
ANNALES
POLONICI MATHEMATICI

LXIII.2 (1996)

On some elliptic transmission problems

by Christodoulos Athanasiadis and Ioannis G. Stratis (Athens)

Abstract. Boundary value problems for second order linear elliptic equations with
coefficients having discontinuities of the first kind on an infinite number of smooth surfaces
are studied. Existence, uniqueness and regularity results are furnished for the diffraction
problem in such a bounded domain, and for the corresponding transmission problem in all
of RN . The transmission problem corresponding to the scattering of acoustic plane waves
by an infinitely stratified scatterer, consisting of layers with physically different materials,
is also studied.

0. Introduction. In this work we study boundary value problems for
linear equations of elliptic type whose coefficients have discontinuities of the
first kind on an infinite number of smooth surfaces that divide a bounded
domain in RN into nested layers. On those surfaces, the so-called “trans-
mission (conjugacy, matching, linking) conditions” are imposed, that ex-
press the continuity of the medium and the equilibrium of the forces acting
on it. The discontinuity of the coefficients of the equations corresponds to
the fact that the medium consists of several physically different materi-
als.

From the point of view of the theory of generalized solutions—which
we employ in our approach—such problems can be considered as special
cases of usual boundary value problems. On the contrary, the investiga-
tion of these problems by classical methods requires the theory of integral
equations, and in this context they differ essentially from the usual bound-
ary value problems where the medium has smoothly varying characteris-
tics.

Boundary value problems with discontinuous coefficients (also known as
diffraction problems) have been treated by many authors, employing a va-
riety of approaches. In [16], Stampacchia introduced a general theory for
second order linear elliptic equations with discontinuous coefficients; it is
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closer to potential theory than to the theory of differential equations with
continuous coefficients. He also considered some non-linear problems. In his
general setting, the essential difference between operators with continuous
and discontinuous coefficients is that the former can be considered locally
as small perturbations of operators with constant coefficients; this is not
true for the latter. In [15], Olĕınik studied elliptic and parabolic diffraction
problems, obtaining their solutions as limits of solutions of corresponding
problems for equations with smooth coefficients that approximate the given
discontinuous ones. In [13], [14], Ladyzhenskaya studied diffraction problems
by a weak solutions approach; she established regularity results as well. She
also used difference schemes for approximation of the solutions, observing
that the presence of discontinuities on the interfaces causes the convergence
of the approximation not to be uniform but almost everywhere, still, though,
being sufficient for passage to the limit. Finally, in [3], there are several ap-
plications of diffraction problems.

In Section 1, we study the existence and uniqueness of generalized solu-
tions for the Dirichlet, Robin and the oblique derivative diffraction boundary
value problems for second order, linear, elliptic equations with discontinu-
ous coefficients on an infinite number of smooth surfaces in bounded do-
mains. Moreover, we consider the regularity of these solutions. These ques-
tions are then investigated for the corresponding transmission problem in
all of RN .

In Section 2, we study the scattering of a plane acoustic wave by an
infinitely stratified scatterer, consisting of homogeneous layers of physically
different media. We first prove that the only classical solution of the ho-
mogeneous transmission problem for the Helmholtz equation is the trivial
solution, thus extending a result of Kress and Roach referring to one inter-
face [11] to our infinitely stratified structure. For the existence of solutions
of the non-homogeneous transmission problem, we apply the theory of gen-
eralized solutions, in the spirit of Section 1.

1. Elliptic equations. We consider elliptic boundary value problems of
the form

(1.1)
Lu = f in Ω,

u = 0 on ∂Ω,

where

(1.2) Lu :=
N∑

i,j=1

(aij(x)uxi
)xj

+
N∑
i=1

bi(x)uxi
+ d(x)u

and Ω is a bounded domain in RN with smooth boundary ∂Ω. Let aij , bi
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and d be measurable functions satisfying

(E1)

µ1|ξ|2 ≤
N∑

i,j=1

aijξiξj ≤ µ2|ξ|2, µ1, µ2 > 0,

aij = aji,

(E2)
( N∑
i=1

b2i

)1/2

≤ µ3,

(E3) µ4 ≤ d(x) ≤ µ5,

(E4) f ∈ L2(Ω).

The quantities µ1 to µ5 above are constants.
Let cΩ be the constant in the Poincaré–Friedrichs inequality ([8], [14])

and let

(1.3) δ := max
0<ε≤µ1

{
(µ1 − ε)c−2

Ω − µ5 −
µ2

3

4ε

}
.

