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Equations defining reducible Kummer surfaces in P
5

by Tomasz Szemberg (Kraków and Erlangen)

Abstract. Principally polarized abelian surfaces are the Jacobians of smooth genus
2 curves or of stable genus 2 curves of special type. In [S] we studied equations describing
Kummer surfaces in the case of an irreducible principal polarization on the abelian surface.
The aim of this note is to give a treatment of the second case. We describe intermediate
Kummer surfaces coming from abelian surfaces carrying a product principal polarization.
In Proposition 12 we give explicit equations of these surfaces in P

5.

1. Introduction. This note is a continuation of [S1]. Here we study
equations of Kummer surfaces induced by some partial linear system aris-
ing from a reducible principal polarization on an abelian surface. With a
slight abuse of language we call the resulting surfaces reducible interme-
diate Kummer surfaces. These surfaces are projections of singular abelian
surfaces which are complete intersections of 4 quadrics in P

6 described first
by Adler and van Moerbeke in [AvM1] and [AvM2]. The abelian surfaces
were studied extensively from the algebro-geometric point of view by Barth
in [B].

For preliminaries we refer to [M] and [S1]. As far as possible we stick to
the notation of our previous paper. We recall it briefly in the next section.

The base field throughout the note is the field C of complex numbers.

2.The set-up. In [S1] we studied equations of Kummer surfaces coming
from the Jacobians of smooth genus two curves. Let now A be the product
of elliptic curves F1 and F2 and Θ = F1 + F2 be a symmetric divisor on A
with L = OA(Θ). Thus (A,L) is a principally polarized abelian surface. Let
us denote the halfperiods on A as shown in Figure 1.
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Fig. 1

Here e0 is a neutral element of a torus action of A on itself and in this
convention e3 = e1 + e2. We denote by G the subgroup of the halfperiods
on A consisting of e0, . . . , e3. This subgroup can be lifted in a natural way
to the total space of OA(4Θ). Thus G acts on H0(OA(4Θ)). The liftings of
e1 and e2 can be chosen to be again involutions, which we denote by σ and
τ respectively.

Let Bl : Ã → A be the blowing up of A at e0, . . . , e3 and Bls : As → A
the blowing up at all 16 halfperiods. In both cases we denote the exceptional
divisor over ei by Ei. Let ι̃ = Bl∗(ι) and ιs = Bl∗s(ι), where ι : A ∋ a →

−a ∈ A is the inverse element mapping on A. The quotients K̃ = Ã/ι̃ and
Ks = As/ιs are called the intermediate and the smooth Kummer surface

of A respectively. The quotient mappings are denoted by π̃ in the first case
and by πs in the second.

In what follows we deal mostly with the surface K̃ which is singular. If it
appears to be disturbing one can always think of divisors and line bundles
on K̃ as push-downs from the smooth model Ks. This should exclude any
possible confusion.

For a symmetric divisorD on an abelian surfaceA we denote byH0(D)ev

and H0(D)odd the eigenspaces of 1 and −1 respectively of the mapping
H0(D) ∋ s → ιLsι ∈ H0(D). Here ιL is the lifting of ι to an involution on
the total space of L = OA(D). The elements of H0(D)ev are called even

sections, and elements of H0(D)odd odd sections of the line bundle L.
For a divisor D on a surface X, a point x ∈ X and a natural number

n we denote by |D − nx| those divisors in the linear system |D| which
pass through x with multiplicity at least n. Equivalently one can think of
sections in OX(D) vanishing at x to order at least n or of sections in the
sheaf I⊗n

x .OX(D), where Ix is the ideal sheaf of x.

3.The linear systems on A and K̃. We are interested in the equations
of the image X of K̃ in P

5 under the morphism ϕ : Ã → P
5 defined by the

linear system L = |4Bl∗Θ−2(E0 +E1 +E2 +E3)|
ev. This morphism factors
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over ψ : K̃ → P
5. Moreover, both mappings are G-equivariant. We begin

the study of the linear system L with the following

Proposition 1. For L = |4Bl∗Θ − 2(E0 + E1 + E2 + E3)|
ev we have

h0(L) = 6.

P r o o f. H0(4Θ) can be written as a direct sum H0(4Θ)ev ⊕H0(4Θ)odd.
According to [LB, formula 4.7.5] we have h0(4Θ)ev = 10 and h0(4Θ)odd = 6.
The linear system |4Θ − (e0 + . . . + e3)| has dimension 12 since the four
imposed conditions are clearly independent. Moreover, we also have

|4Θ − (e0 + . . .+ e3)| = |4Θ − (e0 + . . . + e3)|
ev ⊕ |4Θ − (e0 + . . .+ e3)|

odd.

