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Laplace ultradistributions on a half line
and a strong quasi-analyticity principle

by Grzegorz  Lysik (Warszawa)

Abstract. Several representations of the space of Laplace ultradistributions sup-
ported by a half line are given. A strong version of the quasi-analyticity principle of
Phragmén–Lindelöf type is derived.

The theory of ultradistributions was founded by Buerling and Roumieu
in the sixties as a generalization of the theory of Schwartz distributions.
Since then it was extensively studied by many authors: Björk, Braun, Ko-
matsu, Meise, Pilipović, Taylor , . . . , to mention but a few. The most system-
atic treatment was presented by Komatsu [2], [3]. He derived, in particular,
the boundary value representation of the space D(Mp)′(Ω) of ultradistri-
butions on an open set Ω ⊂ Rn, structure theorems for D(Mp)′(Ω) and
described the image of the space D

(Mp)′
K of ultradistributions with com-

pact support in K under the Fourier–Laplace transformation. Following
his approach Pilipović [9] recently introduced and investigated the space
S(Mp)′(R) of tempered ultradistributions. On the other hand, in the study
of the Laplace transformation it is convenient to consider the space L′(ω)(Γ )
of Laplace distributions of type ω ∈ R supported by a half line Γ . Since in
the logarithmic variables the Laplace transformation is the Mellin transfor-
mation we refer here to the book of Szmydt and Ziemian [11], where the
latter transformation was systematically studied following the approach of
Zemanian [12].

The aim of the present paper is to unify the theory of ultradistributions
with that of Laplace distributions. We present it in the case of the space
L

(Mp)′
(ω) (Γ ) of Laplace ultradistributions of Buerling type. Our theory is based

on the Seeley type extension theorems for ultradifferentiable functions re-
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cently proved by Langenbruch [4] and Meise and Taylor [7]. We describe
the image of the space L(Mp)′

(ω) (Γ ) under the Laplace, Taylor and (modified)
Cauchy transformations. In the latter case we follow the method of Mo-
rimoto [8]. As an application of our theory we give, in the final section,
a version of the quasi-analyticity principle of Phragmén–Lindelöf type. It
says that a function holomorphic and of exponential type in the half plane
{Re z > 0} vanishes if it satisfies some growth conditions along vertical lines
and decreases superexponentially along a ray in {Re z > 0}.

0. Notation. Let t > 0. We denote by B̃(t) the universal covering of
the punctured disc B(t) \ {0} and by C̃ that of C \ {0}. We treat B̃(t) and
C̃ as Riemann manifolds. Recall that any point x ∈ B̃(t) can be written in
the form x = |x| exp i arg x with |x| < t.

We denote by µ : C→ C̃ the biholomorphism

µ(z) = e−z for z ∈ C,

i.e. µ(z) = x ∈ C̃ with |x| = e−Re z, arg x = − Im z. Then the inverse
mapping µ−1 : C̃→ C is given by

µ−1(x) = − lnx for x ∈ C̃.

Let v ∈ R. We set

Γv = [v,∞) and Iv = (0, e−v].

Observe that Iv = µ(Γv). In the following we omit the subscript v as long
as it is fixed. For z ∈ C we define the function expz : R→ C by

expz y = eyz, y ∈ R.

For A ⊂ C we set

Aε = {z ∈ C : dist(z,A) < ε}, ε > 0.

We write D for the differential operator d/dx.
Let {Pτ}τ∈T be a family of multivalued vector spaces. Then lim−→τ∈T Tτ

(resp. lim←−τ∈T Pτ ) denotes the inductive limit (resp. projective limit) of Pτ ,
τ ∈ T .
O(W ) denotes the set of holomorphic functions on an open subset W of

some Riemann manifold. The value of a functional S on a test function ϕ is
denoted by S[ϕ].

1. Laplace ultradistributions on a half line. Let (Mp)p∈N0 be a
sequence of positive numbers. Throughout the paper we assume that (Mp)
satisfies the following conditions:
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(M.1) (Logarithmic convexity)

M2
p ≤Mp−1Mp+1 for p ∈ N;

(M.2) (Stability under ultradifferential operators) There are constants
A,H such that

Mp ≤ AHp min
0≤q≤p

MqMp−q for p ∈ N0;

(M.3) (Strong non-quasi-analyticity) There is a constant A such that
∞∑

q=p+1

Mq−1

Mq
≤ Ap Mp

Mp+1
for p ∈ N.

Some results remain valid when (M.2), (M.3) are replaced by the follow-
ing weaker conditions:

(M.2′) (Stability under differential operators) There are constants A,H
such that

Mp+1 ≤ AHpMp for p ∈ N0;

(M.3′) (Non-quasi-analyticity)
∞∑
p=1

Mp−1

Mp
<∞.

Define

mp = Mp/Mp−1 for p ∈ N.
Then (M.1) is equivalent to saying that the sequence mp is non-decreasing,
and by (M.3′) it follows that mp →∞.

Note that the condition (M.3′) implies the following: for every h > 0
there exists δ > 0 such that

(1) Mph
p ≥ δ for p ∈ N0,

which is equivalent to the finiteness of the associated function M defined by

(2) M(%) = sup
p∈N0

ln
%pM0

Mp
for % > 0.

If Mp/p! satisfies (1) the growth function M∗ is defined by

(3) M∗(%) = sup
p∈N0

ln
%pp!M0

Mp
for % > 0.

Example 1. The Gevrey sequence of order s > 1 is defined by Mp =
(p!)s, p ∈ N0. It satisfies all conditions (M.1)–(M.3) and M(%) ∼ %1/s,
M∗(%) ∼ %1/s−1 as %→∞.
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R e m a r k 1. It follows from Lemma 4.1 of [2] that if Mp satisfies (M.1)
and (M.3′) then the associated function M is sublinear, i.e. M(%)/%→ 0 as
%→∞.

R e m a r k 2. If Mp satisfies (M.1) and (M.3′) then

(4) lim
p→∞

(Mp/p!)1/p =∞.

P r o o f. Take any l <∞. Then by (M.1) and (M.3′) there exists pl ∈ N
such that Mp ≥ lpMp−1 for p ≥ pl. Hence

Mp ≥ Cl · lp · p! for p ≥ pl, where Cl =
Mpl−1

M0(pl − 1)!
l1−pl ,

and we easily get (4).