Then, as is well known, we have ([14], Thm. 2.1, p. 50):

Theorem A. If (E1) to (E4) are satisfied , and if , moreover ,

(1.4) δ > 0,

then the Dirichlet problem (1.1) has a unique generalized solution, and the
following a priori bound holds:

(1.5) ‖u‖H1
0 (Ω) ≤ c‖f‖L2(Ω).

As far as the differentiability of the generalized solution is concerned,
the following is also well known ([8], Thm. 8.12, p. 176):

Theorem B. If , in addition to the hypotheses of Theorem A, we assume
that aij ∈ C0,1(Ω) and that ∂Ω is of class C2 then the unique solution of
(1.1) belongs to H2

0 (Ω).

R e m a r k 1.1. As is well known, Theorem A (resp. Theorem B) ap-
plies also to the case of Dirichlet problems with non-homogeneous boundary
data ϕ, provided ϕ ∈ H1(Ω) is such that u− ϕ ∈ H1

0 (Ω) (resp. ϕ ∈ H2(Ω)
is such that u− ϕ ∈ H2

0 (Ω)).

R e m a r k 1.2. Similar considerations hold for the homogeneous (and, in
view of the above remark, for the non-homogeneous) Robin problem

(1.6)
Lu = f in Ω,

∂u

∂n
+ σu = 0 on ∂Ω,
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where σ is a bounded non-negative function on ∂Ω and ∂u/∂n denotes the
co-normal derivative

(1.7)
∂u

∂n
=

N∑
i,j=1

aij(x) cos(n, xj)uxi
,

n being the outward normal to ∂Ω.

Having listed the necessary preliminary concepts, we now proceed to our
results. We start with the description of the domain we shall be dealing
with. Let Ω̃ be a bounded domain in RN , with boundary S0; a core Ωc

is contained in Ω̃, and we work actually in Ω̃ − Ωc, which will be denoted
by Ω in the sequel. The boundary of Ω is S0 ∪ Sc, and both S0 and Sc

are supposed to be (N − 1)-dimensional C2 surfaces. Ω is tessellated in the
following way: let Sk, k = 1, 2, . . . , be (N − 1)-dimensional C2 surfaces. Sk
surrounds Sk+1, k = 0, 1, 2, . . . , and Sc. We assume that dist(Sk−1, Sk) > 0
for all k = 1, 2, . . . , and moreover that limk→∞ Sk = Sc. The Sk divide Ω
into “annuli-like” domains Ωk with ∂Ωk = Sk−1 ∪ Sk.

We shall study the question of the solvability of a boundary value prob-
lem in such an Ω when the coefficients of the equation are allowed to have
discontinuities of the first kind on the Sk, k = 1, 2, . . . On the surfaces of dis-
continuity, Sk, certain conditions must be imposed, known as “transmission
conditions”.

As will be clear from the formulation of the problem, the transmission
conditions are not necessarily uniquely determined.

We consider this specific geometry for Ω, because its nature is compat-
ible with approximating inhomogeneous media by piecewise homogeneous
ones ([3], [9]). The continuous variations of the material parameters are
subdivided into regions of homogeneous media; provided these subdivisions
are fine enough, the exact solution to this problem might be expected to
be a reasonable approximation to the answer for continuous variation. Our
results are not restricted to the above special tessellation of Ω. As in [15],
Ω may be partitioned in an arbitrary fashion, provided the interfaces of the
subdomains Ωj are sufficiently smooth, and that the transmission conditions
are satisfied on all these interfaces.

The symbol [w]|Sk
denotes the difference between the limiting values of

w(x) on Sk, calculated for approach to Sk from Ωk and Ωk+1 (i.e. the jump
in the function w as it crosses Sk).

In the first part of this section we shall study the solvability of the
following problems, with L as in (1.2), and Ω as in the above description.
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The Dirichlet problem is

(1.8)

(i) Lu = f in Ω,

(ii) u = 0 on ∂Ω,

(iii) [u]|Sk
= 0,

(iv)
[
q
∂u

∂n

]∣∣∣∣
Sk

= 0, k = 1, 2, . . . ,

where q is a positive, piecewise constant function (q = qk > 0 in Ωk), while
the Robin problem is

(1.9)

(i) Lu = f in Ω,

(ii)
∂u

∂n
+ σu = 0 on ∂Ω,

(iii) [u]|Sk
= 0,

(iv)
[
q
∂u

∂n
+ σu

]∣∣∣∣
Sk

= 0, k = 1, 2, . . . ,

where σ is a given continuous non-negative function defined on each Sk, and
q is as above.

Let us define the generalized solutions of (1.8) and (1.9).

Definition 1.1. A function u ∈ H1
0 (Ω) is called a generalized (weak)

solution of (1.8) iff for all v ∈ H1
0 (Ω) we have

(1.10)
∫
Ω

( N∑
i,j=1

qaijuxi
vxj
−

N∑
i=1

qbiuxi
v − qduv

)
dx = −

∫
Ω

qfv dx.

