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1. Introduction. Let d(n) denote the divisor function, ν(n) the number
of distinct prime factors, and Ω(n) the total number of prime factors of n,
respectively. In 1984 Heath-Brown [4] proved the well-known Erdős–Mirsky
conjecture [1] (which seemed at one time as hard as the twin prime conjec-
ture, cf. [4, p. 141]):

(A) “There exist infinitely many positive integers n for which

d(n+ 1) = d(n).”

The method of Heath-Brown [4] can also be used to prove the conjecture:

(B) “There exist infinitely many positive integers n for which

Ω(n+ 1) = Ω(n).”

Another conjecture of Erdős for d(n) is (cf. e.g. [5, p. 308]):

(C) “Every positive real number is a limit point of the sequence
{d(n+ 1)/d(n)},”

and the similar conjecture for Ω(n) is

(D) “Every positive real number is a limit point of the sequence
{Ω(n+ 1)/Ω(n)}.”

It follows from the results of Heath-Brown that 1 is a limit point of
the sequence {d(n + 1)/d(n)}, and also a limit point of the sequence
{Ω(n+ 1)/Ω(n)}.

As for ν(n), Erdős has similar conjectures:

(E) “There exist infinitely many positive integers n for which

ν(n+ 1) = ν(n).”

(F) “Every positive real number is a limit point of the sequence
{ν(n+ 1)/ν(n)}.”

[91]
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Compared with the status of conjectures (A), (B), (C), (D), much less
is known about conjectures (E) and (F). The best result up to date for
conjecture (E) is the following

Theorem (Erdős–Pomerance–Sárközy) (cf. [2, p. 251, Theorem 1]).
There exist infinitely many positive integers n for which

|ν(n+ 1)− ν(n)| ≤ c
where c denotes a positive constant.

And for conjecture (F), no limit point of the sequence {ν(n + 1)/ν(n)} is
known yet.

The purpose of this paper is (i) to improve the result of Erdős–
Pomerance–Sárközy about conjecture (E), and (ii) to prove conjectures (F)
and (D). In fact, the following more general results will be proved here. Let
b denote any given nonzero integer, and k denote any fixed integer greater
than one. We have

Theorem 1. There exist infinitely many positive integers n for which

|ν(n+ b)− ν(n)| ≤ 1 and ν(n) = k.

Theorem 2. Every positive real number is a limit point of the sequence
{ν(n+ b)/ν(n)}.

Theorem 3. Every positive real number is a limit point of the sequence
{Ω(n+ b)/Ω(n)}.

2. Lemmas. We deduce in this section some lemmas by the sieve method.
Terminology and notations here have their customary meaning and coincide
with those of [3] and [6].

Let A denote a finite set of integers, |A| ∼ X. Let

Ad = {a : a ∈ A, d | a},
and assume that, for squarefree d,

|Ad| = ω(d)
d

X + rd, and ω(d) is multiplicative.

Define P = {p : p | a, a ∈ A} (i.e., P is the set of all primes dividing at
least one a in A), and P the complement of P with respect to the set of all
primes.

In the following conditions the Ai’s denote positive constants.

(Ω1) 0 ≤ ω(p)/p ≤ 1− 1/A1.

(Ω∗2(1)) −A2 ln ln 3X ≤
∑

w≤p<z

ω(p)
p

ln p− ln
z

w
≤ A2 if 2 ≤ w ≤ z.
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(Ω3)
∑

z≤p<y, p∈P
|Ap2 | ≤ A3

(
X lnX
z

+ y

)
if 2 ≤ z ≤ y.

(R∗(1, α)) There exists α (0 < α ≤ 1) such that, for any given A > 0,
there is B = B(A) > 0 such that

∑

d<Xα ln−B X, (d,P)=1

µ2(d)3ν(d)|rd| ≤ A4X ln−AX.

As a kind of exponential measure for the magnitude of the a’s of A we
introduce, for each positive integer r, the function

(1) Λr = r + 1− ln(4/(1 + 3−r))
ln 3

.

Clearly Λr is increasing, Λ1 = 1 and

(2) r + 1− ln 4
ln 3
≤ Λr ≤ r + 1− ln 3.6

ln 3
for r ≥ 2.