Definition. Let Γ = [v,∞) with v∈R. The space D(Mp)′(Γ ) of ultra-
distributions on Γ of class (Mp) is defined as the dual space of

D(Mp)(Γ ) = lim−→
K⊂Γ

lim←−
h>0

D
(Mp)
K,h (Γ ),

where for any compact set K ⊂ Γ and h > 0,

D
(Mp)
K,h (Γ )

=
{
ϕ ∈ C∞(Γ ) : suppϕ ⊂ K and ‖ϕ‖(Mp)

K,h = sup
y∈K

sup
α∈N0

|Dαϕ(y)|
hαMα

<∞
}
.

By ϕ ∈ C∞(Γ ) we mean a restriction to Γ of some function ϕ̃ ∈ C∞(R).

Definition. Let ω ∈ R∪{∞}. We define the space L(Mp)′
(ω) (Γ ) of Laplace

ultradistributions as the dual space of

L
(Mp)

(ω) (Γ ) = lim−→
a<ω

L(Mp)
a (Γ ),

where for any a ∈ R,

L(Mp)
a (Γ ) = lim←−

h>0

L
(Mp)
a,h (Γ ),

L
(Mp)
a,h (Γ ) =

{
ϕ ∈ C∞(Γ ) : ‖ϕ‖(Mp)

a,h = sup
y∈Γ

sup
α∈N0

|e−ayDαϕ(y)|
hαMα

<∞
}
.

Lemma 1. Assume that (Mp) satisfies (M.1) and (M.3′). Then D(Mp)(Γ )
is a dense subspace of L(Mp)

(ω) (Γ ). Thus, L(Mp)′
(ω) (Γ ) is a subspace of the space

of ultradistributions D(Mp)′(Γ ).

P r o o f. Making a translation if necessary we can assume that Γ = R+.
Let ϕ ∈ L(Mp)

(ω) (Γ ). Then there exist a < b < ω such that ϕ ∈ L(Mp)
a (Γ ) ⊂

L
(Mp)
b (Γ ). By the Denjoy–Carleman–Mandelbrojt theorem (cf. [2], [6]) there
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exists a function ψ ∈ D(Mp)(Γ ) such that 0 ≤ ψ(y) ≤ 1 for y ∈ Γ , ψ(y) = 1
for 0 ≤ y ≤ 1 and ψ(y) = 0 for y ≥ 2. Put ϕν(y) = ψ(y/ν)ϕ(y) for
y ∈ Γ , ν ∈ N. Then ϕν ∈ D(Mp)(Γ ) and we shall show that ϕν → ϕ in
L

(Mp)
b (Γ ) as ν →∞. To this end take any h > 0. Noting that (M.1) implies

MqMp−q ≤M0Mp for 0 ≤ q ≤ p, by the Leibniz formula we get

‖ϕν − ϕ‖
(Mp)
b,h = sup

y∈Γ
sup
α∈N0

|e−byDα(ϕ(y)(ψ(y/ν)− 1))|
hαMα

≤ sup
y∈Γ

sup
α∈N0

e−ay|Dαϕ(y)|
hαMα

e(a−b)y|ψ(y/ν)− 1|

+ sup
y∈Γ

sup
α∈N

∑
0≤β<α

(
α

β

)
e−ay|Dβϕ(y)|

hβMβ
· e

(a−b)y|Dα−β(ψ(y/ν)− 1)|M0

hα−βMα−β
.

Since ψ(y/ν) = 1 for 0 ≤ y ≤ ν the first summand tends to zero as ν →∞.
Put K = [1, 2]. Then for β < α and any h1 > 0 we have

|Dα−β(ψ(y/ν)− 1)| = |ν−(α−β)ψ(α−β)(y/ν)| ≤ ν−1‖ψ‖(Mp)
K,h1

hα−β1 Mα−β .

We also have for any h2 > 0 and β ≥ 0, e−ay|Dβϕ(y)| ≤ ‖ϕ‖(Mp)
a,h2

hβ2Mβ . So
the second summand is bounded by

M0e
(a−b)ν

ν
sup
α∈N

∑
β<α

(
α

β

)
‖ϕ‖(Mp)

a,h2

(
h2

h

)β
‖ψ‖(Mp)

K,h1

(
h1

h

)α−β
≤ M0

ν
‖ϕ‖(Mp)

a,h2
‖ψ‖(Mp)

K,h1
if h2 + h1 ≤ h

and thus tends to zero as ν →∞, proving the lemma.

Example 2. Let (Mp) satisfy (1). Then the function

Γ 3 y → expz y = eyz

belongs to L(Mp)

(ω) (Γ ) if and only if Re z < ω. Furthermore, in this case for
any a < ω and h > 0 we have

‖ expz ‖
(Mp)
a,h = M−1

0 exp{(Re z − a)v +M(|z|/h)}.
Let (Mp) satisfy (M.1) and (1), and let z ∈ C. Then the operation of

multiplication

expz : L(Mp)

(ω) (Γ )→ L
(Mp)

(ω+Re z)(Γ )

is continuous. Thus the formula

expz S[ϕ] = S[expz ϕ] for ϕ ∈ L(Mp)

(ω+Re z)(Γ ), S ∈ L(Mp)′
(ω) (Γ )

defines a continuous operation

expz : L(Mp)′
(ω) (Γ )→ L

(Mp)′
(ω−Re z)(Γ ).
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Let (Mp) satisfy (M.2). An ultradifferential operator P (D) of class (Mp)
is defined by

P (D) =
∞∑
α=0

aαD
α,

where aα ∈ C satisfy the following condition: there are constants K < ∞
and C <∞ such that

(5) |aα| ≤ C
Kα

Mα
for α ∈ N0.

The entire function C 3 z → P (z) is called a symbol of class (Mp). As in the
proof of Theorem 2.12 of [2] one can show that an ultradifferential operator
of class (Mp) defines linear continuous mappings

P (D) : L(Mp)

(ω) (Γ )→ L
(Mp)

(ω) (Γ ), P (D) : L(Mp)′
(ω) (Γ )→ L

(Mp)′
(ω) (Γ ),

where for S ∈ L(Mp)′
(ω) (Γ ) and ϕ ∈ L(Mp)

(ω) (Γ ),

P (D)S[ϕ] = S[P ∗(D)ϕ] with P ∗(D) =
∞∑
α=0

(−1)αaαDα.