Definition 1.2. A function u ∈ H1(Ω) is called a generalized (weak)
solution of (1.9) iff for all v ∈ H1(Ω) we have

(1.11)
∫
Ω

( N∑
i,j=1

qaijuxi
vxj
−

N∑
i=1

qbiuxi
v − qduv

)
dx+

∞∑
k=0

∫
Sk

σuv ds

=
∫
Ω

qfv dx.

We now prove the following result:

Theorem 1.1. Let the data of (1.8.i) satisfy (E1) to (E4) and (1.4) and ,
suppose, moreover , that aij ∈ C0,1(Ωk), k = 1, 2, . . . Then (1.8) has a
unique solution u ∈ H1

0 (Ω) ∩H2(Ωk), k = 1, 2, . . .

P r o o f. The existence and uniqueness of a generalized solution for (1.8)
is ascertained by Theorem A. By the previous definition it is clear that
(1.8.ii) and (1.8.iii) are satisfied.
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Now consider an arbitrary discontinuity surface Sk, and work in the two
adjacent layers Ωk and Ωk+1 separated by Sk. In what follows, the super-
script (k) will denote the restriction of the quantity involved to Ωk.

By our assumptions, we have u ∈ H2(Ωk), k = 1, 2, . . . It follows from
the embedding theorems ([8], [14]) that not only u(x), but also its derivatives
uxj

have traces on Sk: uxj
∈ L2(Sk), k = 1, 2, . . . However, the traces of uxj

admit jumps as x passes through Sk, in such a way as to have
[
q ∂u∂n

]
|Sk

= 0.
Let us also point out that in the sequel n is to be understood as the out-
ward normal to the boundary of the set over which each integration is per-
formed.

Let v ∈ H1
0 (Ωk ∪Sk ∪Ωk+1), defined to be zero outside Ωk ∪Sk ∪Ωk+1,

be arbitrary. Then

(1.12) −
∫

Ωk∪Ωk+1

qfv dx

=
∫

Ωk∪Ωk+1

q
{ N∑
i,j=1

aijuxivxj −
N∑
i=1

biuxiv − duv
}
dx

=
∫
Ωk

( N∑
i,j=1

q(k)a
(k)
ij u

(k)
xi
vxj −

N∑
i=1

q(k)b
(k)
i u(k)

xi
v − q(k)d(k)u(k)v

)
dx

+
∫

Ωk+1

( N∑
i,j=1

q(k+1)a
(k+1)
ij u(k+1)

xi
vxj

−
N∑
i=1

q(k+1)b
(k+1)
i u(k+1)

xi
v − q(k+1)d(k+1)u(k+1)v

)
dx

and using integration by parts we get

∫
Sk

N∑
i,j=1

q(k)a
(k)
ij u

(k)
xi

cos(n, xj) v ds

−
∫
Ωk

q(k)
{ N∑
i,j=1

(a(k)
ij u

(k)
xi

)xj
+

N∑
i=1

b
(k)
i u(k)

xi
+ d(k)u(k) − f (k)

}
v dx

−
∫
Sk

N∑
i,j=1

q(k+1)a
(k+1)
ij u(k+1)

xi
cos(n, xj) v ds
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−
∫

Ωk+1

q(k+1)
{ N∑
i,j=1

(a(k+1)
ij u(k+1)

xi
)xj

+
N∑
i=1

b
(k+1)
i u(k+1)

xi

+ d(k+1)u(k+1) − f (k+1)
}
v dx = 0.

The previous relation can be written as

0 =
∫
Sk

{
q(k)

∂u(k)

∂n
− q(k+1) ∂u

(k+1)

∂n

}
v ds

−
∫
Ωk

q(k)
{
L(k)u(k) − f (k)

}
v dx

−
∫

Ωk+1

q(k+1)
{
L(k+1)u(k+1) − f (k+1)

}
v dx.

Since v ∈ H1
0 (Ωk ∪ Sk ∪ Ωk+1) is arbitrary, we may take it to be equal to

zero in Ωk ∪Ωk+1, Sk ∪Ωk+1, and Ωk ∪ Sk, whereby we, respectively, have

q(k)
∂u(k)

∂n
− q(k+1) ∂u

(k+1)

∂n
= 0 on Sk,

L(k)u(k) = f (k) a.e. in Ωk,

L(k+1)u(k+1) = f (k+1) a.e. in Ωk+1,

thus proving that (1.8.iv) and (1.8.i) are satisfied.

