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On the global existence theorem
for a free boundary problem for equations

of a viscous compressible heat conducting fluid

by Ewa Zadrzyńska and Wojciech M. Zaja̧czkowski (Warszawa)

Abstract. We consider the motion of a viscous compressible heat conducting fluid in
R3 bounded by a free surface which is under constant exterior pressure. Assuming that the
initial velocity is sufficiently small, the initial density and the initial temperature are close
to constants, the external force, the heat sources and the heat flow vanish, we prove the
existence of global-in-time solutions which satisfy, at any moment of time, the properties
prescribed at the initial moment.

1. Introduction. The main result of this paper is the global existence
theorem for the following free boundary problem for a viscous compressible
heat conducting fluid (see [4], Chs. 2 and 5):

(1.1)

%[vt + (v · ∇)v] +∇p− µ∆v − ν∇ div v = %f in Ω̃T ,

%t + div(%v) = 0 in Ω̃T ,

%cv(θt + v · ∇θ) + θpθ div v − κ∆θ

− µ

2

3∑
i,j=1

(vi,xj + vj,xi)
2 − (ν − µ)(div v)2 = %r in Ω̃T ,

T · n = −p0n on S̃T ,

v · n = − ϕt
|∇ϕ|

on S̃T ,

∂θ

∂n
= θ1 on S̃T ,

%|t=0 = %0, v|t=0 = v0, θ|t=0 = θ0 in Ω,

where Ω̃T =
⋃
t∈(0,T )Ωt × {t}, Ωt ⊂ R3 is a bounded domain depending
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on t, Ω0 = Ω, S̃T =
⋃
t∈(0,T ) St×{t}, St = ∂Ωt, ϕ(x, t) = 0 describes St, n is

the unit outward vector normal to the boundary, i.e. n = ∇ϕ/|∇ϕ|. In (1.1),
v = v(x, t) is the velocity of fluid, % = %(x, t) the density, θ = θ(x, t) the
temperature. Given functions are: f = f(x, t), the external force field per
unit mass; r = r(x, t), the heat sources per unit mass; θ1 = θ1(x, t), the heat
flow per unit surface; p = p(%, θ), the pressure; cv = cv(%, θ), the specific heat
at constant volume. Moreover, µ and ν denote the viscosity coefficients, κ the
coefficient of the heat conductivity, and p0 the external (constant) pressure.
We assume that µ, ν, κ are constants and thermodynamic considerations
imply that cv > 0, κ > 0, ν ≥ 1

3µ > 0. Finally, T = T(v, p) denotes the
stress tensor of the form

T = {Tij} = {−pδij + µ(vi,xj
+ vj,xi

) + (ν − µ)δij div v}
≡ {−pδij +Dij(v)},

where i, j = 1, 2, 3, and D = D(v) = {Dij} is the deformation tensor.
Let the domain Ω be given. Then by (1.1)5, Ωt = {x ∈ R3 : x =

x(ξ, t), ξ ∈ Ω}, where x = x(ξ, t) is the solution of the Cauchy problem

(1.2)
∂x

∂t
= v(x, t), x|t=0 = ξ ∈ Ω, ξ = (ξ1, ξ2, ξ3).

Therefore, we obtain the following relation between the Eulerian x and the
Lagrangian ξ coordinates of the same fluid particle:

(1.3) x = ξ +
t∫

0

u(ξ, s) ds ≡ Xu(ξ, t),

where u(ξ, t) = v(Xu(ξ, t), t). Moreover, the kinematic boundary condition
(1.1)5 implies that the boundary St is a material surface. Thus, if ξ ∈ S = S0

then Xu(ξ, t) ∈ St and St = {x : x = Xu(ξ, t), ξ ∈ S}.
Equation of continuity (1.1)2 and (1.1)5 give the conservation of the total

mass, i.e.

(1.4)
∫
Ωt

%(x, t) dx = M.

In this paper we prove the existence of a global-in-time solution of prob-
lem (1.1) near a constant state.

