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Extremal plurisubharmonic functions

by Urban Cegrell (Ume̊a) and Johan Thorbiörnson (Sundsvall)

Abstract. We study different notions of extremal plurisubharmonic functions.

1. Introduction. There are several different notions of extremal pluri-
subharmonic functions and the purpose of this note is to study some of
them.

Definitions. Let Ω be an open and connected subset of Cn, n ≥ 1, and
denote by PSH(Ω) and PH(Ω) the plurisubharmonic and pluriharmonic
functions, respectively.

Extremal (A). Let K be a subset of Ω. The relative extremal plurisub-
harmonic function h∗K is defined to be the upper regularization of

hK(z) = sup{ϕ(z) ∈ PSH(Ω) : −1 ≤ ϕ ≤ 0, ϕ = −1 on K}

(cf. Siciak [8]).

Extremal (B1). The class of functions P (Ω) = {ϕ ∈ PSH(Ω) : −1 ≤ ϕ
≤ 0} is a convex and compact space with locally convex topology inherited
from L1(Ω). An element ϕ ∈ P (Ω) is said to be extremal (B1) if

ϕ = αϕ1 + (1− α)ϕ2, ϕ1, ϕ2 ∈ P (Ω), 0 < α < 1, implies ϕ1 = ϕ2

(cf. Choquet [3, Vol. II, p. 95]).

Extremal (B2). Define PSH−(Ω) = {ϕ ∈ PSH(Ω) : ϕ ≤ 0}. An element
ϕ ∈ PSH−(Ω) is said to be extremal (B2) if

ϕ = ϕ1 + ϕ2, ϕ1, ϕ2 ∈ PSH−(Ω),

implies that there exist non-negative constants λ1 and λ2 such that ϕ1 = λ1ϕ
and ϕ2 = λ2ϕ.
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Extremal (C). The quotient space PSH(Ω)/PH(Ω) is Hausdorff and a
convex cone. An element ϕ ∈ PSH(Ω)/PH(Ω) is called extremal (C) if

ϕ = ϕ1 + ϕ2, ϕ1, ϕ2 ∈ PSH(Ω)/PH(Ω),

implies that there exist non-negative constants λ1 and λ2 such that ϕ1 = λ1ϕ
and ϕ2 = λ2ϕ (in PSH(Ω)/PH(Ω)) (cf. Lelong [5] and Demailly [4]).

2. The case n = 1. Let here Ω = D be the open unit disc in the
complex plane and ϕ ∈ SH(D) with a harmonic majorant. Then, by the
Riesz representation formula,

ϕ(z) =
∫

log
∣∣∣∣ z − ξ1− zξ

∣∣∣∣∆ϕ(ξ) +
∫
P (z, ξ) dµ(ξ),

where P is the Poisson kernel. So that if ϕ ≤ 0 and ϕ is extremal (B2) then
either ∆ϕ ≡ 0 or µ = 0. Therefore ∆ϕ = kδz0 for some z0 ∈ Ω so

ϕ(z) = k log
∣∣∣∣ z − z01− zz0

∣∣∣∣
or ϕ(z) = kP (z, ξ0) for some ξ0 ∈ ∂Ω, with k a constant.

Also, if ϕ ∈ SH(D) is extremal (C) then ϕ(z) = k log |z − z0| modulo
a harmonic function. Therefore, there are no functions bounded below and
extremal (C).

3. Relations

Lemma 1. If 0,−1 6≡ ϕ ∈ P (Ω) is extremal (B1), then infz∈Ω = −1 and
supz∈Ω ϕ(z) = 0.

P r o o f. If β = infz∈Ω ϕ(z) > −1, then ϕ(z)/γ ∈ P (Ω), where γ =
max(1/2,−β) < 1. Choose k so that 1/γ + k = 2. Since 1 < 1/γ ≤ 2 it
follows that 0 ≤ k ≤ 1 so kϕ(z) ∈ P (Ω) and

ϕ(z) =
1
2

(
ϕ(z)
γ

+ kϕ(z)
)

so ϕ is not extremal (B1). If supz∈Ω ϕ(z) = δ < 0 then

ϕ(z) = ϕ(z) + δ − δ =
(
ϕ(z) + δ

1− δ

)
(1− δ) + δ · (−1)

so ϕ is not extremal.