R e m a r k 1.3. The analogue of Theorem 1.1 can be proved for the non-
homogeneous problem

Lu = f in Ω,

u = ϕ on ∂Ω,

[u]|Sk
= ψ

(k)
1 , k = 1, 2, . . . ,[

q
∂u

∂n

]∣∣∣
Sk

= ψ
(k)
2 , k = 1, 2, . . . ,

by replacing u by a new unknown function w(x) = u(x) − θ(x), where
θ(x) can be appropriately chosen so that the boundary and transmission
conditions become homogeneous.

As far as the Robin problem is concerned, we need the following well-
known trace estimate ([14], Thm. 6.5):

(1.13) ‖u‖2L2(∂Ω) ≤ c̃Ω‖u‖
2
H1(Ω), u ∈ H1(Ω),

where c̃Ω is a constant independent of u. Then we have

Theorem 1.2. Assume that the hypotheses of Theorem 1.1 are valid.
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Suppose, moreover , that for all k = 0, 1, 2, . . . we have

(1.14) sup
k
Mkck+1 ≤ c <∞,

where Mk = max{σ(x) : x ∈ Sk} and ck is the constant for Ωk as in (1.13).
Then (1.9) has a unique solution in H1(Ω) ∩H2(Ωk), k = 1, 2, . . .

P r o o f. The proof goes along the same lines as that of Theorem 1.1 with
the exception of the following subtle point: here we need to establish the
convergence of the series

∞∑
k=0

∫
Sk

σuv ds, v ∈ H1(Ω).

It, therefore, suffices to show that the series
∞∑
k=0

∫
Sk

σw2 ds

converges for w ∈ H1(Ω). But, using (1.13) and (1.14) we get∫
Sk

σw2 ds ≤Mk

∫
Sk

w2 ds = Mk‖w‖2L2(Sk) ≤Mkck+1‖w‖2H1(Ωk+1)

≤ (sup
k
Mkck+1)‖w‖2H1(Ωk+1)

≤ c‖w‖2H1(Ωk+1)
,

whereby, since
∑∞
k=0 ‖w‖2H1(Ωk+1)

= ‖w‖2H1(Ω), the proof is complete.

It is possible to consider more general transmission conditions, in the
form of an oblique derivative; we have

Theorem 1.3. Consider the problem

(1.15)

Lu = f in Ω,

∂u

∂m
+ σu = 0 on ∂Ω,

[u]|Sk
= 0, k = 1, 2, . . . ,[

q
∂u

∂m
+ σu

]∣∣∣∣
Sk

= 0, k = 1, 2, . . . ,

and suppose that the hypotheses of Theorem 1.1 are valid , while σ is as in
Theorem 1.2. Let m = (m1, . . . ,mN ), with |m| = 1, be a smooth vector field
on Sk which is non-tangential to ∂Ω and Sk, k = 1, 2, . . . Then (1.15) has
a unique solution in H1(Ω) ∩H2(Ωk), k = 1, 2, . . .

The proof of Theorem 1.3 follows from
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Lemma 1.1. Let Ω∗ be a bounded domain with smooth boundary S∗. Then
the problem

(1.16)

N∑
i,j=1

(aijuxi)xj +
N∑
i=1

biuxi + du = f in Ω∗,

∂u

∂m
+ σu = 0 on S∗,

has a generalized solution.

P r o o f. It can be shown ([6], p. 376) that (1.16) is equivalent to the
Robin problem

(1.17)

N∑
i,j=1

(Aijuxi)xj +
N∑
i=1

Biuxi + du = f in Ω∗,

∂u

∂m
+ σ̂u = 0 on S∗,

with
∂u

∂m
=

N∑
i,j=1

Aijuxi
nj ,

where

Aij = aij + µij , Bi = bi +
N∑
j=1

∂µij
∂xj

, σ̂ = σσ0,

µij =
1

m · n
(nimj − njmi)

N∑
r,p=1

arpnrnp −
N∑
r=1

(arjnrni − arinrnj),

σ0 =
1

m · n

N∑
r,p=1

arpnrnp.

But, by standard theory, (1.17) is solvable, and hence the proof of the lemma
is complete.

We also have the following regularity result; its proof may be performed
in the spirit of [13], or [3], p. 592, and is omitted for the sake of brevity.

Theorem 1.4. Suppose that the assumptions of Theorem 1.1 are satisfied.
If , additionally , aij , ∂aij/∂xr, d, f ∈ C0,a(Ωk), a ∈ (0, 1) and if ∂Ω and
Sk, k = 1, 2, . . . , are C2-surfaces, then the generalized solution of (1.8)
belongs to C(Ω) ∩ C2,a(Ωk).