To introduce the definition of the constant state consider the equation

(1.5) p(%e, θe) = p0,

where θe = (1/|Ω|)
∫
Ω
θ0 dξ. We assume that equation (1.5) is solvable with

respect to %e > 0.
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Definition 1.1. Let f = r = θ1 = 0. Then by a constant (equilibrium)
state we mean a solution (v, θ, %,Ωt) of problem (1.1) such that v = 0,
% = %e, θ = θe, Ωt = Ωe for t ≥ 0, where %e is a solution of equation (1.5)
and |Ωe| = M/%e (|Ωe| = volΩe).

The paper is divided into five sections. In Section 2 we introduce some
notation and auxiliary results. In Section 3 we present the local existence
theorem (see Theorem 3.1) proved in [16], while in Section 4 we recall the
differential inequality (see Theorem 4.1) obtained in [19]. Finally, Section 5
is devoted to the global existence theorem (see Theorem 5.5).

The analogous problem to (1.1) for a viscous compressible barotropic
fluid was considered by W. M. Zaja̧czkowski in [20]. Hence, in order to
prove Theorem 5.5 we apply a method similar to the proof of the global
existence theorem in the barotropic case (see [20], Theorem 6.5). We prove
Theorem 5.5 under the appropriate choice of %0, v0, θ0, θ1, p0, κ and the form
of the internal energy per unit mass ε = ε(%, θ) (see conditions (5.40)–(5.45))
and under the assumption that ϕ(0) ≤ ε1 (ϕ(t) is given in (4.5)), where ε1
is sufficiently small. In Theorem 5.5 we obtain a global solution of (1.1) such
that (v, ϑ0, ϑ, %σ, %Ωt

) ∈M(t) for t ∈ R1
+ (where ϑ0, ϑ, %σ, %Ωt

are defined
in (4.2) and M(t) is defined at the beginning of Section 5) and St ∈W 4−1/2

2 .
The papers [21]–[23] of W. M. Zaja̧czkowski and the paper [14] of

V. A. Solonnikov and A. Tani are devoted to the motion of a compress-
ible barotropic viscous capillary fluid bounded by a free surface.

The motion of a viscous compressible heat conducting fluid in a fixed
domain was considered by A. Matsumura and T. Nishida in [5]–[9] and
by A. Valli and W. M. Zaja̧czkowski in [15], while the papers [11]–[13] of
V. A. Solonnikov are concerned with free boundary problems for viscous
incompressible fluids.

The papers [1], [2] of J. T. Beale are devoted to the global existence of
solutions to free boundary problems, where the free boundary is unbounded
and the gravitation is taken into account.

Problem (1.1) is considered also in the papers [16]–[19] of E. Zadrzyńska
and W. M. Zaja̧czkowski. In [16] the local existence of solutions to prob-
lem (1.1) is proved. In [18] conservation laws, and in [19] the differential
inequality used in the proof of the global existence theorem are derived.

Finally, [17] is a survey of results concerning problem (1.1) and the free
boundary problem with surface tension, analogous to problem (1.1).

2. Notation and auxiliary results. In Section 3 we use the anisotropic
Sobolev–Slobodetskĭı spaces W l,l/2

2 (QT ), l ∈ R1
+ (see [3]), of functions de-

fined in QT , where QT = ΩT ≡ Ω × (0, T ) (Ω ⊂ R3 is a domain, T <∞ or
T =∞) or QT = ST ≡ S × (0, T ), S = ∂Ω.
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We define W l,l/2
2 (ΩT ) as the space of functions u such that

‖u‖
W

l,l/2
2 (ΩT )

=
[ ∑
|α|+2i≤[l]

‖Dα
ξ ∂

i
tu‖2L2(ΩT )

+
∑

|α|+2i=[l]

( T∫
0

∫
Ω

∫
Ω

|Dα
ξ ∂

i
tu(ξ, t)−Dα

ξ′∂
i
tu(ξ′, t)|2

|ξ − ξ′|3+2(l−[l])
dξ dξ′ dt

+
∫
Ω

T∫
0

T∫
0

|Dα
ξ ∂

i
tu(ξ, t)−Dα

ξ ∂
i
t′u(ξ, t′)|2

|t− t′|1+2(l/2−[l/2])
dt dt′ dξ

)]1/2
<∞,

where we use generalized (Sobolev) derivatives, Dα
ξ = ∂α1

ξ1
∂α2
ξ2
∂α3
ξ3

, ∂αj

ξj
=

∂αj/∂ξ
αj

j (j = 1, 2, 3), α = (α1, α2, α3) is a multiindex, |α| = α1 + α2 + α3,
∂it = ∂i/∂ti and [l] is the integer part of l. In the case when l is an integer
the second terms in the above formulae must be omitted, while in the case
of l/2 being an integer the last terms in the above formulae must be omitted
as well.