Proposition 1. If K is a relatively compact subset of Ω then h∗K is
extremal (B1).

P r o o f. If K is pluripolar, then h∗K ≡ 0; we can assume that K is not
pluripolar. If h∗K = αu1 + (1− α)u2, where u1, u2 ∈ P (Ω), then u1 = u2 =
−1 on {z ∈ Ω : h∗K = −1} so it follows from the definition of hK (since
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hK = h∗K outside a pluripolar set) that u1 ≤ h∗K and u2 ≤ h∗K . Therefore
u1 = u2 = h∗K .

Corollary. There exist discontinuous functions extremal (B1).

Proposition 2. If ϕ ∈ PSH−(Ω), limz→ξ ϕ(z) = 0 for all ξ ∈ ∂Ω and
if ϕ is extremal (C), then ϕ is extremal (B2). If ϕ ∈ P (Ω) with ϕ(ξ0) = −1
for some ξ0 ∈ Ω and if ϕ is extremal (B2) then ϕ is extremal (B1).

P r o o f. Suppose ϕ ∈ PSH−(Ω) and that ϕ is extremal (C). If ϕ =
ϕ1 + ϕ2, where ϕ1, ϕ2 ∈ PSH−(Ω), then

ϕ1 + h1 = λ1ϕ, λ1 ≥ 0, h1 ∈ PH,
ϕ2 + h2 = λ2ϕ, λ2 ≥ 0, h2 ∈ PH .

Since ϕ = ϕ1 + ϕ2 and ϕ1, ϕ2 ≤ 0, also ϕ1(z), ϕ2(z)→ 0 as z → ξ, ξ ∈ ∂Ω.
Hence h1(z), h2(z) → 0 as z → ξ, ξ ∈ ∂Ω, since h1 = λ1ϕ − ϕ1 and
h2 = λ2ϕ − ϕ2. Therefore, being harmonic, h1 and h2 vanish identically
on Ω.

Let now ϕ ∈ P (Ω) be extremal (B2) and assume ϕ(ξ0) = −1 for some
ξ0 ∈ Ω. If

ϕ = αϕ1 + (1− α)ϕ2, 0 < α < 1, ϕ1, ϕ2 ∈ P (Ω),

then
αϕ1 = λ1ϕ, λ1 ≥ 0,

(1− α)ϕ2 = λ2ϕ, λ2 ≥ 0.
At ξ0, we have −1 = ϕ(ξ0) = ϕ1(ξ0) = ϕ2(ξ0) so α = λ1 and 1 − α = λ2,
which proves that ϕ is extremal (B1).

Proposition 3. Suppose 0 ≥ ϕ ∈ PSH(Ω ×Ω) and that ϕ is separately
extremal (B2). Then ϕ is extremal (B2) on Ω ×Ω.

P r o o f. Suppose ϕ = ϕ1 + ϕ2, where 0 ≥ ϕ1, ϕ2 ∈ PSH(Ω ×Ω). Then

ϕ1(x, y) = λ1(y)ϕ(x, y) = β1(x)ϕ(x, y),
ϕ2(x, y) = λ2(y)ϕ(x, y) = β2(x)ϕ(x, y),

where λ1, λ2, β1, β2 ≥ 0 and λ1 + λ2 = 1 = β1 + β2 since ϕ is separately
extremal (B2). Therefore λ1 ≡ β1 ≡ const and λ2 ≡ β2 ≡ const, which
proves that ϕ is extremal (B2).

Lemma 2. Suppose 0 ≥ u ∈ PSH(G), where G is a ball in Cn with center
at 0. Then

lim
r↘0

sup
ξ∈C
|ξ|=r

u(ξν)
− log r

= const

for all ν ∈ G outside a pluripolar set.
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P r o o f. We may assume that G = B, the unit ball. Suppose 0 ≥ u ∈
PSH(B). For 0 < r < 1 and ν ∈ B we define

Ψr(ν) = sup
ξ∈C
|ξ|=r

u(ξν)
− log r

≤ 0.