To study the solutions in unbounded domains we need to resort to
weighted Sobolev spaces. Let Ω0 be the exterior of a bounded domain Ω
in RN , with smooth boundary ∂Ω. Let w be a non-negative function on
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Ω0 which is locally Lebesgue integrable on Ω0. Let L2(Ω0, w) be the linear
space of functions u on Ω0 which are measurable with respect to the measure
w(x) dx, and which satisfy

‖u‖0,w ≡
( ∫
Ω0

|u(x)|2w(x) dx
)1/2

<∞.

By Hn
0 (Ω0, w), where n is any positive integer, we shall mean the completion

of Cn0 (Ω0) endowed with the norm

‖u‖n,w ≡
n∑
i=0

‖Diu‖0,w.

Here |Diu(x)|2 =
∑
|a|=i |Dau(x)|2, where the summation extends over all

multiindices a of length i, and

Dau =
∂|a|u

∂xa1
1 . . . ∂xaN

N

.

Given suitable inner products, L2(Ω0, w) and Hn
0 (Ω0, w) become Hilbert

spaces. When w(x) = 1 and Ω0 is a bounded domain, these spaces coincide
with the usual Sobolev spaces.

The notion of a generalized solution of the Dirichlet problem

(1.18)
Lu = f in Ω0,

u = 0 on ∂Ω0,

where L is given by (1.2), can be defined in accordance to the situation of
a bounded domain; see [5].

Let

Nσ(w, x) :=
[ ∫
Ω0∩Bx

w(y)−σdy
]1/σ

, σ > N/2,

and

M%(g(x)) :=
∫

Ω0∩Bx

|g(y)|Nσ(w, y)|x− y|%−Ndy, 0 < % < 2−N/σ,

where Bx is the closed ball in RN with centre x and radius 1.
We make the following assumptions on the data of (1.18):

(E5) µ1w(x)|ξ|2 ≤
N∑

i,j=1

aij(x)ξiξj ∀x ∈ Ω0, ∀ξ ∈ RN , µ1 > 0,

(E6) aij(x)w(x)−1 ∈ L∞(Ω0), i, j = 1, . . . , N,
(E7) the Poincaré inequality holds in H1

0 (Ω0, w), with constant cΩ0 ,

(E8) sup
x∈Ω0

Nσ(w, x) <∞,
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(E9) sup
x∈Ω0

M%(|d(x)|) <∞,

(E10) max
1≤i≤N

sup
x∈Ω0

M%(|bi(x)|2w(x)−1) <∞,

(E11) δ̃ > 0, where δ̃ := µ1c
−2
Ω0
− ‖d‖0,w −

N∑
i=1

‖w−1bi‖0,w.

Then we have the following ([5]):

Theorem 1.5. If (E5)–(E11) hold , and f ∈ L2(RN ), then the Dirichlet
problem (1.18) has a unique generalized solution in H1

0 (Ω0, w).

Now we turn to the transmission problem in RN ; let Ω have the described
stratified structure. Recall that ∂Ω = S0 ∪ Sc. Consider the problem

(1.19)

(i) Lu = f in RN \Ωc,

(ii) u = 0 on Sc,

(iii) [u]|Sk
=
[
q
∂u

∂n

]∣∣∣∣
Sk

= 0, k = 0, 1, 2, . . .

Let

w∗(x) =
{

1, x ∈ Ω,
w(x), x ∈ Ω0 = RN \Ω,

and consider the space H1(RN , w∗) defined as H1
0 (Ω0, w) above.

Definition 1.3. A function u ∈ H1(RN , w∗) is called a generalized
solution of (1.19) iff for every v ∈ H1(RN , w∗) we have

(1.20)
∫

RN\Ωc

( N∑
i,j=1

qaijuxi
vxj
−

N∑
i=1

qbiuxi
v − qduv

)
dx = −

∫
RN\Ωc

qfv dx.

We can state the following regularity result that can be proved by stan-
dard arguments (cf. Theorem 1.4):

Theorem 1.6. Suppose that the transmission problem (1.19) has a gen-
eralized solution u. Assume that the regularity hypotheses, on the coefficients
and the interfaces, of Theorem 1.4 are satisfied for k = 0, 1, 2, . . . Then u is
a classical solution (behaving at infinity as prescribed by the weight w).

We conclude this section with the following result establishing the solv-
ability of the transmission problem.

Theorem 1.7. Suppose that the data of (1.19.i) satisfy (E1)–(E4) and
(1.4) in Ω, and (E5)–(E11) in Ω0. Additionally , assume that aij ∈ C0,1(Ωk),
k = 0, 1, 2, . . . Then, for f ∈ L2(RN ), (1.19) has a unique solution in
H1(RN , w∗) ∩H2(Ωk, w∗), k = 0, 1, 2, . . .
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The proof of this theorem can be performed in a completely analogous
manner to that of Theorem 1.1, and is therefore, omitted.