Lemma 1. Let (Ω1), (Ω∗2(1)), (Ω3) and (R∗(1, α)) hold. Suppose that

(3) (a,P) = 1 for all a ∈ A.
Let δ be a real number satisfying

(4) 0 < δ < Λ2,

and let r0 be the least integer of all r’s (r ≥ 2) satisfying

(5) |a| ≤ Xα(Λr−δ) for all a ∈ A.
Then we have, for X ≥ X0,

(6) #{n : n ∈ A, n = p1 . . . pt+1 or p1 . . . pt+2 or . . . or p1 . . . pr,

p1 < . . . < pt < X1/ ln lnX , Xα/4 ≤ pt+1 < pt+2 < . . . < pr}
>
c(r0, δ)
t!α

c(ω)X ln−1X(ln lnX)t
(

1−O
(

ln ln lnX
ln lnX

))
,

where pi’s denote primes, t = r − r0,

(7) c(r0, δ) = 2(r0 + 1− (1 + 3−r0)(Λr0 − δ))−1δ(1 + 3−r0) ln 3,

and

(8) c(ω) =
∏
p

(1− ω(p)/p)(1− 1/p)−1.

P r o o f. This lemma follows from [6, Theorem 1 and p. 281, (39) of
Remark 3].

Lemma 2. Let F (n) ( 6= ±n) be an irreducible polynomial of degree g
(≥ 1) with integer coefficients. Let %(p) denote the number of solutions of
the congruence

F (m) ≡ 0 mod p.
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Suppose that

(9) %(p) < p for all p,

and also that

(10) %(p) < p− 1 if p -F (0) and p ≤ g + 1.

Then we have, for any fixed r ≥ r0 = 2g + 1 and for x > x0 = x0(F ),

(11) #{p : p < x, F (p) = p1 . . . pr−r0+1 or p1 . . . pr−r0+2 or . . . or

p1 . . . pr, p1 < p2 < . . . < pr}
>

3/2
(r − r0)!

∏

p -F (0)

1− %(p)/(p− 1)
1− 1/p

∏

p|F (0)

1− (%(p)− 1)/(p− 1)
1− 1/p

×x ln−2 x(ln lnx)r−r0 .

P r o o f. We consider the sequence

A = {F (p) : p < x},
and we take P to be the set of all primes.

In [3, pp. 22–24, Example 6] (with k = 1), in accordance with [3, p. 23
(3.48), p. 28 (4.15), p. 24 (3.51)], we choose

(12) X = lix, ω(p) =
%1(p)
p− 1

p for all p,

where (cf. [3, p. 24 (3.53)])

(13) %1(p) =
{
%(p) if p -F (0),
%(p)− 1 if p |F (0).

From [3, p. 28 (4.15), p. 24 (3.52) and p. 24 (3.55)] we have

(14) |Rd| ≤ gν(d)(E(x, d) + 1) if µ(d) 6= 0,

where (cf. [3, p. 22 (3.41)])

E(x, d) = max
2≤y≤x

max
1≤a≤d
(a,d)=1

|π(y; d, a)− li y/ϕ(d)|.

It is now a matter of confirming the conditions under which Lemma 1 is
valid.

First consider (Ω1). Here we see that, for p ≤ g + 1, (13), (10) and (9)
imply that

%1(p) ≤ p− 2,

and hence that

ω(p) ≤ p− 2
p− 1

p ≤
(

1− 1
g

)
p if p ≤ g + 1;
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if, on the other hand, p ≥ g + 2, then, by [3, p. 24 (3.54)],

%1(p) ≤ %(p) ≤ g,
and we find that

ω(p) ≤ g

p− 1
p ≤ g

g + 1
p =

(
1− 1

g + 1

)
p,

thus verifying (Ω1) with A1 = g + 1.
Condition (Ω∗2(1)) is a consequence of Nagel’s result (cf. [3, p. 18 (3.17)]

with k = 1)
∑
p<w

%(p)
p

ln p = lnw +OF (1).

