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An example of a genuinely discontinuous
generically chaotic

transformation of the interval

by Józef Piórek (Kraków)

Abstract. It is proved that a piecewise monotone transformation of the unit interval
(with a countable number of pieces) is generically chaotic. The Gauss map arising in
connection with the continued fraction expansions of the reals is an example of such a
transformation.

1. Generic chaos. The definition of generic chaos was orally suggested
to me by Professor Andrzej Lasota and first came out in print soon after
in paper [6]. It has since been studied by several authors ([3], [4], [10]). To
define the notion, let us fix a metric space (X, %) and a semigroup {St} of
transformations from X to X, where t runs over the set N of nonnegative
integers or the set R+ of nonnegative reals. For the dynamical system so
defined, we consider the set G of those pairs (x, y) ∈ X2 for which

lim inf
t→∞

%(Stx, Sty) = 0, lim sup
t→∞

%(Stx, Sty) > 0.

We call the dynamical system {St} generically chaotic iff the setG is residual
in X2, i.e., iff its complement is of the first category.

We call a single transformation S : X → X generically chaotic iff the
semigroup {Sn}n≥0 of its nonnegative iterates is generically chaotic.

Numerous examples of generically chaotic systems were given in [6]–
[9]. In [8] a theorem was proved which states that under some consistency
assumptions, weak mixing (in its ergodic-theory meaning) is generically
chaotic. The theorem has, in turn, served to prove generic chaoticity of
various systems on both finite- and infinite-dimensional spaces (see [8], [9]).
We shall quote the exact statement of the theorem in question, even though
we are going to prove generic chaos for a class of systems the theorem is not
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applicable to. This way we are able to see limitations of the theorem on the
one hand and some advantages of the notion of generic chaos on the other.

Theorem. Let (X, %) be a separable metric space with at least two non-
isolated points. Let µ be a probability Borel measure on X, positive on
nonempty open sets. If S : X → X is continuous, preserves the measure
µ and is weakly mixing , then S is also generically chaotic.

2. Piecewise monotone transformations. An example of a class of
generically chaotic transformations is that of so-called piecewise monotone
transformations of the unit interval I. We start with the definition of such
a transformation.

Let I = [0, 1] = A0∪∆1∪∆2∪. . . , where the union is disjoint, #A0 ≤ ℵ0,
A0 is closed and the ∆i are open intervals with endpoints in A0 (for i =
1, 2, . . .). We consider a transformation T : I → I such that, for i = 1, 2, . . . ,
ϕi = T |cl∆i is strictly monotone and continuous and ϕi(cl∆i) = I. We
assume that the following condition (E) holds:

(E) ∃n0 ∈ N ∃q > 1 ∀i = 1, 2, . . . : inf{|(ϕ(n0)
i )′| : x ∈ domϕ

(n0)
i } ≥ q

(where the superscripts stand for iterates). Finally, let An+1 =An∪T−1(An)
for n = 0, 1, . . . and assume that An is closed for n = 0, 1, . . . We will call a
transformation with the above properties piecewise monotone.

R e m a r k. Actually, ϕi is the continuous extension of T |∆i
onto cl∆i for

i = 1, 2, . . .

Theorem 1. Every piecewise monotone transformation is generically
chaotic.

P r o o f. Let A =
⋃
n≥0An. The set A is countable and thus of the first

category. So, in the sequel, we may confine ourselves to considering the
chaoticity of T on I0 = I \A.

Set
Ln,ε = {(x, y) ∈ I2

0 : inf
k≥n
|T kx− T ky| < ε}, ε > 0, n = 1, 2, . . . ;

Un = {(x, y) ∈ I2
0 : sup

k≥n
|T kx− T ky| > c}, n = 1, 2, . . . ,

for some fixed c ∈ (0, 1/2).
If we prove that the sets Ln,ε and Un are all open and dense, we conclude

that T is generically chaotic since

G ⊃
∞⋂
n=1

(Ln,ε ∩ Un),

where G is the generic set of the transformation T .
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(i) The openness of the sets in question follows easily from the openness
of I \ An and the continuity of ϕi’s and their iterates. One can actually
repeat the proofs given in [6] (proof of Theorem 1) for A0 finite.