2. Acoustic scattering. In this section we consider the problem of
scattering of a plane acoustic wave by an infinitely stratified scatterer; such
a scatterer is defined as follows: let Ω̃ be a bounded, convex domain of R3,
with boundary S0. A core Ωc, within which lies the origin of coordinates, is
contained in Ω̃. We actually work in Ω̃−Ωc, which will be denoted by Ω in
the sequel. The boundary of Ω is S0 ∪Sc, and both S0 and Sc are supposed
to be 2-dimensional C2 surfaces. Ω is divided into annuli-like regions Ωj by
2-dimensional C2 surfaces Sj , j = 1, 2, . . . Sj surrounds Sj+1, j = 1, 2, . . . ,
and Sc. We assume that dist(Sj−1, Sj) > 0 for all j = 1, 2, . . . , and that
limj→∞ Sj=Sc. The exterior, Ω0, of Ω̃, as well as each Ωj , are homogeneous
isotropic media. The wave number kj in each region Ωj is given by

k2
j =

ω

c2j
(ω + idj), i2 = −1, j = 0, 1, 2, . . . ,

where ω is the angular frequency of the incident wave, cj is the speed of
sound, and dj is the damping coefficient in Ωj . We choose the sign of kj , as
usual, such that

Im kj ≥ 0, j = 0, 1, 2, . . .
It is obvious that Re kj 6= 0, j = 0, 1, 2, . . .

We assume that a plane acoustic wave ψinc(r) is incident upon the in-
finitely stratified scatterer. Suppressing a harmonic time dependence
exp(−iωt), the incident wave takes the form

(2.1) ψinc(r) = exp(ik0k̂ · r),

where k̂ is the unit vector in the direction of propagation. For more details
about the physical problem, we refer to [2], [9].

The total acoustic field uj in each Ωj , j = 1, 2, . . . , must satisfy Helm-
holtz’s equation

(2.2) ∆uj(r) + k2
juj(r) = 0.

For the total exterior field, ψ0(r), we have

(2.3) ψ0(r) = ψinc(r) + u0(r),

where u0(r) is the scattered field.
Since ψinc(r) satisfies the Helmholtz equation in Ω0, the same is true for

u0(r), whereby (2.2) holds for j = 0, 1, 2, . . . The scattered field is assumed
to satisfy Sommerfelds’ radiation condition:

(2.4)
∂u0(r)
∂n

− ik0u0(r) = o(1/r), r →∞.
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As is well known ([1], p. 71), by (2.2) and (2.4), u0 must automatically
satisfy

(2.5) u0(r) = O(1/r), r →∞.
On the surface of the core, the desired solution must satisfy the homo-

geneous Dirichlet boundary condition, corresponding to the core being soft.
On S0 we have the following transmission conditions:

(2.6)
u1 − u0 = ψinc,

q1
∂u1

∂n
− q0

∂u0

∂n
= q0

∂ψinc

∂n
.

The transmission conditions on Sj , j = 1, 2, . . . , are given by

(2.7)
uj+1 − uj = 0,

qj+1
∂uj+1

∂n
− qj

∂uj
∂n

= 0,

where qj , j = 0, 1, 2, . . . , are given non-zero complex constants.
By a standard procedure, the homogeneous equations and non-homo-

geneous transmission conditions of the above problem can be transformed
to

(2.8) ∆uj + k2
juj = fj in Ωj ,

(2.9)
uj+1 − uj = 0 on Sj ,

qj+1
∂uj+1

∂n
− qj

∂uj
∂n

= 0 on Sj ,

for all j = 0, 1, 2, . . . , where fj , j = 0, 1, 2, . . . , is some known C2 function
depending on ψinc and q0.

In the sequel we shall make the following assumptions interrelating the
coefficients of (2.8) and (2.9).

(2.10) Let kj ∈ C − {0} with 0 ≤ arg kj ≤ π, and qj ∈ C − {0} with
sup |qj | <∞, j = 0, 1, 2, . . . , be such that

qj
q0
·
k2
j

k2
0

= pj ∈ R,

where sup pj <∞, and pj Re kj Re k0 > 0, j = 0, 1, 2, . . .

Let us denote by (HTP) the homogeneous transmission problem consist-
ing of the equations

(2.11) ∆uj + k2
juj = 0 in Ωj , j = 0, 1, 2, . . . ,

the transmission conditions (2.9), the radiation condition (2.4), the homo-
geneous Dirichlet boundary condition on the surface of the core of the scat-
terer, and (2.10).
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We can now prove

Theorem 2.1. (HTP) has only the trivial solution.