For a ∈ R and ω ∈ R ∪ {∞} we define

(6) Ya = span{expc}c≤a, Y(ω) =
⋃
a<ω

Ya.

Proposition 1. Let b < a. Then L
(Mp)
b (Γ ) is contained in the closure

of Ya in L
(Mp)
a (Γ ). Thus Y(ω) is dense in L

(Mp)

(ω) (Γ ).

P r o o f. Since the multiplication by exp−a is a continuous isomorphism
of L(Mp)

c (Γ ) onto L(Mp)
c−a (Γ ) and Yc onto Yc−a, where c ∈ R, it is sufficient to

assume that a = 0. Let ϕ ∈ L(Mp)
b (Γ ). It is enough to show that for every

ε > 0 and h > 0 there exists ψ ∈ Y0 such that ‖ϕ−ψ‖(Mp)
0,h < ε. To this end

fix ε > 0 and h > 0. By the proof of Lemma 1 there exists ψ̃ ∈ D(Mp)(Γ )
such that ‖ϕ − ψ̃‖(Mp)

0,h < ε/2. Put η(x) = ψ ◦ µ−1(x) for x ∈ I. Then
η has compact support in I = µ(Γ ) and by the Roumieu theorem ([10],
Théorème 13), η∈D(Mp)(I). By the Weierstrass type theorem ([2], Theorem
7.3) for any δ > 0 and h1 > 0 there exists a polynomial p =

∑N
ν=0 cνx

ν such
that

(7) ‖η − p‖(Mp)

Ī,h1
< δ.

Put ψ(y) = p ◦ µ(y) =
∑N
ν=0 cνe

−νy for y ∈ Γ . Then ψ ∈ Y0 and we shall
show that for a suitable choice of δ and h1, ‖ψ̃−ψ‖(Mp)

0,h < ε/2. To this end
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put f = η−p. Following the proof of Théorème 13 of [10] one can show that
the derivatives Dαf ◦ µ are estimated by

(8) ‖f‖(Mp)

Ī,h1
·
α∑
β=1

e−vβ
Mβ

β!
hβ1

(α− 1)!α!
(α− β)!(β − 1)!

.

For γ ∈ N0 put

(9) Hγ = sup
β≥γ

(β!/Mβ)1/β .

Then by Remark 2, Hγ → 0 as γ → ∞. Hence we can find γ ∈ N0 and
h1 > 0 such that

(10) (
√
e−vh1 +

√
Hγ)2 ·H < h,

where H is the constant in (M.2). Since by (M.2), Mp+q ≤ AHp+qMpMq

for p, q ∈ N0 and by (M.1), MβMα−β ≤ M1Mα for 0 ≤ β ≤ α, we get for
α ∈ N0, 0 ≤ β ≤ α,

(11) MβMα−β+γ ≤MβAH
α−β+γMα−βMγ ≤ CγHαMα,

where Cγ = AM1Mγ max(Hγ , 1).

Observe also that

α < β(α− β + γ) for 1 ≤ β ≤ α, α ∈ N,

and
α∑
β=1

(
α− 1
β − 1

)2

xβ−1yα−β ≤ (
√
x+
√
y)2α−2 for α ∈ N, x ≥ 0, y ≥ 0.

Hence using (8), (9) and (11) we derive for α ∈ N, y ∈ Γ ,

|Dαf ◦ µ(y)|

≤ ‖f‖(Mp)

Ī,h1
·
α∑
β=1

e−vβhβ1H
α−β+γ
γ

(α− 1)!α!
(α− β)!(α− β + γ)!β!(β − 1)!

MβMα−β+γ

≤ ‖f‖(Mp)

Ī,h1
· CγHγ

γ e
−vh1

α∑
β=1

(e−vh1)β−1Hα−β
γ

(
(α− 1)!

(α− β)!(β − 1)!

)2

HαMα

≤ ‖f‖(Mp)

Ī,h1
· CγHγ

γ e
−vh1(

√
e−vh1 +

√
Hγ)−2((

√
e−vh1 +

√
Hγ)2H)αMα

≤ C̃γMαL
α‖f‖(Mp)

Ī,h1
, where L = (

√
e−vh1 +

√
Hγ)2H.

Finally, choosing δ < ε/(2C̃γ) in (7) we get by (10),
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‖ψ̃ − ψ‖(Mp)
0,h = sup

y∈Γ
sup
α∈N0

|Dαf ◦ µ(y)|
hαMα

≤ sup
α∈N0

C̃γL
α

hα
‖f‖(Mp)

Ī,h1
<
ε

2
.

To end this section we quote the following version of

Seeley extension theorem ([4], [7]). Let Γ = [v,∞), Γ1 = [v1,∞)
with v1 < v and a ∈ R. Then there exists a linear continuous extension
operator

(12) E : L(Mp)
a (Γ )→ L(Mp)

a (Γ1)

such that for every ϕ ∈ L(Mp)
a (Γ ), supp Eϕ ⊂ (v1,∞).

Corollary 1. Let S be a linear functional on L
(Mp)

(ω) (Γ ). Then S ∈
L

(Mp)′
(ω) (Γ ) if and only if for every a < ω there exist h > 0 and C <∞ such

that

(13) |S[ϕ]| ≤ C‖ϕ‖(Mp)
a,h for ϕ ∈ L(Mp)

a (Γ ).

2. The Paley–Wiener type theorem for Laplace ultradistribu-
tions. We assume the conditions (M.1), (M.2) and (M.3). Let Γ = [v,∞)
with v ∈ R. By Example 2 the function expz belongs to L(Mp)

(ω) (Γ ) if and only

if Re z < ω. Hence we can define the Laplace transform of S ∈ L(Mp)′
(ω) (Γ ) by

LS(z) = S[expz] for Re z < ω.