For instance, to prove that Ln,ε is open, fix (x0, y0) ∈ Ln,ε. Then there
exist η ∈ (0, ε) and an integer k ≥ n such that |T kx0−T ky0| < ε−η. There
also exist neighbourhoods M of x0 and N of y0, each disjoint from Ak. Thus
T k is continuous on M ∪ N and there exist neighbourhoods M ⊂ M and
N ⊂ N of the points x0 and y0 (respectively) such that

|T kx− T kx0| < η/2 for x ∈M and |T ky − T ky0| < η/2 for y ∈ N.

Then, for (x, y) ∈M ×N ,

|T kx− T ky| ≤ |T kx− T kx0|+ |T kx0 − T ky0|+ |T ky0 − T ky| < ε

and, consequently, M ×N ⊂ Ln,ε.
One proves the openness of Un in a like manner.

(ii) Before proving the density of Ln,ε, we prove two lemmas based on
condition (E).

Lemma 1. Let δn denote the least upper bound of the distances between
two neighbouring points of the set An. Then δn → 0 as n→∞.

P r o o f. First, observe that since ϕi are surjective, the sequence (δn)n is
nonincreasing. Now, for n = 0, 1, . . . , and for i0, i1, . . . , in+1 = 1, 2, . . . , let

Σi0i1...inin+1 = ϕ−1
in+1

(Σi0i1...in),

where Σi = cl∆i for i = 1, 2, . . . (We shall call an interval of the form Σi0...in
an interval of level n.) Thus

δn = sup{|Σi0...in | : i0, . . . , in ∈ N}

for n = 0, 1, . . . We already know that 1 > δ0 ≥ δ1 ≥ . . . We shall inductively
prove that the subsequence (δkn0)k tends to 0 as k → ∞. To this end, we
show that δkn0 ≤ q−k. This is obviously true for k = 0. Assume it is true for
some fixed positive integer k. Let Σ be any interval of level (k+1)n0. Let a
and b be its endpoints. Then Tn0(a) and Tn0(b) are the endpoints of some
interval of level kn0. Moreover, there is i0 ∈ N such that Σ ⊂ Σi0 . Then

|Tn0(a)− Tn0(b)| = |ϕn0
i0

(a)− ϕn0
i0

(b)|
= |(ϕn0

i0
)′(θ)| · |a− b| ≥ q|a− b|,

for some θ ∈ Σ. Further,

|a− b| ≤ q−1|Tn0(a)− Tn0(b)| ≤ q−1q−k = q−(k+1).

Thus δ(k+1)n0 ≤ q−(k+1).
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Lemma 2. For x ∈ I0, the set
⋃∞
n=0 T

−n({x}) is dense in I.

P r o o f. First observe that if x ∈ I0, then
⋃∞
n=0 T

−n({x}) ⊂ I0. Now fix
x ∈ I0, y ∈ I and δ > 0. According to Lemma 1, there is an integer n0 such
that δn0 < δ/2. Thus at least one interval of level n0 lies in (y − δ, y + δ).
Since every ϕi is surjective, every such interval intersects T−n0({x}), so that

(y − δ, y + δ) ∩
∞⋃
n=0

T−n({x}) 6= ∅.

Now we can easily prove that Ln,ε is dense. Fix (x0, y0) ∈ I2 and τ > 0.
From Lemma 2, it follows that there exist x, y ∈ I0 such that

|x0 − x| < τ, |y0 − y| < τ,

and
T ix = T iy for sufficiently large i ≥ n

(choose both x and y from the counterimage of some point in I0). Then
(x, y) ∈ Ln,ε for every ε > 0.

