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Note on weakly inward mappings

by Michal Fečkan (Bratislava)

Abstract. The Nielsen fixed point theory is used to show several results for certain
operator equations involving weakly inward mappings.

1. Introduction. In this note, we study the equation

(1.1) u = εF (u, λ), 0 = B(u, λ),

where F : X × Rm → X and B : X × Rm → Rm are continuous, and X is
a Banach space. Furthermore, F is compact and B is globally Lipschitz in
u with a constant M . We are interested in the lower bound for the number
of parameters λ for which (1.1) has a solution u ∈ D for any small ε > 0.
Throughout this paper D is a bounded, closed, convex, nonempty subset
of X.

For this purpose, we shall employ the Nielsen fixed point theory [6] as in
[1, 4]. Our method is similar to that of the last two papers. That method
can be applied only for specific nonlinearities F . The aim of the paper is to
show that the results of [1, 4] can be extended to the case when F (·, λ) is
weakly inward with respect to D for any λ ∈ Rm.

We were motivated by [5] for the study of the problem (1.1), and we
show that nonlinearities suggested by [5] will be sufficient for our purpose.

2. Preliminaries. Throughout this paper, X∗ denotes the dual space
of X. For any x ∈ D, we define the weakly inward set of D at x to be ID(x),
where

ID(x) = {x+ t(y − x) | t ≥ 0, y ∈ D}.
A mapping T : D → X is said to be weakly inward with respect to D if
T (x) ∈ ID(x) for all x ∈ D. By [3, Lemma 18.2] we have
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Proposition 2.1. T : D → X is weakly inward with respect to D if and
only if

x ∈ ∂D, x∗ ∈ X∗, and x∗(x) = sup
D
x∗(y) imply x∗(T (x)) ≤ x∗(x).

Now we recall some definitions from [1, 4, 5].

Definition 2.2. Suppose that r : W → A is a map, W,A are subsets
of X and A ⊂W . If r(a) = a for each a ∈ A then r is called a retraction of
W to A and A is called a retract of W .

Definition 2.3. Suppose that T : X → X is a map and W is a subset
that retracts onto a subset Q of itself by a retraction r : W → Q. We shall
say that T is µ-retractable onto Q with a retraction r if

{x ∈ X | there exists a ∈ T (Q) such that |x− a| < µ} ⊂W

and
if y ∈W \Q and r(y) = x then |y − T (x)| > µ.

We shall say that T is retractable onto Q with a retraction r if T (Q) ⊂ W
and if y ∈W \Q and r(y) = x implies y 6= T (x).

We see that if T is µ-retractable onto Q then any perturbation T : X →
X of T with error µ on Q, i.e. |T (x)−T (x)| < µ for x ∈ Q, is still retractable
onto Q. The main advantage of this definition 2.3 is the following: If T is
retractable onto Q with a retraction r : W → Q then the map r◦T : Q→ Q
has a fixed point x ∈ Q if and only if T (x) = x.

Definition 2.4. D ⊂ X is said to be a retract of X with the property
(P) if there is a retraction r : X → D such that for any x ∈ X \D there is
an x∗ ∈ X∗ such that

(P) x∗(x) > x∗(r(x)) = sup
D
x∗(y).

By [5] we have

Proposition 2.5. D is a retract of X with the property (P) if one of the
following conditions is satisfied :

(a) D0, the interior of D, is not empty ;
(b) X is a reflexive Banach space;
(c) There is a metric projection from X onto D.

3. Main results. We are ready to state the main results of the paper.

Proposition 3.1. Assume D is a retract of X with the property (P);
let r be the corresponding retraction. If T : D → X is weakly inward with
respect to D, then T is retractable onto D with retraction r.
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P r o o f. Assume there is z = T (x) such that r(z) = x and z 6∈ D.
Then r(z) = x ∈ ∂D. Hence x∗ ∈ X∗ and x∗(x) = supD x∗(y) imply
x∗(T (x)) ≤ x∗(x). This implies

x∗(r(z)) = x∗(x) = sup
D
x∗(y) ≥ x∗(z),

which is a contradiction to (P) in Definition 2.4. The proof is finished.

R e m a r k 3.2. Consider B = D = {x ∈ X | |x| ≤ 1} for a Hilbert space
X. Then by Proposition 2.5(c), B is a retraction of X with the property (P)
by means of the retraction

r(x) =
{
x/|x|, |x| ≥ 1,
x, |x| ≤ 1.

On the other hand, we see that T : B → X is retractable onto B with
retraction r if and only if

x 6= γT (x) ∀0 < γ < 1, ∀x, |x| = 1.

Of course, such a mapping can be not weakly inward with respect to D.
Thus, the retractability in the framework of Theorem 3.1 is, generally, more
than the weak inwardness.