Then Ψr(ν) ∈ PSH(B) and is decreasing in r. For let 0 < r1 < r2 < 1. If
z ∈ C with |z| = r1, then u(zν) ≤ Ψr1(ν) · (− log |z|), which also holds for
|z| = 1. Therefore u(zν) ≤ Ψr1(ν) · (− log |z|) for r1 ≤ |z| ≤ 1. In particular,

u(zν)
− log |z|

≤ Ψr1(ν) for |z| = r2

and so Ψr2(ν) ≤ Ψr1(ν).
Hence Ψ∗(ν) = (limr↘0 Ψr(ν))∗ ∈ PSH(Cn) and since Ψ∗ is negative it is

constant. Since Ψ = Ψ∗ outside a pluripolar set (cf. [1]), the lemma follows.

R e m a r k 1. The constant −Ψ∗ can be shown to be equal to the Lelong
number of u at zero. We do not need to use that in this paper.

4. Examples

Example 1. Denote by D the unit disc in C. Then

h∗{|z1|<e−1}×{|z2|<e−1}(z) = max(log |z1|, log |z2|,−1)

so max(log |z1|, log |z2|,−1), z = (z1, z2) ∈ D×D, is extremal (A) and thus
by Proposition 1 also extremal (B1).

Example 2. Denote by B the unit ball in Cn. Then

h∗{z∈Cn:|z|<e−1}(z) = max(log |z|,−1)

is extremal (A) and therefore extremal (B1).

Example 3. If α > 0 then ϕ(z) = |z|α − 1 is not extremal (B1) on D.
For let

ϕ1(z) =
4
3

(
|z|α − |z|

2α

4
− 3

4

)
, ϕ2(z) =

2
3

(
|z|α +

|z|2α

2
− 3

2

)
.

Then ϕ = (ϕ1 + ϕ2)/2, and since ∆ϕ1 = α2(|z|α−2 − |z|2α−2) ≥ 0 for
0 ≤ |z| < 1, ϕ1 is subharmonic on D and therefore ϕ1, ϕ2 ∈ P (D).

Example 4. ψ(z1, z2) = max(log |z1|, log |z2|) is not extremal (C). Since

1
2π

2π∫
0

log |ω − eiθ| dθ = max(log |ω|, 0), ω ∈ C,
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it follows that

ψ(z1, z2) = max(log |z1|, log |z2|) =
1

2π

2π∫
0

log |z1 + z2e
iθ| dθ.

Thus

ψ(z1, z2) =
1

2π

π∫
0

log |z1 + z2e
iθ| dθ +

1
2π

2π∫
π

log |z1 + z2e
iθ| dθ

so ψ is not extremal (C).
However, ψ is extremal (B2) in D×D. For suppose ψ = ϕ1 +ϕ2, where

ϕ1, ϕ2 ∈ PSH−(D ×D). If z = (z1, z2), then ψ(λz), λ ∈ C, is extremal as a
function of λ, so

ϕ1(λz) = α2ψ(λz) = α2(log |λ|+ ψ(z)), α2 ≥ 0,
ϕ2(λz) = β2ψ(λz) = β2(log |λ|+ ψ(z)), β2 ≥ 0.

By Lemma 2, α2 = const = α a.e., β2 = const = β a.e. Therefore ϕ1(z) =
αϕ(z) and ϕ2(z) = βϕ(z), which means that ψ is extremal (B2).

R e m a r k 2. Example 4 answers a question by El Mir [6].

Example 5 (Poletsky [7]). The function log |z| is extremal (B2) in the
unit ball of Cn. This can be shown exactly as in Example 4, using Lemma 2.

5. The pluricomplex Green function. The functions max(log |z1|,
log |z2|) and log |z| are pluricomplex Green functions with pole at zero for
the domains D × D and B respectively. Example 4 shows that the pluri-
complex Green function is not extremal (C) in the bidisc. Using a suitable
holomorphic transformation, Examples 4 and 5 show that the pluricomplex
Green function for the bidisc and the ball is extremal (B2). This is a special
example of the following theorem.