(iii) Finally, we prove that Un is dense. Fix (x0, y0) ∈ I2 and σ > 0. By
Lemma 1, there exists an integer p ≥ n such that δp < σ. Further, there
exist intervals Σ′ and Σ′′ of level p such that x0 ∈ Σ′ and y0 ∈ Σ′′. Since the
restrictions of T p to Σ′ and Σ′′ are monotone, surjective and continuous,
one can find x ∈ (intΣ′) \A and y ∈ (intΣ′′) \A such that

T px < 1
2 (1− c), T py < 1

2 (1 + c).

Then
|x− x0| < σ, |y − y0| < σ,

and, consequently, (x, y) ∈ Un.
The theorem is proved.

R e m a r k s. 1. The above theorem generalizes Theorem 1 of [6] in two
ways. First, the number of “pieces” ∆i need not be finite, and, second,
instead of assuming (as in [6]) that ϕi’s are expansive, we only demand that
some fixed iterate of ϕi’s is expansive (i.e., it satisfies condition (E)).

2. In the case of a finite number of “pieces” one may hope for applying
the theorem linking generic chaoticity of a continuous transformation to its
weak mixing property, by considering the transformation as acting on the
circle rather than on the interval. This is, however, not possible in the case
of an infinite number of pieces; the set A0 of the endpoints of the pieces
is then infinite so it has to have at least one condensation point where the
continuity has to be violated due to the surjectivity of the ϕi’s.

3. The Gauss map. There is an old and interesting example of a trans-
formation satisfying the assumptions of the theorem proved in Section 2.
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Moreover, in this example we observe both features which make Theorem 1
of [6] and our new theorem different (see Remark 1 above). This is the
so-called Gauss map given by

T (x) =
{

1/x (mod 1), 0 < x ≤ 1,
0, x = 0.

The Gauss map has played a crucial role in the theory of the continued
fraction expansions of real numbers. The ergodic properties of the Gauss
map have been studied by numerous authors, starting from Gauss himself
in the early 19th century. Among contemporary authors, let us mention
Cornfeld, Fomin and Sinai [2], Mañé [5] and Corless [1]. It is known that
the Gauss map is exact, so it is also weakly mixing. (Cornfeld, Fomin and
Sinai prove in [2] that under some additional assumptions every C2 piece-
wise monotone transformation of the interval is exact.) Now we shall see
the Gauss map satisfies the assumptions of Theorem 1, so it is generically
chaotic.

Theorem 2. The Gauss map is generically chaotic.

P r o o f. We use the notation introduced in Section 2. For the Gauss
map T , we have A0 = {0} ∪ {1/n | n = 1, 2, . . .}, so it is a closed countable
set. We may arrange the intervals ∆i so that ∆i = (1/(i + 1), 1/i), i =
1, 2, . . . Every ϕi is strictly decreasing, continuous and maps cl∆i onto I =
[0, 1]. Condition (E) holds with n0 = 2 and q = 4. Indeed, for x 6∈ A1, there
exist k, l ∈ N such that

T 2x =
1

−kx+ 1
− l,

so

(T 2)′x =
1

(1− kx)2
, x ∈

(
1

k + 1
,

1
k

)
, k = 1, 2, . . .

Thus

(T 2)′x ≥
(

1− k · 1
k + 1

)2

= (k + 1)2, x ∈
(

1
k + 1

,
1
k

)
, k = 1, 2, . . .

Finally, we have
(T 2)′x ≥ 4, x 6∈ A1.

It remains to prove that the sets An, n = 1, 2, . . . , are closed. This can
be done inductively by observing that the condensation points of An+1 lie
in An, for n = 0, 1, . . . The details depend on whether a sequence converging
to a given condensation point of An+1 lies in a finite or an infinite number
of intervals of level n + 1 and whether n is odd or even (i.e., whether the
iterate of T is piecewise decreasing or increasing).

The proof is finished.



172 J. Piórek
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