Similarly to W l,l/2
2 (ΩT ), using local mappings and a partition of unity

we introduce the normed space W l,l/2
2 (ST ) of functions defined on ST =

S× (0, T ), where S = ∂Ω. We also use the ordinary Sobolev spaces W l
2(Q),

where l ∈ R1
+, Q = Ω (Ω ⊂ R3 is a bounded domain) or Q = S. To simplify

notation we write

‖u‖l,Q = ‖u‖
W

l,l/2
2 (Q)

if Q = ΩT or Q = ST ,

‖u‖l,Q = ‖u‖W l
2(Q) if Q = Ω or Q = S.

Moreover, ‖u‖Lp(Q) = |u|p,Q, 1 ≤ p ≤ ∞.

Now, we introduce the spaces Γ lk(Ω) and Γ l,l/2k (Ω) of functions u defined
on Ω × (0, T ) (T <∞ or T =∞) such that

|u|l,k,Ω ≡ ‖u‖Γ l
k
(Ω) =

∑
i≤l−k

‖∂itu‖l−i,Ω <∞

and
u l,k,Ω ≡ ‖u‖Γ l,l/2

k
(Ω)

=
∑

2i≤l−k

‖∂itu‖l−2i,Ω <∞,

where l ∈ R1
+, k ≥ 0.

Next, define the space Lp(0, T ;Γ l,l/20 (Ω)) (where 1 ≤ p ≤ ∞) with the
norm ‖u‖

Lp(0,T ;Γ
l,l/2
0 (Ω))

= u l,0,p,ΩT .

Moreover, let C2,1(Q) (resp. C2,1
B (Q)) (Q ⊂ R3 × [0,∞)) denote the

space of functions u such that Dα
x∂

i
tu ∈ C0(Q) (resp. Dα

x∂
i
tu ∈ C0

B(Q)) for
|α|+ 2i ≤ 2 (C0

B(Q) is the space of continuous bounded functions on Q).
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Finally, the following seminorm is used:

u κ,QT =
( T∫

0

|u|22,Q
t2κ

dt

)1/2

,

where Q = ∂Ω.
Let X be whichever of the function spaces mentioned above. We say that

a vector-valued function u = (u1, . . . , uν) belongs to X if ui ∈ X for any
1 ≤ i ≤ ν.

Moreover, we use the following lemmas.

Lemma 2.1. The following imbedding holds:

(2.1) W l
r(Ω) ⊂ Lαp (Ω) (Ω ⊂ R3),

where |α|+3/r−3 ≤ l, l ∈ Z, 1 ≤ p, r ≤ ∞; Lαp (Ω) is the space of functions
u such that |Dα

xu|p,Ω <∞, and W l
r(Ω) is the Sobolev space.

Moreover , the following interpolation inequalities are true:

(2.2) |Dα
xu|p,Ω ≤ cε1−κ|Dl

xu|r,Ω + cε−κ|u|r,Ω ,
where κ = |α|/l + 3/(lr) − 3/(lp) < 1, ε is a parameter , and c > 0 is a
constant independent of u and ε.

Lemma 2.1 follows from Theorem 10.2 of [3].

Lemma 2.2 (see [10]). For a sufficiently regular u we have

‖∂itu(t)‖2l−1−2i,Ω ≤ c(‖u‖2l,ΩT + ‖∂itu(0)‖2l−1−2i,Ω),

where 0 ≤ 2i ≤ 2l − 1, l ∈ N, and c > 0 is a constant independent of T .

Now, consider problem (1.1). For (1.1) the energy conservation law is
satisfied (see [4], Ch. 5).