Theorem. Let Ω be a domain in Cn and let GΩ(x, y) be the pluricomplex
Green function for Ω×Ω. Then GΩ(x, y0) is extremal (B2) for every y0∈Ω.

P r o o f. We can assume that y0 = 0. Suppose GΩ = ϕ1 + ϕ2, where
ϕ1, ϕ2 ∈ PSH−(Ω). Using Lemma 2, we find three constants

α =
(

lim
r↘0

sup
ξ
|ξ|=r

GΩ(ξν)
− log |ξ|

)∗
,

α1 =
(

lim
r↘0

sup
ξ
|ξ|=r

ϕ1(ξν)
− log |ξ|

)∗
and α2 =

(
lim
r↘0

sup
ξ
|ξ|=r

ϕ2(ξν)
− log |ξ|

)∗
.

Since GΩ(x, 0)−log |x| is bounded near x = 0, we have α = −1, 0 ≥ α1, α2 ≥
−1 and α1 + α2 ≥ −1.
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Let V be a ball in Ω centered at zero. We consider only the points
ν ∈ V where the regularization ∗ is not necessary. This is enough, since the
complement of this set is pluripolar. Without loss of generality, we can also
assume that V = B, the unit ball.

Note that

ϕ1(ξν)
− log |ξ|

≤ α1,
ϕ2(ξν)
− log |ξ|

≤ α2, |ξ| ≤ 1.

Hence ϕ1(ξν) ≤ −α1 log |ξ| and ϕ2(ξν) ≤ −α2 log |ξ| so ε1(ξ) = ϕ1(ξν) +
α1 log |ξ| and ε2(ξ) = ϕ2(ξν) + α2 log |ξ| both extend to subharmonic func-
tions on the unit disc. Furthermore, since

sup
r↘0
ξ∈C
|ξ|=r

ε1(ξ)
− log |r|

= sup
r↘0
ξ∈C
|ξ|=r

ε2(ξ)
− log |r|

= 0,

we have ∆ε1{0} = ∆ε2{0} = 0. Also, since

GΩ(ξν, 0) = ϕ1(ξν) + ϕ2(ξν) = ε1(ξ) + ε2(ξ)− α1 log |ξ| − α2 log |ξ|

= log |ξ|+ ε1(ξ) + ε2(ξ)− (1 + α1 + α2) log |ξ|

and since ξ 7→ GΩ(ξν, 0)− log |ξ| is subharmonic on the unit disc, it follows
that −(1 + α1 + α2) ≥ 0. Thus α1 + α2 ≤ −1 and as we already know that
α1 + α2 ≥ −1, we conclude that α1 + α2 = −1.

Now
ϕ1(ξν)
−α1

≤ log |ξ|, ϕ2(ξν)
−α2

≤ log |ξ|, |ξ| ≤ 1,

so
ϕ1(z)
−α1

≤ GΩ(z, 0),
ϕ2(z)
−α2

≤ GΩ(z, 0), z ∈ B,

by the definition of GΩ . Since ϕ1 + ϕ2 ≡ GΩ , it follows that ϕ1/(−α1) =
ϕ2/(−α2) = GΩ .

R e m a r k 3. From the proof of Proposition 3, it follows that if Ω is such
that GΩ is symmetric (for example, if Ω is convex), then GΩ is “extremal
(B2)” among the negative separately plurisubharmonic functions.

R e m a r k 4. In the unit disc, every bounded subharmonic function is an
(infinite) sum of subharmonic and continuous functions. We do not know if
this is true in the bidisc (cf. [2]), but this problem is one of the motivations
for us to study extremal plurisubharmonic functions.



Extremal plurisubharmonic functions 69

References

[1] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions,
Acta Math. 149 (1982), 1–40.

[2] U. Cegre l l, Sums of continuous plurisubharmonic functions and the Monge–Ampère
operator in Cn, Math. Z. 193 (1986), 373–380.

[3] G. Choquet, Lectures on Analysis, Benjamin, New York, 1969.
[4] J.-P. Demai l ly, Courants positifs extrémaux et conjecture de Hodge, Invent. Math.
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