Since the mapping

{Re z < ω} 3 z → expz ∈ L
(Mp)

(ω) (Γ )

is holomorphic, LS is a holomorphic function on {Re z < ω}.
Define

(14) O(Mp)
v (Re z < ω)

= {F ∈ O(Re z < ω) :

for every a < ω there exist h > 0 and C <∞ such that

|F (z)| ≤ C exp{vRe z +M(|z|/h)} for Re z ≤ a}.
Applying Corollary 1 with ϕ = expz and Re z ≤ a, by Example 2 we get

Theorem 1. Let S ∈ L(Mp)′
(ω) (Γ ) and F (z) = LS(z) for Re z < ω. Then

F ∈ O(Mp)
v (Re z < ω).

Theorem 2. Let ω1 ≤ ω2, S1 ∈ L
(Mp)′
(ω1) (Γ ) and S2 ∈ L

(Mp)′
(ω2) (Γ ). If

(15) LS1(z) = LS2(z) for Re z < ω1

then S1 = S2 in L
(Mp)′
(ω1) (Γ ).
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P r o o f. We have to prove that for arbitrary ϕ∈L(Mp)

(ω1) (Γ ), S1[ϕ] = S2[ϕ].

To this end fix ϕ ∈ L(Mp)

(ω1) (Γ ), choose b < ω1 such that ϕ ∈ L(Mp)
b (Γ ) and

take b < a < ω1. Since by (15), S1[expc] = S2[expc] for c ≤ a the proof
follows from Proposition 1.

To prove the converse of Theorem 1 we need two lemmas. The first one
is a restatement of Lemma 9.1 of [11] (cf. also [12]).

Lemma 2. Let a ∈ R. Suppose that G is holomorphic on the set
{Re z ≤ b} and satisfies there the estimate

|G(z)| ≤ C

〈z〉2
evRe z

with some C <∞, v ∈ R. Put

g(y) =
1

2πi

∫
c+iR

G(z)e−zy dz for y ∈ R.

Then g does not depend on the choice of c ≤ b; it is a continuous function
on R with support in Γ = [v,∞); the function Γ 3 y → ebyg(y) is bounded ;
g ∈ L(Mp)′

(b) (Γ ) and G(z) = Lg(z) for Re z < b.

Lemma 3. Let ω̃ ∈ R and k > 0. Then there exists a symbol P of class
(Mp) not vanishing on {Re z < ω̃ + 1} such that

(16)
expM(k|z|)

P (z)
≤ 1
〈z〉2

for Re z ≤ ω̃.

P r o o f. Since mp → ∞ as p → ∞ (by (M.3′)) we can find p0 ∈ N such
that mp > 2k|ω̃|+ k and |mp − kz| ≥ k|z| for p ≥ p0 and Re z ≤ ω̃. Put

P (z) = (z − ω̃ − 1)p0+1
∞∏
p=p0

(
1− kz

mp

)
for z ∈ C.

Then P does not vanish on {Re z < ω̃} and by the Hadamard factorization
theorem (cf. [2], Propositions 4.5 and 4.6) it is a symbol of class (Mp). On
the other hand, if Re z ≤ ω̃ we estimate from below:∣∣∣∣ ∞∏

p=p0

(
1− kz

mp

)∣∣∣∣ ≥ ∞∏
p=p0

(
1− k|ω̃|

mp

)
sup
q≥p0

q∏
p=p0

∣∣∣∣1− kz

mp

∣∣∣∣
≥
∞∏
p=p0

(
1− k|ω̃|

mp

)
sup
q≥p0

q∏
p=p0

k|z|
mp

= C|z|−p0+1 expM(k|z|),
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where

C =
Mp0−1

M0

∞∏
p=p0

(
1− k|ω̃|

mp

)
> 0.

Hence, possibly multiplying P by a suitable constant, we get (16).

Theorem 3. Let ω ∈ R∪{∞} and let F ∈ O(Mp)
v (Re z < ω). Then there

exists a Laplace ultradistribution S ∈ L(Mp)′
(ω) (Γ ) such that

(17) F (z) = LS(z) for Re z < ω.

P r o o f. Fix a < ω. Choose ω̃ ∈ R such that a < ω̃ < ω and assume
(14). By Lemma 3 we can find a symbol P of class (Mp), not vanishing on
{Re z < ω̃+ 1} and satisfying (16). Next we apply Lemma 2 to the function

G(z) =
F (z)
P (z)

, Re z ≤ ω̃.

We get a continuous function g which belongs to L
(Mp)′
(a) (Γ ) and satisfies

Lg(z) = G(z) for Re z < a. Put S = P (−D)g. Then S ∈ L(Mp)′
(a) (Γ ) and

LS(z) = P (z)Lg(z) = F (z) for Re z < a.
Thus for every a < ω we can find Sa ∈ L

(Mp)′
(a) (Γ ) such that LSa(z) =

F (z) for Re z < a. By Theorem 2 the definition S = Sa on L(Mp)

(a) (Γ ), a < ω,

defines correctly a functional S ∈ L(Mp)′
(ω) (Γ ) which satisfies (17).

It follows from the proof of Theorem 3 that Laplace ultradistributions
can be characterized as follows.

Theorem 4 (Structure theorem). An ultradistribution S ∈ D(Mp)′(R) is
in L

(Mp)′
(ω) (Γ ) if and only if for every a < ω there exist an ultradifferential

operator Pa of class (Mp) and a function ga continuous on R with support
in Γ such that

|ga(y)| ≤ Ce−ay for y ∈ Γ,

|Lga(z)| ≤ C

〈z〉2
evRe z for Re z < a

and

(18) S = Pa(D)ga in L
(Mp)′
(a) (Γ ).

3. Boundary value representation. In this section we use the follow-
ing version of the Phragmén–Lindelöf theorem.

3-line theorem ([1]). Let R > 0 and F ∈ O(ΓR) ∩ C0(ΓR). Suppose
that for some k > 0 the function

ΓR 3 z → exp{−k|z|}F (z)
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is bounded. If F is bounded on the boundary of ΓR then it is also bounded
on ΓR.

