}\sqrt{k}}{x_j + k^{(n_j-1)/2}\sqrt{k}} > \frac{x_{j+1} + k^{(n_{j+1}-1)/2}\sqrt{k}}{x_j - k^{(n_j-1)/2}\sqrt{k}} > 0, \quad j = 1, \dots, 4$$

From (20) and (21), we obtain

(22)
$$\frac{x_{j+1}}{x_j} > u_j'' + v_j''\sqrt{k}, \quad j = 1, \dots, 4.$$

On the other hand, by (20), we get

(23)
$$k^{(n_{j+1}-1)/2} = x_j v_j'' \pm k^{(n_j-1)/2} u_j'', \quad j = 1, \dots, 4.$$

Since $gcd(D,k) = gcd(x_j,k) = 1$ (j = 1, ..., 4), we see from (23) that

(24)
$$k^{(n_j-1)/2} | v_j'', \quad j = 1, \dots, 4$$

and $v_j''/k^{(n_j-1)/2}$ is a positive integer satisfying

(25)
$$k^{(n_{j+1}-n_j)/2} = x_j \frac{v_j''}{k^{(n_j-1)/2}} \pm u_j'', \quad j = 1, \dots, 4$$

Since $gcd(u''_j, k) = 1$ (j = 1, ..., 4), from (25) we get

(26)
$$\gcd(k, v_j''/k^{(n_j-1)/2}) = 1, \quad j = 1, \dots, 4.$$

For j = 1, ..., 4, let (U_j, V_j) be the least positive integer solution of (3) such that $k^{(n_j-1)/2} | V_j$ and $gcd(k, V_j/k^{(n_j-1)/2}) = 1$. By Lemma 4, we deduce

from (22), (24) and (26) that

(27)
$$\frac{x_{j+2}}{x_{j+1}} > u_{j+1}'' + v_{j+1}''\sqrt{k}$$
$$\geq U_{j+1} + V_{j+1}\sqrt{k} = (U_j + V_j\sqrt{k})^{k^{(n_{j+1}-n_j)/2}}, \quad j = 1, 2, 3.$$

By Lemma 1, we have $k^{n_2} > \sqrt{D}$. Further, since $k^{(n_2-1)/2} | V_2$, we infer from (27) that

$$x_3^2 > x_2^2 (U_2 + V_2 \sqrt{k})^2 > 4x_2^2 k^{n_2} > 4x_2^2 \sqrt{D}.$$

This implies that

$$(28) \quad k^{n_3} = x_3^2 - D > 4x_2^2\sqrt{D} - D = 4(D + k^{n_2})\sqrt{D} - D > 4D^{3/2} + 3D.$$

Since $k \ge 6$, by the same argument, we can prove that
$$(29) \quad k^{n_4} = x_4^2 - D > x_3^2(u_3'' + v_3''\sqrt{k})^2 - D \ge x_3^2(U_3 + V_3\sqrt{k})^2 - D$$
$$= x_3^2(U_2 + V_2\sqrt{k})^{2k(n_3 - n_2)/2} - D > x_3^2(4k^{n_2})^{k(n_3 - n_2)/2} - D$$
$$> 4D^{3/2}(4D^{1/2})^k - D > 4^7D^{9/2} - D > 4^3D^4,$$

and

(30)
$$k^{n_5} = x_5^2 - D > x_4^2 (U_4 + V_4 \sqrt{k})^2 - D$$
$$= x_4^2 (U_3 + V_3 \sqrt{k})^{2k^{(n_4 - n_3)/2}} - D > k^{n_4 + n_3 k^{(n_4 - n_3)/2}}.$$

We see from (29) that (x_4, n_4) is a solution of (1) with $k^{n_4} > 4^3 D^4$. Moreover, if $D \ge 7$, then we have $k^{n_4} > 10^5$. Since k is not a prime power, k has at least two distinct prime factors p with (D/p) = 1, where (D/p) is Legendre's symbol. So we have $k \ge 7 \cdot 17$, $11 \cdot 13$ and $11 \cdot 19$ for D = 2, 3and 5 respectively. Since $n_4 \ge 7$, this implies that $k^{n_4} > \max(10^5, 4^3 D^4)$. Therefore, by Lemma 6, we get