Since 4Θ is totally symmetric the odd sections vanish at each halfperiod to
order at least one. Hence H0(4Θ)odd = |4Θ−(e0+. . .+e3)|

odd and it follows
that dim |4Θ−(e0 + . . .+e3)|

ev = 12−6 = 6. This proves the assertion since
again by the total symmetry |4Θ−(e0+. . .+e3)|

ev = |4Θ−2(e0+. . .+e3)|
ev

and the system in question is the pull-back under the blowing-up of the last
system.

The following lemma turns out to be useful in the explicit computation
of the action of G on L.

Lemma 2. Let σ±, τ± be the eigenspaces of ±1 for σ, τ respectively.

Then dimσ+ = dim τ+ = 4 and dimσ− = dim τ− = 2.

P r o o f. Since the procedure for σ, τ is the same we consider σ only.
Let w1, w2 be complex numbers with Imwi > 0 and Fi = C/(Zwi ⊕ Z)

for i = 1, 2. Then A = C
2/Λ, where

Λ =

(
w1

0

)
Z ⊕

(
1

0

)
Z ⊕

(
0

w2

)
Z ⊕

(
0

1

)
Z

is a principally polarized abelian surface and A = F1 × F2. We denote the
period matrix of A by Π.

Consider the matrices

Πε =

(
w1 1 ε 0
ε 0 w2 1

)
.

For ε ∈ D = {z ∈ C : |z| < (Imw1 Imw2)
1/2} the matrix Πε defines a

principally polarized abelian surface Aε (see [LB, 4.2]). For ε 6= 0 the surface
Aε is not a product of elliptic curves (compare [LB, 10.6.1]). Hence it must
be the Jacobian surface of some smooth curve Cε of genus 2. We denote by
Θε the image of Cε in Aε under the Abel–Jacobi mapping. Thus we have
a family A =

⋃
Aε of principally polarized abelian surfaces (Aε, Θε) over

the disc D in the complex plane. Let π : A → D be the obvious mapping
Aε ∋ x→ ε ∈ D.

There is a section s0 : D → A such that s0(ε) = a neutral element
eε
0 of Aε. This section can be translated to the sections s1, s2 in such
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a way that for i = 1, 2 we have si(ε) = eε
i , where eε

i are two even half-
periods on Aε and e0i = ei. Thus for each ε we also have the involu-
tions σε, τε operating on Lε = H0(Iε.OAε

(4Θε))
ev, where Iε denotes the

ideal sheaf of eε
0, e

ε
1, e

ε
2, e

ε
3 = eε

1 + eε
2. By Proposition 1 and [S1, Propo-

sition 6] the vector spaces Lε have dimension 6 for each ε ∈ D. These
vector spaces patched together yield a vector bundle L on A. It can be
easily seen that the mapping σ̃(x) := σπ(x)(x) for x in the total space of
L is a vector bundle automorphism. Moreover, σ̃ is an involution. Let Eλ

denote ker(σ̃ − λ idL) for λ = ±1. Then according to Grauert’s semicon-
tinuity theorem [BPV, Theorem 1.8.5.ii], dim E±1(ε) = dimσ±1

ε are up-
per semicontinuous functions of ε, hence these dimensions cannot drop.
But they cannot jump up either because 1, −1 are the only eigenvalues
of σ̃ and dimσ+1

ε + dimσ−1
ε = H0(Lε) = H0(π∗L) according to the base

change theorem [BPV, Theorem 1.8.5.iv]. The assertion follows now from
[S1, Prop. 6].

Lemma 3. Let M = |4Θ − 2(e0 + . . .+ e15)|. Then h0(M) = 1.

P r o o f. The divisor D = Θ+ t∗e3
Θ+ t∗e9

Θ+ t∗e14
Θ is clearly in M , hence

h0(M) ≥ 1. Let x ∈ A \ suppD. If h0(M) ≥ 2 then there is an effective
divisor D′ ∈ M such that x ∈ suppD′. It follows that D 6= D′. On the
other hand, D.D′ = 4Θ.4Θ = 32 and D ∩ D′ contains all 16 halfperiods
with multiplicity at least 4. Hence the two divisors must have common
components. A somehow tedious computation on the components of D, D′

shows that D = D′. Hence h0(M) = 1.