Definition. Let R > 0, k > 0 and a ∈ R. We define the spaces

L̃a(ΓR) = {ϕ ∈ O(ΓR) ∩ C0(ΓR) : ‖ϕ‖a,ΓR = sup
z∈Γ̄R

|ϕ(z)eaz| <∞},

L̃
(Mp)
a,k (ΓR \ Γ ) = {ϕ ∈ O(ΓR \ Γ ) : ϕ · exp{−M∗(k/|Im z|)} ∈ C0(ΓR),

‖ϕ‖(Mp)
a,k,ΓR

= sup
z∈Γ̄R

|ϕ(z) exp{az −M∗(k/|Im z|)}| <∞}.

By the 3-line theorem L̃a(ΓR) is a closed subspace of the Banach space
L̃

(Mp)
a,k (ΓR \ Γ ) and we can define

H
(Mp)
a,k (ΓR, Γ ) = L̃

(Mp)
a,k (ΓR \ Γ )/L̃a(ΓR).

Further, we define

L̃a(C) = lim←−
R→∞

L̃a(ΓR), L̃
(Mp)
a,k (C \ Γ ) = lim←−

R→∞
L̃

(Mp)
a,k (ΓR \ Γ ),

L̃(Mp)
a (C \ Γ ) = lim−→

k→∞
L̃

(Mp)
a,k (C \ Γ ),

H̃(Mp)
a (C, Γ ) = L̃(Mp)

a (C \ Γ )/L̃a(C), ˜H(Mp)
a (Γ ) = lim−→

R→0
k→∞

H
(Mp)
a,k (ΓR, Γ ).

Let a < b. Then the natural mappings

H̃
(Mp)
b (C, Γ )→ H̃(Mp)

a (C, Γ ), ˜H(Mp)
b (Γ )→ ˜H(Mp)

a (Γ )

are well defined and by the 3-line theorem they are injections. Thus, for
ω ∈ R ∪ {∞}, we can define

H̃
(Mp)

(ω) (C, Γ ) = lim←−
a<ω

H̃(Mp)
a (C, Γ ), ˜H(Mp)

(ω) (Γ ) = lim←−
a<ω ˜H(Mp)

a (Γ ).

An element f ∈ H̃(Mp)

(ω) (C, Γ ) is given by a set {Fa}a<ω of functions such

that for a < ω, Fa ∈ L̃
(Mp)
a (C \ Γ ) and for a < b < ω, Fa − Fb ∈ L̃a(C).

On the other hand, an element g ∈ ˜H(Mp)

(ω) (Γ ) is given by a set {Ga}a<ω of
functions such that for a < ω there exist Ra > 0 and ka < ∞ such that
Ga ∈ L̃

(Mp)
a,ka

(ΓRa \ Γ ) and for a < b < ω, Ga −Gb ∈ L̃a(ΓRa ∩ ΓRb , Γ ).
The natural mapping

(19) i : H̃(Mp)

(ω) (C, Γ )→ ˜H(Mp)

(ω) (Γ )

is defined by retaining the same set of defining functions. Obviously it is an
injection.
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Lemma 4. Let S ∈ L(Mp)′
(ω) (Γ ) and a < ω. Put

CaS(z) =
1

2πi
S

[
ea(·−z)

z − ·

]
for z ∈ C \ Γ.

Then CaS ∈ L̃
(Mp)
a (C \ Γ ). Furthermore, if a < b < ω then CaS − CbS ∈

L̃a(C).

P r o o f. Take a < c < ω. By Theorem 4 we can find an ultradifferential
operator Pc of class (Mp) and a continuous function gc with support in Γ

satisfying |gc(y)| ≤ Ce−cy for y ∈ Γ and S = Pc(D)gc in L
(Mp)′
(c) (Γ ). Since

for fixed z ∈ C \ Γ the function

Γ 3 y → ea(y−z)

z − y

belongs to L(Mp)

(c) (Γ ) we have

Ca(z) =
1

2πi
e−az
∫
Γ

gc(y)P ∗c (Dy)
(
eay

z − y

)
dy.

Let P ∗c (D) =
∑∞
α=0(−1)αaαDα with aα satisfying (5) and let R > 0. Then

for z ∈ ΓR \ Γ we estimate∣∣∣∣P ∗c (D)
(
eay

z − y

)∣∣∣∣ ≤ ∞∑
α=0

|aα|
∣∣∣∣Dα

(
eay

z − y

)∣∣∣∣ ≤ eay ∞∑
β=0

|a|β

β!

∞∑
α=β

|aα|α!
|Im z|α−β+1

≤ eay
∞∑
β=0

|a|βRβ

β!

∞∑
α=0

|aα|α!
|Im z|α+1

≤ eay+|a|R · AC
HK

expM∗
(

2HK
|Im z|

)
since by (5) and (M.2′) we have

∞∑
α=0

|aα|α!
|Im z|α+1

≤ C
∞∑
α=0

Kαα!
|Im z|α+1Mα

≤ 2C sup
α∈N0

(2K)αα!
|Im z|α+1Mα

≤ 2AC
2HK

sup
α∈N0

(2HK)α+1α!
|Im z|α+1Mα+1

≤ AC

HK
expM∗

(
2HK
|Im z|

)
.

Put k = 2HK. Then for every R > 0 there exists C <∞ such that

|CaS(z)| ≤ C exp{− aRe z +M∗(k/|Im z|)} for z ∈ ΓR \ Γ.

Thus, CaS ∈ L̃
(Mp)
a (C \ Γ ). If a < b < ω we take c < ω such that b < c and
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note that for z ∈ C the function

Γ 3 y → ea(y−z) − eb(y−z)

z − y

belongs to L
(Mp)

(c) (Γ ). Thus, the holomorphic extension of CaS − CbS is
given by

(CaS − CbS)(z) =
1

2πi

∫
Γ

gc(y)P ∗c (D)
(
ea(y−z) − eb(y−z)

z − y

)
dy

and we easily find that Ca − Cb ∈ L̃a(C).

Definition. Let S ∈ L(Mp)′
(ω) (Γ ). Then by Lemma 4 the set {CaS}a<ω of

functions defines an element f ∈ H̃(Mp)

(ω) (Γ ). We call f the Cauchy transform
of S and write f = CS.