P r o o f. Let Ω0,R = {r ∈ Ω0 : r < R}, R > 0. Applying Green’s first
theorem over Ω0,R, we obtain∫

r=R

u0
∂u0

∂n
ds =

∫
Ω0,R

u0∆u0 dv +
∫
S0

u0
∂u0

∂n
ds+
∫

Ω0,R

|gradu0|2 dv,

which, again by Green’s first theorem over Ω1, and the transmission condi-
tions (2.9), becomes∫

r=R

u0
∂u0

∂n
ds =

∫
Ω0,R

u0∆u0 dv +
∫

Ω0,R

|gradu0|2 dv(2.12)

+
q1
q0

∫
Ω1

u1∆u1 dv +
q1
q0

∫
Ω1

|gradu1|2 dv

+
q1
q0

∫
S1

u1
∂u1

∂n
ds.

By repeated use of Green’s first theorem, and taking into account (2.11),
the transmission conditions (2.9), the boundary behaviour on the surface of
the core, and dividing throughout by k2

0, we get from (2.12),

(2.13)
1

k2
0

∫
r=R

u0
∂u0

∂n
ds

= −
∫

Ω0,R

|u0|2 dv +
1

k2
0

∫
Ω0,R

|gradu0|2 dv

−
∞∑
j=1

pj
∫
Ωj

|uj |2 dv +
∞∑
j=1

1

k2
0

qj
q0

∫
Ωj

|graduj |2 dv.

The convergence of the series in (2.13) follows by (2.10), and by noting
that

∞∑
j=1

∫
Ωj

|uj |2 dv = ‖u‖2L2(Ω) <∞

and
∞∑
j=1

∫
Ωj

|graduj |2 dv = ‖u‖2H1(Ω) <∞.
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Taking imaginary parts in (2.13), we get

Im
(

1

k2
0

∫
r=R

u0
∂u0

∂n
ds

)
=
(

Im
1

k2
0

) ∫
Ω0,R

|gradu0|2 dv(2.14)

+
∞∑
j=1

Im
(

1

k2
0

qj
q0

) ∫
Ωj

|graduj |2 dv.

Since u0 satisfies (2.5), it follows that the LHS of (2.14) tends to zero, and
Ω0,R to Ω0, as R→∞. Therefore

(2.15)
Im k2

0

|k0|4
∫
Ω0

|gradu0|2 dv +
∞∑
j=1

Im k2
j

|kj |4
pj
∫
Ωj

|graduj |2 dv = 0,

whereby, since Im k2
j = 2 Re kj Im kj and Re kj 6= 0, j = 0, 1, 2, . . . , we have

(2.16)
(Re k0)2 Im k0

|k0|4
∫
Ω0

|gradu0|2 dv

+
∞∑
j=1

pj Re kj Re k0 Im kj
|kj |4

∫
Ωj

|graduj |2 dv = 0.

If Im k0 > 0 and since Im kj ≥ 0, j = 1, 2, . . . , by (2.9), (2.11) and (2.16)
it follows that

(2.17) u0 = 0 in Ω0.

In the case Im k0 = 0, we obtain from (2.14), with RHS written as in
(2.16),

(2.18) Im
( ∫
r=R

u0
∂u0

∂n
ds

)
≥ 0.

From (2.4) it follows that

(2.19) k0

∫
r=R

|u0|2 ds+ Im
( ∫
r=R

u0
∂u0

∂n
ds

)
= o(1) as R→∞.

By (2.18) and (2.19) we obtain

(2.20)
∫

r=R

|u0|2 ds = o(1) as R→∞.

Therefore, by Rellich’s theorem ([1]), it follows that (2.17) holds. Since u0 =
0 in Ω0, it suffices to show that u1 = 0 in Ω1. Then by the same argument
we can proceed to show that u2 = 0 in Ω2, etc. Let

(2.21) w1(r) =
{
u1(r), r ∈ Ω1,
0, r ∈ Ω0.
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It is obvious that w1 satisfies

(2.22) ∆w1 + k2
1w1 = 0 in Ω1 ∪Ω0.

Let w+
1 , w−1 denote the values of w1(r) calculated for approach to S0 from

Ω0 and Ω1, respectively. Then w+
1 = u0 = 0 and w−1 = u1. By (2.9) we get

(2.23)
w−1 = w+

1 = 0 on S0,

q1
∂w−1
∂n

= q0
∂w+

1

∂n
= 0 on S0.