Let s0 be a generator of H0(Θ). Since the line bundles OA(2Θ) and
OA(2t∗e•

Θ) are isomorphic for any halfperiod e• the section s20 can be trans-
lated to a section s2• doubly vanishing on Θ• = t∗e•

(Θ). These translates are
canonically defined as soon as the theta structure is fixed. Furthermore, let
w4 = Bl∗s for some section s with the divisor of s in the linear system M .
Let us note that w4 is thus fixed up to a constant in view of the previous
lemma.

Now we are in a position to write a basis for the linear system L explicitly.

Proposition 4. The sections w1 = s20s
2
1, w2 = s22s

2
3, w3 = s21s

2
2 + s20s

2
3,

w4, w5 = s20s
2
2 and w6 = s21s

2
3 form a basis of H0(L) in which σ and τ are

represented by the matrices

σ =




1 0
0 1

1 0
0 −1

0 1
1 0



, τ =




0 −1
−1 0

−1 0
0 1

1 0
0 1



.
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P r o o f. It is convenient to view the zero sets of the above sections as in
Figure 2.

Fig. 2

It is clear that the sections w1, . . . , w6 are in L. We prove the linear
independence and the representation of σ, τ simultaneously.

Assume that
6∑

i=1

λiwi ≡ 0.

Restricting this identity to the elliptic curves F1 and t∗e2
(F1) we get at once

λ1 = λ2 = 0. Let V = span{w3, . . . , w6}. We are done if we show dimV = 4.
Since w3, w5, w6 are obviously linearly independent the contrary assumption
is dimV = 3. Before we show that this is not possible we have to compute
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the action of σ and τ . The method of [S1, Prop. 6] applies directly to all
sections but w4 and we have:

w1 w2 w3 w5 w6
σ w1 w2 w3 w6 w5
τ −w2 −w1 −w3 w5 w6

Now suppose dimV = 3. Then V = V 1⊕V −1, where V ±1 is the eigenspace
of ±1 for τ . What is more, V 1 = span{w5, w6}, V

−1 = span{w3}. Since
w4 is invariant under τ up to sign we must have w4 ∈ V 1 or w4 ∈ V −1.
In the first case we would have w4 = αw5 + βw6. This is not possible: just
compute its restriction to F2 and t∗e1

(F2). The second case is absurd, hence
dimV = 4.

We must still compute the action of σ and τ on w4. As already men-
tioned, the only problem is to decide whether w4 is a +1 or −1 eigenvector.
According to Lemma 2 we must have σ(w4) = −w4 and τ(w4) = w4.

The line bundle OA(4Bl∗Θ − 2(E0 + . . . + E3)) defines a rank 2 vector

bundle M = π̃∗L on the Kummer surface K̃ which splits into a direct sum
of two line bundles M = M+

⊕
M−. There is a canonical isomorphism

between H0(L) and H0(M+). Therefore we can denote the coordinates in
the second space again by w1, . . . , w6.

The next theorem describes the morphism defined by M+.

Proposition 5. The line bundle M+ defines a birational morphism

ψ : K̃ → X ⊂ P
5 which is an isomorphism away of the contracted curves

π̃∗F1 and π̃∗(t
∗
e2
F1).

P r o o f. The proof is based on Saint-Donat’s theorem [S-D] and is similar
to that of [S1, Prop. 8]. The only difference is the contraction of the two
curves. To conclude, it is enough to observe that π̃∗F1.M

+ = π̃∗(t
∗
e2
F1).M

+

= 0. The projective coordinates of the image points can be easily computed.
In the basis w1, . . . , w6 they are

p01 = ψ(π̃∗F1) = (0 : 1 : 0 : 0 : 0 : 0),

p23 = ψ(π̃∗(t
∗
e2
F1)) = (1 : 0 : 0 : 0 : 0 : 0).

4. Geometric properties. As in the case of an irreducible principal
polarization of A the surface X contains 4 conics and 4 lines. They are now
arranged in what we can call a degenerate 43 configuration.

Lemma 6. The curves Ci = ϕ(Ei) are smooth conics in P
5 for i =

0, . . . , 3.

P r o o f. For i = 0, . . . , 3 we have

deg(Ci) = deg(ϕ(Ei)) = M+.Di = 2
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and Ci is irreducible. It cannot be a double line according again to Saint-
Donat’s theorem. Hence it is a smooth conic.

Lemma 7. The elliptic curves t∗ei
(F2) go 2 : 1 under ϕ onto lines L3−i

for i = 0, . . . , 3. There are exactly 3 singular points of X on each of these

lines.