(31)
$$39n_4 > n_5.$$

The combination of (30) and (31) yields

$$(32) 38n_4 > n_3 k^{(n_4 - n_3)/2}.$$

Since $n_3 \ge 5$, if $n_3 \le n_4/4.6$ then $n_4 \ge 4.6n_3 \ge 23$ and

$$38n_4 > n_3 k^{9n_4/23} \ge 5 \cdot 6^{9n_4/23},$$

by (32). This is impossible for $n_4 \ge 23$. If $n_3 > n_4/4.6$, then from (22) and (32) we get

$$174.8n_4 > n_4 k^{(n_4 - n_3)/2} = n_4 \left(\frac{x_4^2 - D}{x_3^2 - D}\right)^{1/2} > n_4 \frac{x_4}{x_3} > n_4 (U_3 + V_3 \sqrt{k})$$
$$> 2n_4 k^{n_3/2} > 2 \cdot 6^{5/2} n_4 > 176.3n_4,$$

a contradiction. Thus, the equation (1) has at most four solutions (x_i, n_i) (i = 1, ..., 4) such that $n_1 < ... < n_4$, $k^{n_1} < \sqrt{D}$, $2 \nmid n_i$ (i = 1, ..., 4) and $(X, Y) = (x_i, k^{(n_i-1)/2})$ (i = 1, ..., 4) belong to the same class of (2). By the same argument, we can prove that (1) has at most three solutions (x_i, n_i) (i = 1, ..., 3) such that $n_1 < ... < n_3$, $k^{n_1} > \sqrt{D}$, $2 \nmid n_i$ (i = 1, ..., 3) and $(X, Y) = (x_i, k^{(n_i-1)/2})$ (i = 1, ..., 3) belong to the same class of (2). Further, by Lemma 1, (1) has at most one solution (x, n) that satisfies $k^n < \sqrt{D}$. This implies that if D > 0, then (1) has at most $3 \cdot 2^{\omega(D)-1} + 1$ solutions (x, n) with $2 \nmid n$. Recall that (1) has at most $2^{\omega(D)-1}$ solutions (x, n) with $2 \nmid n$. So we have $N(D, k) \leq 2^{\omega(D)+1} + 1$ for D > 0.

We next consider the case D < 0. By Lemma 3, if $-5 \le D \le -1$, then $N(D,k) \le 3$. We may therefore assume that $|D| \ge 6$. Notice that (1) has no solution (x,n) satisfying $k^n < |D|$. Therefore, by much the same argument as in the proof of the case D > 0, we can prove that (1) has at most three solutions (x,n) such that $2 \nmid n$ and $(X,Y) = (x,k^{(n-1)/2})$ belongs to the same class of (2). So we have $N(D,k) \le 2^{\omega(D)+1}$ for D < 0. The proof is complete.

References

- R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris Sér. A 251 (1960), 1263–1264.
- [2] —, Sur une équation diophantienne, ibid., 1451–1452.
- [3] F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1981), 389-410.
- [4] —, On the generalized Ramanujan–Nagell equation II, ibid. 39 (1981), 113–123.
- [5] E. Brown, The diophantine equation of the form $x^2 + D = y^n$, J. Reine Angew. Math. 274/275 (1975), 385–389.
- [6] X.-G. Chen and M.-H. Le, On the number of solutions of the generalized Ramanujan-Nagell equation $x^2 D = k^n$, Publ. Math. Debrecen, to appear.
- [7] L.-K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.
- [8] M.-H. Le, On the generalized Ramanujan-Nagell equation $x^2 D = p^n$, Acta Arith. 58 (1991), 289–298.
- [9] —, On the number of solutions of the generalized Ramanujan–Nagell equation $x^2 D = 2^{n+2}$, ibid. 60 (1991), 149–167.
- [10] —, Sur le nombre de solutions de l'équation diophantienne $x^2 + D = p^n$, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 135–138.
- [11] —, Some exponential diophantine equations I: The equation $D_1 x^2 D_2 y^2 = \lambda k^z$, J. Number Theory 55 (1995), 209–221.
- [12] V. A. Lebesgue, Sur l'impossibilité, en nombres entiers, de l'équation $x^m = y^2 + 1$, Nouv. Ann. Math. (1) 9 (1850), 178–181.
- T. Nagell, Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova Acta R. Soc. Sc. Uppsal. (4) 16 (1954), No. 2.

M.-H. Le

- [14] N. Tzanakis and J. Wolfskill, On the diophantine equation y² = 4qⁿ + 4q + 1, J. Number Theory 23 (1986), 219–237.
 [15] T.-J. Xu and M.-H. Le, On the diophantine equation D₁x² + D₂ = kⁿ, Publ. Math.
- Debrecen 47 (1995), 293–297.

Department of Mathematics Zhanjiang Teachers College 524048 Zhanjiang, Guangdong P.R. China

> $Received \ on \ 29.8.1995$ and in revised form on 18.3.1996

(2849)