By [7], p. 166, we conclude that w1 = 0 in Ω1 ∪ S0 ∪Ω0, whereby

(2.24) u1 = 0 in Ω1,

which completes the proof.

R e m a r k 2.1. If Im kj > 0, j = 0, 1, 2, . . . , then by (2.11) and (2.16) we
arrive at uj = const. in Ωj , j = 1, 2, . . . Since u0 = 0 in Ω0, by (2.9) we
conclude that uj = 0 in Ωj , j = 1, 2, . . . Hence the above procedure can be
omitted in the case k2

j ∈ C− R, j = 1, 2, . . .

R e m a r k 2.2. Having proved that u0 = 0 in Ω0, we can proceed to
show that (2.24) holds with the following approach as well: By Holmgren’s
uniqueness theorem ([12]) the solution of the Cauchy problem

∆u1 + k2
1u1 = 0 in Ω1,

u1 =
∂u1

∂n
= 0 on S0,

is equal to zero in Ω1 ∩D, where D is a neighbourhood of any point of S0.
Since u is analytic ([1]) it follows—by the unique continuation principle—
that u1 = 0 in Ω1.

R e m a r k 2.3. Arguing as in the proof of Theorem 2.1, we can prove that
the adjoint homogeneous transmission problem, corresponding to (HTP),
has only the trivial solution.

Consider now the non-homogeneous transmission problem

∆uj + k2
juj = fj in Ωj ,

uj+1 − uj = 0 on Sj ,

qj+1
∂uj+1

∂n
− qj

∂uj
∂n

= 0 on Sj ,

for all j = 0, 1, 2, . . . , with the homogeneous Dirichlet condition on the sur-
face of the core, and u0 being assumed to satisfy Sommerfeld’s radiation
condition (2.4). Suppose also that (2.10) is true. This problem will be de-
noted by (NH.T.P.).
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Let k(r) = k2
j , f(r) = fj(r), q = qj , u(r) = uj(r) in Ωj , j = 0, 1, 2, . . . ,

and define, as in [4], p. 143,

R(Ω0) := {u ∈ H1
loc(Ω0) : u0 = O(1/r)

and ∂u0/∂n− ik0u0 = O(1/r2), r →∞}.

As in Section 1, a function u ∈ H1(Ω) ∩ R(Ω0) will be a generalized
solution of (NH.T.P.), for f ∈ L2(R3), iff

(2.25)
∫

R3−Ωc

( 3∑
s=1

quxs
(r)ϕxs

(r)− qk(r)u(r)ϕ(r)
)
dv

= −
∫

R3−Ωc

qf(r)ϕ(r) dv

for every ϕ ∈ H1(Ω) ∩R(Ω0).
Moreover, (NH.T.P.) can be written in the form

(2.26) u+Au = F,

where, since we are in H1(Ω)∩R(Ω0), A : H1(Ω)∩R(Ω0)→ H1(Ω)∩R(Ω0)
is a compact operator ([4]).

We are now in a position to prove

Theorem 2.2. (NH.T.P.) has a unique (classical) solution.

P r o o f. (HTP) can be written as

(2.27) u+Au = 0.

The adjoint homogeneous transmission problem can, in turn, be written as

(2.28) w +A∗w = 0.

By the Fredholm alternative, a necessary and sufficient condition for the
existence and uniqueness of a generalized solution of (2.26) is

(2.29) (F,wm) = 0,

where wm, m = 1, . . . , s, are the linearly independent solutions of (2.28).
Since the assumptions of the (NH.T.P.) analogue of Theorem 1.6 are valid
in our case, the generalized solutions of (2.28) are classical. But then, by
Remark 2.3, (2.28) has only the trivial solution, whereby (2.29) is automat-
ically satisfied. Hence, (NH.T.P.) has a unique generalized solution, which,
as above, turns to be classical.

R e m a r k 2.4. The results of this section can—in a completely analogous
manner—be stated and proved for the corresponding problem with the ho-
mogeneous Neumann boundary condition being assumed on the surface of
the core, i.e. when the core is rigid.
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[12] M. Krzy ża ń sk i, Partial Differential Equations of Second Order , Vol. 1, PWN –

Polish Scientific Publishers, Warszawa, 1971.
[13] O. A. Ladyzhenskaya, On the solution of the general diffraction problem, Dokl.

Akad. Nauk SSSR 116 (1954), 433–436 (in Russian).
[14] —, The Boundary Value Problems of Mathematical Physics, Springer, New York,

1985.
[15] O. A. Ole ı̆n ik, Boundary value problems for linear elliptic and parabolic equations

with discontinuous coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 3–20
(in Russian).

[16] G. Stampacch ia, Equations Elliptiques du Second Ordre à Coefficients Disconti-
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