Proposition 2. Let Fa ∈ L̃
(Mp)
a,k (ΓR\Γ ) with a ≤ 0. Then there exist an

ultradifferential operator Pa(D) of class (Mp) and functions H±a ∈ O(ΓR ∩
{± Im z > 0 or Re z < v}) such that

1◦ Pa(D)H±a = Fa;
2◦ For every 0 < R′ < R and a′ < a there exists C <∞ such that

|H±a (z)| ≤ C exp{−a′Re z} for z ∈ ΓR′ ∩ {± Im z > 0};

3◦ H±a (x+ iy) converges uniformly as y → 0+ to a function h±a contin-
uous on (v −R,∞) and analytic on (v −R, v) satisfying

|h±a (x)| ≤ C exp{−a′x} for x ∈ (v −R′,∞).

Furthermore, if we put

Sa = F+
a (x+ i0)− F−a (x− i0), where F±a (x± i0) = Pa(D)h±a ,

then Sa extends to a Laplace ultradistribution S̃a ∈ L
(Mp)′
(a) (Γ ) defined by

(20) S̃a[ϕ] =
∞∫

v−R

(h+
a (x)− h−a (x))P ∗a (D)Eϕ(x) dx for ϕ ∈ L(Mp)

(a) (Γ ).

In (20), E is a linear continuous extension mapping E : L
(Mp)

(a) (Γ ) →
L

(Mp)

(a) ([v −R,∞)), which exists by the Seeley extension theorem.

P r o o f. Put

P (ζ) = (1 + ζ)2
∞∏
p=1

(
1 +

kζ

mp

)
for ζ ∈ C.
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Then P is a symbol of class (Mp). Define the Green kernel for P by

G(z) =
1

2πi

∞∫
0

ezζ

P (ζ)
dζ for Re z < 0.

Then by Lemma 11.4 of [2], G can be holomorphically continued to the
Riemann domain {z : −π/2 < arg z < 5π/2}, on which we have

P (D)G(z) = − 1
2πi

1
z
.

Furthermore, since for any 0 ≤ ψ < π/2,

|z|
|1− z|

≤ 1
cosψ

and
1

|1− z|
≤ 1

cosψ

for z ∈ C with |arg z| ≤ ψ+π/2, following the proof of the above-mentioned
lemma we conclude that on the domain {−ψ ≤ arg z ≤ 2π + ψ}, G is
bounded by C/cosψ with C <∞ not depending on ψ. We also have

|g(x)| ≤ A
√
x exp{−M∗(k/x)} for x > 0,

where

g(z) = G+(z)−G−(e2πiz) for Re z > 0,

G+ being the branch of G on {−π/2 < arg z < π/2} and G− that on
{3π/2 < arg z < 5π/2}. Put

H±a (z) = ±i
∫
γ±

G(±i(z − w))Fa(w) dw,

where γ± is a closed curve encircling z once, in the anticlockwise direction,
such that −π/2 < arg(±i(z −w)) < 5π/2 for w ∈ γ±. We choose a starting
point z◦± of γ± in such a way that |arg{±i(z − z◦±)}| < π/2. Then H±a is
a holomorphic function on ΓR ∩ {± Im z > 0 or Re z < v} and does not
depend on the choice of γ± with a fixed starting point z◦±. For a fixed γ and
z changing in a compact set in the domain bounded by γ we have

P (D)H±a (z) = ±i
∫
γ

P (Dz)G(±i(z − w))Fa(w) dw

=
−1
2πi

∫
γ

Fa(w)
z − w

dw = Fa(z).

Let 0 < R′ < R and z ∈ ΓR′∩{Im z > 0}. Fix z◦ ∈ ΓR∩{Im z > r′}∩{Re z <
v − R′} and take γ+ = γ1 ∪ γ2 ∪ γ3 ∪ γ4, where γ1 = [x◦ + iy

◦
, x + iy

◦],
γ2 = [x + iy

◦
, x + iy], γ3 = [x + iy, x + iy

◦] and γ4 = [x + iy
◦
, x
◦ + iy

◦]. Since
0 ≤ arg(i(z − w)) ≤ ψ for w ∈ γ1 and 2π ≤ arg(i(z − w)) ≤ 2π + ψ for
w ∈ γ4, where 0 ≤ ψ < π/2 is such that tanψ = (x − x◦)/(y◦ − y), by the
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boundedness of G on {0 ≤ argψ ≤ 2π + ψ} we have |G(i(z −w))| ≤ Cx for
w ∈ γ1 ∪ γ4, where C does not depend on x. So∣∣∣ ∫

γ1∪γ4

G(i(z − w))Fa(w) dw
∣∣∣ ≤ Cx2e−ax for z ∈ ΓR′ ∩ {Im z > 0}.

On the other hand,∣∣∣ ∫
γ2∪γ3

G(i(z − w))Fa(w) dw
∣∣∣ =

∣∣∣− i y◦−y∫
0

g(t)F (x+ i(y + t)) dt
∣∣∣

≤ AC
y◦−y∫
0

√
t exp

{
M∗
(

k

y + t

)
−M∗

(
k

t

)
− ax

}
dt

≤ AC(y◦− y)3/2e−ax for z ∈ ΓR′ ∩ {Im z > 0}.
Thus, for any a′ < a one can find C <∞ such that

|H+
a (z)| ≤ Ce−a

′x for z ∈ ΓR′ ∩ {Im z > 0}.
The estimate of H−a is obtained in an analogous way.

The assertion 3◦ is clear from the above estimates.
Let ψ ∈ D(Mp)((v −R,∞)). By 1◦ and 2◦ we derive

Fa(x± i0)[ψ] = Pa(D)h±a [ψ] =
∞∫

v−R

h±a (x)P ∗a (D)ψ(x) dx

= lim
y→0+

∞∫
v−R

Ha(x± iy)P ∗a (D)ψ(x) dx

= lim
y→0+

∞∫
v−R

Fa(x± iy)ψ(x) dx.

Since for ψ ∈ D(Mp)((v −R, v)),

Sa[ψ] = lim
y→0+

v∫
v−R

Pa(D)(H+
a (x+ iy)−H−a (x− iy))ψ(x) dx = 0,

Sa has support in Γ and we can define the extension of Sa by (20).