Moreover, since

#{p′ : p′ < x, F (p′) ≡ 0 mod p2} ≤ #{n : n < x, F (n) ≡ 0 mod p2}
� x

p2 + 1� X lnX
p2 + 1,

it is easy to see that (Ω3) is satisfied.
As for (R∗(1, α)), we see from (14) and Bombieri’s theorem (cf. [3, p. 111,

Lemma 3.3, p. 115, Lemmas 3.4 and 3.5]) that, for any given A > 0, there
is B = B(A) > 0 such that

∑

d<X1/2 ln−B X

µ2(d)3ν(d)|rd| � x

lnA+1 x
� X

lnAX
.

Thus (R∗(1, α)) holds with

(15) α = 1/2.

Finally, because of our choice of P, (3) is trivially true (cf. [6, p. 285
(40)]).

We may now apply Lemma 1. We take

δ = 2/3 and r0 = 2g + 1

and find that, by (15) and (2), for r ≥ r0,

α(Λr − δ) > 1
2

(
2g + 1− 2

7
− 2

3

)
= g +

5
14
− 1

3
,

so that (5) is satisfied if x > x1 = x1(F ). Hence, by Lemma 1, (12) and (15),
we have

(16) #{p : p < x, F (p) = p1 . . . pr−r0+1 or p1 . . . pr−r0+2 or . . . or

p1 . . . pr, p1 < p2 < . . . < pr}
≥ 2

(r − r0)!
c(r0, δ)

∏
p

1− %1(p)/(p− 1)
1− 1/p

· x

ln2 x
(ln lnx)r−r0 .
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It follows from (7), (2) and δ = 2/3 that

c(r0, δ) > 2(r0 + 1− Λr0 + δ)−1δ ln 3(17)

≥ 2
(

ln 4
ln 3

+
2
3

)−1 2
3

ln 3 > 0.7595.

Combining (16), (17) and (13) we obtain (11), and the proof of Lemma 2 is
complete.

Lemma 3. Let a and b be integers satisfying

(18) ab 6= 0, (a, b) = 1 and 2 | ab.
Then, for any fixed integer r ≥ 3 and for x ≥ x0 = x0(a, b), we have

(19) #{p : p < x, ap+ b = p1 . . . pr−2 or p1 . . . pr−1 or p1 . . . pr,

p1 < p2 < . . . < pr}
>

3
(r − 3)!

∏
p>2

(1− (p− 1)−2)
∏

2<p|ab

p− 1
p− 2

· x

ln2 x
(ln lnx)r−3.

P r o o f. In Lemma 2 let F (n) = an+ b. Since (18) implies (9), (10) and
b 6= 0, by Lemma 2 we have the assertion.

3. Proof of the Theorems. Let qi denote a prime. In Lemma 3 we
take a = q1q2 . . . qr−2 with q1 < q2 < . . . < qr−2, and let n = ap. Then from
(19) it is easy to see that there are infinitely many n for which

ν(n) = ν(ap) = ν(q1q2 . . . qr−2p) = r − 1

and

ν(n+ b) = ν(ap+ b) = t,

where

t = r − 2 or r − 1 or r;

so for such n,

|ν(n+ b)− ν(n)| ≤ 1 and ν(n) = r − 1.

This completes the proof of Theorem 1.

If in Lemma 3 we take a = q1q2 . . . qs−1, q1 < q2 < . . . < qs−1, and let
n = ap, then from (19) again we see that there are infinitely many n for
which

ν(n) = Ω(n) = s and ν(n+ b) = Ω(n+ b) = t,

where

t = r − 2 or r − 1 or r;
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so for such n,
ν(n+ b)
ν(n)

=
Ω(n+ b)
Ω(n)

=
t

s
.

Moreover, for any given positive real number α and for any small ε > 0, the
fraction t/s (where t, s are both variable) may be chosen to approximate α
arbitrarily closely, i.e.

|α− t/s| < ε.

Thus α is a limit point of the sequence {ν(n + b)/ν(n)}, as well as a limit
point of the sequence {Ω(n+ b)/Ω(n)}. We have thus completed the proof
of Theorems 2 and 3.

R e m a r k. The method here gives for the number of solutions of

|ν(n+ b)− ν(n)| ≤ 1, n ≤ x,
a lower bound � x ln−2 x(ln lnx)t for t arbitrarily large but fixed. In view
of the works of Heath-Brown, Hildebrand, and Erdős–Pomerance–Sárközy,
it seems reasonable to conjecture that this lower bound is � x/

√
ln lnx.

References
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