We refer the reader to the book [6] for the definition of the Nielsen
number of mappings and its basic properties.

Theorem 3.3. Suppose that there are a constant µ > 0 and a compact ,
locally contractible subset S of Rm such that the map

Π(λ) = λ+B(0, λ)

is µ-retractable onto S with a retraction π. Furthermore, assume F (·, λ), for
λ ∈ S, is weakly inward with respect to D for D being a retraction of X with
the property (P) and 0 ∈ D. Then for any small ε > 0, there are at least
N(π ◦Π) (the Nielsen number of the map π ◦Π : S → S) parameters λ ∈ S
for which the equation (1.1) has a solution in D.

P r o o f. We follow [1, 4] by transforming (1.1) into the following fixed
point problem:

Tε(u, λ) = (u, λ),
where

Tε : D × S → X × Rm, Tε(u, λ) = (εF (u, λ), λ+B(εF (u, λ), λ)).

Since 0 ∈ D, we see that εF (·, λ) is weakly inward with respect to D for any
λ ∈ S and 0 < ε ≤ 1. By Proposition 3.1 and [1, 4], we can easily see that
Tε is retractable onto D × S with retraction

r × π : X ×W → D × S,
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for ε > 0 sufficiently small, where r is the retraction from Definition 2.4 and
W is a subset of Rm with S ⊂W from Definition 2.3. Indeed, assume

(r × π) ◦ Tε(u0, λ0) = (u0, λ0)

for some (u0, λ0) ∈ D × S. Then

r ◦ (εF (u0, λ0)) = u0, π ◦ (λ0 +B(εF (u0, λ0), λ0)) = λ0.

By Proposition 3.1, u0 = εF (u0, λ0) for 1 ≥ ε > 0. Furthermore, for
ε > 0 small the mapping λ + B(εF (u, λ), λ) is a perturbation on D × S
of Π(λ) = λ + B(0, λ) with error µ. By the µ-retractability of Π, λ0 +
B(εF (u0, λ0), λ0) = λ0 and retractability of Tε onto D × S with retraction
r × π is proved.

Hence Tε has at least N((r × π) ◦ Tε) fixed points in D × S. Note that
we can indeed use the Nielsen fixed point theory, since D×S is an absolute
neighbourhood retract and Tε is a compact, continuous mapping.

On the other hand,

N((r × π) ◦ Tε) = N((r × π) ◦ T0) = N(π ◦Π).

Thus Tε has at least N(π ◦ Π) fixed points in D × S for any ε > 0 small.
The proof is finished.

R e m a r k 3.4. As pointed out in [1, 4], the smallness of ε > 0 depends
on the µ-retractability of S. The larger µ, the bigger ε. More precisely, the
assertion of Theorem 3.3 holds for any 1 ≥ ε > 0 such that

µ > εM sup
D×S
|F (u, λ)|.

Indeed, we know that both Π(λ) = λ+B(0, λ) is µ-retractable onto S with
retraction π, and

|B(εF (u, λ), λ)−B(0, λ)| ≤Mε|F (u, λ)| < µ

for any (u, λ) ∈ D×S. Now applying the arguments preceding Definition 2.4
as in the proof of Theorem 3.3, we see the sufficiency of this inequality.

To be more concrete, we consider the case m=2. Moreover, let S = A =
{λ ∈ R2 | 1/2 ≤ |λ| ≤ 1} be the circular ring (annulus) with the retraction
[2], [4]

%(λ) =

λ/(2|λ|), 0 < |λ| < 1/2,
λ, 1/2 ≤ |λ| ≤ 2,
2λ/|λ|, 2 < |λ|.

Then we can construct a map g according to [2, p. 54] such that g is µ-
retractable onto A with retraction % for a µ > 0 small. For instance, we can
take g(λ) = q(|λ|)λk (we identify R2 with C, the complex plane) satisfying

q(1/2)/2k ≥ 1/2 + µ, q(b)bk > µ for 1/2 ≤ b ≤ 1,



Weakly inward mappings 5

2kq(2) ≤ 2− µ, k ∈ N \ {1}.
We see that the above conditions for q are precisely the assumptions of
[2, Proposition 1.5] for the map g(λ) = q(|λ|)λk. Finally, we know [2] that
N(% ◦ g) = |deg λk − 1| = k − 1.

By applying Theorem 3.3, we obtain

Theorem 3.5. Consider (1.1) with m = 2. Furthermore, assume F (·, λ),
for λ ∈ A, is weakly inward with respect to D for D being a retract of X
with the property (P) and 0 ∈ D. Suppose B(0, λ) = g(λ)−λ for λ ∈ A and
for g defined above. Then for any 1 ≥ ε > 0 satisfying

µ > εM sup
D×A

|F (u, λ)|,

there are at least k− 1 parameters λ ∈ A for which the equation (1.1) has a
solution in D.
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