Let f ∈ ˜H(Mp)
a (Γ ). Then there exist R > 0, k < ∞ and a function

Fa ∈ L̃
(Mp)
a,k (ΓR \Γ ) such that f = [Fa]. If a ≤ 0 we can apply Proposition 2

to Fa. If a > 0 then we apply Proposition 2 to F ∗a = eazFa instead of Fa.
In this case denote by S̃∗a the element of L(Mp)′

(0) (Γ ) given by (20) and define

S̃a = e−axS̃∗a . In both cases S̃a ∈ L
(Mp)′
(a) (Γ ) does not depend on the choice

of a defining function Fa for f . Thus, the assignment f → S̃a defines a



28 G.  Lysik

mapping

(21) b : ˜H(Mp)
a (Γ )→ L

(Mp)′
(a) (Γ ).

Since (21) holds for every a < ω we have

b : ˜H(Mp)

(ω) → lim←−
a<ω

L
(Mp)′
(a) (Γ ) ' (lim−→

a<ω
L

(Mp)

(a) (Γ ))′ = L
(Mp)′
(ω) (Γ ),

where the isomorphism ' follows by the formula (1.2) of [2].

Theorem 5. The mapping

C : L(Mp)′
(ω) (Γ )→ H̃

(Mp)

(ω) (C, Γ )

is a topological isomorphism with inverse b ◦ i.

P r o o f. Let S ∈ L(Mp)′
(ω) (Γ ) and CS = f ∈ H̃(Mp)

(ω) (Γ ). Then

f = [{Fa}a<ω] with Fa(z) =
1

2πi
S

[
ea(·−z)

z − ·

]
for z ∈ C \ Γ.

Treat f as an element of ˜H(Mp)

(ω) (Γ ) and put S̃ = b(f) ∈ L
(Mp)′
(ω) (Γ ). Fix

a < ω. Then for ϕ ∈ Y(a) we have

S̃[ϕ] = −
∫
∂Γε

Fa(z)ϕ(z) dz = S

[
− 1

2πi

∫
∂Γε

ea(·−z)

z − ·
ϕ(z) dz

]
= S[ϕ],

by the Cauchy integral formula. Since Y(a) is dense in L
(Mp)

(a) (Γ ) and a < ω

is arbitrary, we have S̃[ϕ] = S[ϕ] for ϕ ∈ L(Mp)

(ω) (Γ ). Thus b ◦ i ◦ C = id.

Let f ∈ H̃(Mp)

(ω) (C, Γ ), f = [{Fa}a<ω] with Fa ∈ L̃
(Mp)
a (C \ Γ ) and Fa−

Fb ∈ L̃a(C) for a < b < ω. Put ˜f = i(f) and fix a < ω. Then ˜f = [Fa] in

˜H(Mp)
a (Γ ) and by (21), S̃a = b(˜f) ∈ L(Mp)′

(a) (Γ ). Observe that for ε > 0 we
have

S̃a[ϕ] = −
∫
∂Γε

Fa(z)ϕ(z) dz for ϕ ∈ Y(a).

On the other hand, by the part of the theorem just proved,

S̃a[ϕ] = −
∫
∂Γε

1
2πi

S̃a

[
ea(·−z)

z − ·

]
ϕ(z) dz for ϕ ∈ Y(a).

So for ϕ ∈ Y(a),

(22)
∫
∂Γε

ψa(z)ϕ(z) dz = 0, where ψa(z) =
1

2πi
S̃a

[
ea(·−z)

z − ·

]
− Fa(z).
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Then ψa ∈ L̃
(Mp)
a,k (C\Γ ) and we shall show that ψa extends holomorphically

to a function ψ̃a ∈ L̃a(C), which proves that C◦b◦i = id. To this end observe
that (22) holds also for ϕ ∈ L(Mp)

(a) (Γ )∩O(Γε) and put for any b < a, R > ε,

Gb(z) =
∫

∂ΓR

ψa(ζ)
eb(ζ−z)

z − ζ
dζ for z ∈ ΓR.

Then |Gb(z)| ≤ C exp{−bRe z} for z ∈ ΓR′ with R′ < R. Using (22) with
ϕ(ζ) = exp{b(ζ − z)}/(z − ζ), z ∈ ΓR \ Γ ε, we get Gb(z) = ψa(z) for
z ∈ ΓR \ Γ ε. Put

ψ̃a(z) =
{
ψa(z) for z ∈ ΓR \ Γ ,
Gb(z) for z ∈ ΓR.

Then ψ̃a ∈ O(ΓR) and by the 3-line theorem ψ̃a ∈ L̃a(ΓR). Since R > ε was
arbitrary we have ψ̃ ∈ L̃a(C).

4. Mellin ultradistributions

Definition. Let ω ∈ R ∪ {∞}, v ∈ R and I = (0, e−v]. We define the
space M (Mp)′

(ω) (I) of Mellin ultradistributions as the dual space of

M
(Mp)

(ω) (I) = lim−→
a<ω

lim←−
h>0

M
(Mp)
a,h (I),

where for any a ∈ R and h > 0,

M
(Mp)
a,h (I) =

{
ψ ∈ C∞(I) : %(Mp)

a,h (ψ) = sup
x∈I

sup
α∈N0

|xa+1(Dx)αψ(x)|
hαMα

<∞
}
.

Lemma 5. Let a ∈ R, h > 0, ψ ∈ M (Mp)
a,h (I) and ϕ = µ · ψ ◦ µ. Then

ϕ ∈ L(Mp)
a,h (Γ ) and ‖ϕ‖(Mp)

a,h = %
(Mp)
a,h (ψ). Thus, the mapping

M
(Mp)

(ω) (I) 3 ψ → µ · ψ ◦ µ ∈ L(Mp)

(ω) (Γ )

is a continuous isomorphism with inverse

L
(Mp)

(ω) (Γ ) 3 ϕ→ exp1 ◦µ−1 · ϕ ◦ µ−1 ∈M (Mp)

(ω) (I).

P r o o f. The proof follows easily from the formula

Dα
y (µ(y)ψ ◦ µ(y)) = (−1)αx(Dxx)αψ(x), for α ∈ N0, x = µ(y),

which can be proved by induction.