P r o o f. It is enough to prove the lemma for a chosen curve, say F2, since
all the others are images of ϕ(F2) under the group G. Let C = π̃∗Bl

∗F2.
Then we have

degL0 = M+.C = 1
2 (4Bl∗Θ − 2(E0 + . . .+ E3)).π̃

∗C

= 2Bl∗(F1 + F2).(Bl
∗F2 − E2) − 1 = 1.

The two double points on L0 are ϕ(e9) and ϕ(e13). The remaining singular
point ϕ(Bl∗(t∗e2

(F1)) − E3) is of type A3.

Corollary 8. X̃ has 8 double points of type A1 and 2 singularities of

type A3.

In the sequel the geometric interpretation in Figure 3 of the degenerate
43 configuration of lines and conics will be useful. The dotted lines are the
conics, • denotes the A1 singularities and p01, p23 are the A3 singularities.

Fig. 3
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R e m a r k 9. We already know the coordinates of the points p01, p23. The
other four points form an orbit under the group operation. In the sequel we
need the projective coordinates of one of them:

q23 = (0 : 0 : α : 0 : 0 : β),

where (α : β) ∈ P
1 depends a priori on the elliptic curves F1, F2. In fact,

we will show later that (α : β) only depends on the curve F1, namely α2/β2

turns out to be its cross-ratio.

5.The equations. Let us use the notation u3 = s21s
2
2, u4 = s20s

2
3 intro-

duced in [S1] and begin with the following

Lemma 10. There are complex numbers µ1 and µ2 such that v := u3−u4

= µ1(w5 − w6) + µ2w4.

P r o o f. It is enough to notice that v is σ-antiinvariant and w5−w6, w4 are
a basis for the −1-eigenspace of σ according to Lemma 2 and Proposition 4.
In fact, we will show later that µ2 = 0.

There are two obvious quadrics containing the image surface X:

• Q1 = {w1w2 − w5w6 = 0},

• Q2 = {w1w2−u3u4 = 0} = {4w1w2−w
2
3 +(µ1(w5−w6)+µ2w4)

2 = 0}.

To find the next equation let us consider the divisors of the two sections
shown in Figure 4.

y1 = s
2
0s
2
14 = s

2
1s
2
12 y2 = s

2
2s
2
11 = s

2
3s
2
9

Fig. 4

These sections are in L. Furthermore, they are σ-invariant and τ ex-
changes them without changing the sign. Hence there are complex numbers
λ1, . . . , λ6 such that

y1 =
∑

λiwi.
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Restricting this equality to F1 we get immediately λ2 = 0 and from σ-
invariance we have λ4 = 0, λ5 = λ6. Let λ1 = a, λ3 = b, λ5 = c. Then

y1 = aw1 + bw3 + c(w5 +w6),

y2 = −aw2 − bw3 + c(w5 + w6).

Since div(w2
4) = div(y2

1) + div(y2
2) we are in a position to write down our

third equation:

Q3 = {w2
4 + (aw1 + bw3 + c(w5 + w6))(aw2 + bw3 − c(w5 + w6)) = 0}.

R e m a r k 11. Notice that in the above equation the parameters a, b, c
can be considered only up to a multiplicative constant, hence as a point
(a : b : c) ∈ P

2. The reason is that w4 as a section is fixed only up to a
constant.

In the rest of this section we state relations between the parameters α,
β, µ1, µ2, a, b, c appearing in our equations. As expected there will be
only three (homogeneous) left, depending on the moduli of elliptic curves
defining A.

To get the relations between the parameters we have to use the informa-
tion coded in the singular locus of X.

Let x = sp01 + tq23, (s : t) ∈ P
1, be a point on L3 and let

W =




dQ1

d(w1,...,w6)
(x)

dQ2

d(w1,...,w6)
(x)

dQ3

d(w1,...,w6)
(x)


 .

We can compute explicitly W to be




s 0 0 0 −βt 0
2s 0 −αt −tβµ1µ2 −µ21βt µ21βt

a(as+btα−ctβ) abtα+ actβ abs+ 2b2tα 0 acs− 2c2tβ acs− 2c2tβ



 .

This matrix carries much information about the Kummer surface X. Let
Wijk denote the minor of W consisting of the ith, jth and kth column
of W . At the singular points on the line L3 all these determinants must
vanish. Thus we get a system of degree 3 equations in s and t. The crucial
observation is that there are three distinct singularities on this line. Hence
the obtained equations must be either trivial or have exactly 3 different
zeroes. Evaluating this information we get the following conditions:

• a, b, c, α, β, µ1 6= 0, b2 6= c2, 4(b2 − c2) 6= a2,

• µ2 = 0,

• αb+ βc = 0, µ2
1βb+ αc = 0, µ2

1b
2 − c2 = 0.