Let S ∈ L(Mp)′
(ω) (Γ ). Put

S ◦ µ−1[ψ] = S[µ · ψ ◦ µ] for ψ ∈M (Mp)

(ω) (I).
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Then by Lemma 5, S ◦ µ−1 is a well defined element of M (Mp)′
(ω) (I) and the

mapping

L
(Mp)′
(ω) (Γ ) 3 S → S ◦ µ−1 ∈M (Mp)′

(ω) (I)
is continuous.

Observe that the function

I 3 x→ x−z−1 = expz+1 ◦µ−1(x)

belongs to M (Mp)

(ω) (I) if and only if Re z < ω. Thus, we can define the Mellin

transform of T ∈M (Mp)′
(ω) (I) by

MT (z) = T [expz+1 ◦µ−1] for Re z < ω.

Let S ∈ L(Mp)′
(ω) (Γ ) and T = S ◦ µ−1. Then for Re z < ω we have

MT (z) = S ◦ µ−1[expz+1 ◦µ−1] = S[expz] = LS(z).

5. Strong quasi-analyticity principle

Definition. Let S ∈ L(Mp)′
(ω) (Γ ). We define the Taylor transform of S

by
T S(x) = LS(lnx) for x ∈ B̃(eω).

We also define

O(Mp)
v (B̃(eω))

= {u ∈ O(B̃(eω)) :

for every t < eω there exist k <∞ and C <∞ such that

|u(x)| ≤ C exp{M(k(ω − ln |x|+ |arg x|))} · |x|v for |x| ≤ t}.
By Theorems 1 and 3 we get

Theorem 6. The Taylor transformation is an isomorphism of L(Mp)′
(ω) (Γ )

onto O(Mp)
v (B̃(eω)).

Let u ∈ O(Mp)
v (B̃(eω)). Then for any t < eω, u|(0,t] ∈M

(Mp)′
(v) ((0, t]) and

Mtu(z) =
t∫

0

u(x)x−z−1 dx for Re z < v.

By Theorem 6, u(x) = S[x·] for x ∈ B̃(eω) with S = T −1u ∈ L(Mp)′
(ω) (Γ ),

Γ = [v,∞). For Re z < v we derive

Mtu(z) = S
[ t∫

0

x·−z−1 dx
]

= S

[
t·−z

· − z

]
= −2πiCln tS(z).
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Thus, by Lemma 4, Mtu extends holomorphically to a function Mtu ∈
L̃

(Mp)
ln t (C \ Γ ) and the set of functions {Mtu}t<eω defines an element of

H̃
(Mp)

(ω) (C, Γ ), which will be denoted byMu and called the Mellin transform
of u.

We can summarize Theorems 1, 3, 5 and 6 as follows:

Corollary 2. We have the following diagram of linear topological iso-
morphisms:

M
(Mp)′
(ω) (I) O(Mp)

v (Re z < ω)

L
(Mp)′
(ω) (Γ ) O(Mp)

v (B̃(eω))

˜H(Mp)

(ω) (Γ ) H̃
(Mp)

(ω) (C, Γ ).

M //

◦µ
��

◦−µ−1

��
T //

L

oo
oo
oo
oo
oo
o77

C
OOOOOOOOOO''

◦µ−1

OO

M
��

b

OO

ioo

Following [13] we call the elements of O(Mp)
v (Re z < ω) generalized ana-

lytic functions determined by L(Mp)′
(ω) (Γ ). Generalized analytic functions have

the following quasi-analyticity property:

Theorem 7. Let u ∈ O(Mp)
v (B̃(eω)). Suppose that for some t < eω and

every m ∈ N there exist Cm such that

|u(x)| ≤ Cmxm for 0 < x ≤ t.
Then u ≡ 0.

P r o o f. By Theorem 6, u(x) = T S(x) for x ∈ B̃(eω) with some
S ∈ L(Mp)′

(ω) (Γ ). The assumption that u is flat of arbitrary order m ∈ N on

(0, t) implies thatMtu ∈ O(C). Since for every R > 0, L(Mp)
a,k (ΓR)∩O(ΓR) =

La(ΓR), Mu defines the zero element in H̃(Mp)

(ω) (Γ ). Thus S = 0 and u ≡ 0.

Theorem 8 (Strong quasi-analyticity principle). Let −π/2 < θ < π/2,
lθ = {z = reiθ : r > 0} and F ∈ O(Re z > 0). Suppose that for some v ∈ R
and every κ > 0 there exist k <∞ and C <∞ such that

(23) |F (z)| ≤ C exp{vRe z +M(k|z|)} for Re z ≥ κ.
If for some τ > 0 and every m ∈ N there exists Cm <∞ such that

(24) |F (z)| ≤ Cme−mRe z for z ∈ lθ, Re z ≥ τ,
then F ≡ 0.
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P r o o f. Put u(x) = F ◦ µ−1(x) for x ∈ B̃(1). Then u ∈ O(Mp)
v (B̃(1)).

Set t = e−τ , let γt,θ be the set of x ∈ B̃(1) that satisfy

x =
{
t exp{−ir sin θ} for 0 ≤ r ≤ τ/cos θ,
exp{−r(cos θ + i sin θ)} for r ≥ τ/cos θ,

and observe that

(25) Mtu(z) =
∫
γt,θ

u(x)x−z−1 for z ∈ Ωv,θ,

where Ωv,θ = {z ∈ C : Re z < v and sin θ Im z > cos θ(Re z − v)}. Using
(24) we infer that the right hand side of (25) is defined for z ∈ C. Thus,
Mtu ∈ O(C). As in the proof of Theorem 7 this implies that u ≡ 0 and
hence F ≡ 0.

R e m a r k 3. The conclusion of Theorem 8 does not hold if instead of
(23) we assume that for every ε > 0 and κ > 0 there exists Cε,κ such that

|F (z)| ≤ Cε,κ exp{vRe z + ε|z|} for Re z ≥ κ.
In this case the function u = F ◦ µ−1 is the Taylor transform of an analytic
functional with carrier at {∞} and need not be equal to zero.

R e m a r k 4. The results of the paper can be easily extended to the
n-dimensional case if Γ is a cone of product type. The case of an arbi-
trary convex, proper cone in Rn is more difficult and will be studied in a
subsequent paper.
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