Calculations leading to the above conditions are tedious and therefore
omitted here. In what follows we set µ2

1 = c2/b2 and β = −b, α = c.
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In the next section and in [S2] we need the equation of singularities on
L3, which we get from detW156 = 0:

(1) 2ab2c2t3 − bc(4c2 − 4b2 − a2)st2 + 2a(b2 − c2)s2t = 0.

We conclude this section with the following

Proposition 12. The reducible intermediate Kummer surface X in P
5

is a complete intersection of a net of quadrics spanned by

Q1 =




0 1

1 0

0 −1

−1 0




, Q2 =




0 2b2

2b2 0

−b2 0

0 0

c2 −c2

−c2 c2




,

Q3 =




0 a2 ab 0 −ac −ac

a2 0 ab 0 ac ac

ab ab 2b2 0 0 0

0 0 0 2 0 0

−ac ac 0 0 −2c2 −2c2

−ac ac 0 0 −2c2 −2c2




,

where (a : b : c) ∈ P
2 depends on elliptic curves defining the abelian surface

A and satisfies b2 6= c2, 4(b2 − c2) 6= a2, a, b, c 6= 0.

6. Parameters vs cross-ratios. In this section we show how the pa-
rameters a, b, c depend on the moduli of the elliptic curves F1, F2 defining
A. We begin with the following

Lemma 13. C := ϕ(t∗e8
F1) is a conic.

P r o o f. degC = C.M+ = 1
2 (4Bl∗(F1+F2)−2(E0+ . . .+E3)).t

∗
e8
F1=2.

Our aim is to parametrize the conic C. Let E denote the plane spanned
by the conic. Then we have

Lemma 14. The equations of E are

w4 = 0,

w2 = 4
b2 − c2

a2
w1 + 2

c

a
w5 + 2

c

a
w6,

w3 = 4
c2 − b2

ab
w1 −

c

b
w5 −

c

b
w6.
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P r o o f. From the equation (1) and the action of G we get easily

ϕ(e8) = (−abc : 0 : 2c(b2 − c2) : 0 : 0 : 2b(b2 − c2)),

ϕ(e9) = (0 : 2bc : −ac : 0 : 0 : ab),

ϕ(e10) = (−abc : 0 : 2c(b2 − c2) : 0 : 2b(b2 − c2) : 0),

ϕ(e11) = (0 : 2bc : −ac : 0 : ab : 0).

Now to verify our assertion one has to solve a system of linear equations.

Using the above lemma we can parametrize the plane E in the following
way:

w1 = a2bx, w2 = 4b(b2 − c2)x+ 2abcy + 2abcz,

w3 = 4a(c2 − b2)x− a2cy − a2cz, w4 = 0, w5 = a2by, w6 = a2bz.

In the coordinates (x : y : z) the conic C is given by the equation

4(b2 − c2)x2 + 2acxy + 2acxz − a2yz = 0

and the four points determining the cross-ratio for F1 are

(0 : 0 : 1), (0 : 1 : 0), (−ac : 0 : 2(b2 − c2)), (−ac : 2(b2 − c2) : 0).

One verifies easily that the following is a parametrization of the conic C

x = ast, y = 2bs2 − 2cst, z = 2cst+ 2bt2,

and the four points in the (s : t)-coordinates are (0 : 1), (1 : 0), (c : −b),
(b : −c).

Now we are in a position to state the following

Proposition 15. The cross-ratios r1, r2 of the elliptic curves F1, F2 are

given by r1 = c2/b2 and r2 = 4(b2 − c2)/a2.

P r o o f. For F1 there is nothing to do because of the above considerations.
For F2 we first observe that the mapping ϕ|F2 : F2 → L3 is a 2 : 1 covering
branched over 4 points. To know F2 it is enough to compute the cross-ratio of
the branch points. Two of them are t1 = q23 = (0 : 1) and t2 = p01 = (1 : 0)
written in the (s : t) coordinates and the two others are the A1 singularities
t3 = ϕ(e9), t4 = ϕ(e13). Their coordinates can be easily computed from
equation (1). Thus the cross-ratio is

r2 =
bc(4c2 − 4b2 − a2) +∆1/2

bc(4c2 − 4b2 − a2) −∆1/2
,

where ∆ = (bc(4(c2 − b2) + a2))2. This proves the assertion for r2.
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