Assume that the internal energy per unit mass ε = ε(%, θ) has the form

(2.3) ε(%, θ) = a0%
α + h(%, θ),

where a0 > 0, α > 0, h(%, θ) ≥ h∗ > 0, a0, α, h∗ are constants and h(%, θ) is
a sufficiently regular function of its arguments. Moreover, we assume that
h(%, θ) has at (%e, θe) (%e and θe are introduced in Definition 1.1) the only
minimum point equal to h∗, i.e. min%,θ h(%, θ) = h(%e, θe) = h∗.

In [19] it is shown that assumption (2.3) and the thermodynamical rela-
tion

dε = θds+
p

%2
d%

(where s is the density of entropy per unit mass) imply the following relations
between h, p and cv:

(2.4) αa0%
α+1 + %2h% = p− θpθ
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and
(2.5) cv =

∂ε

∂θ
= hθ.

In [18] (Corollary 1) the following result is proved.

Lemma 2.3. Let conditions (2.3)–(2.5) be satisfied. Let

(2.6) f = 0, θ1 ≥ 0.

Assume that

(2.7)
∫
Ω

%0
v2
0

2
dξ + κ sup

t

t∫
0

dt′
∫
St′

θ1(s, t′) ds

+
∫
Ω

%0h(%0, θ0) dξ − inf
t

∫
Ωt

%h(%, θ) dx ≤ δ0,

(2.8)
∫
Ω

|%0 − %e| dξ ≤ δ0,

(2.9)
(β − 1)β−1

ββpβ−1
0

(a0%
β
e + p0)β − a0%

β
e ≤ δ0,

(2.10) a0

( ∫
Ω

%β0 dξ − inf
t

∫
Ωt

%β dx
)
≤ δ0,

where δ0 > 0 is a sufficiently small constant and β = α+ 1. Then
1
2

∫
Ωt

%v2 dx+ a0

( ∫
Ωt

%β dx− inf
t

∫
Ωt

%β dx
)

+
∫
Ωt

%h(%, θ) dx− inf
t

∫
Ωt

%h(%, θ) dx+ p0(|Ωt| − |Ω∗|) ≤ cδ̃,

where |Ω∗| = inft |Ωt|, c = const > 0 is a constant and δ̃ = δ̃(δ0), δ̃ → 0 as
δ0 → 0.

R e m a r k 2.4 (see [18], Theorem 2.7). Assumptions (2.3)–(2.9) imply
that vart |Ωt| ≤ cδ, where c > 0 is a constant, vart |Ωt| = supt |Ωt|−inft |Ωt|,
δ2 = c̃δ0 and c̃ is a constant.

R e m a r k 2.5. Since

(2.11)
∫
Ωt

%h(%, θ) dx ≥ h∗
∫
Ωt

% dx = h∗M

assumption (2.7) is satisfied if

(2.12)
∫
Ω

%0
v2
0

2
dξ + κ sup

t

t∫
0

dt′
∫
St′

θ1(s, t′) ds

+
∫
Ω

%0(h(%0, θ0)− h∗) dξ ≤ δ0.
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R e m a r k 2.6. By Remark 3 of [18] we have

(d− inft
∫
Ωt
%h(%, θ) dx)(β − 1)

βp0
− cδ

≤ |Ωt| ≤ cδ +
(d− inft

∫
Ωt
%h(%, θ) dx)(β − 1)

βp0

where c > 0 is some constant, δ = δ(δ0) with δ → 0 as δ0 → 0, and

d =
∫
Ω

%0

(
v2
0

2
+ a0%

2
0 + h(%0, θ0)

)
dξ + p0|Ω|+ κ sup

t

t∫
0

dt′
∫
St′

θ1(s, t′) ds.

Therefore, using (2.11) and the estimate∫
Ωt

%β dx ≥ |Ωt|1−β
( ∫
Ωt

% dx
)β

=
Mβ

|Ωt|β−1

we obtain

inf
t

∫
Ωt

%β dx ≥ Mβ(βp0)β−1

[cδβ%0 + (d− h∗M)(β − 1)]β−1
.

Hence, assumption (2.10) is satisfied if

(2.13) a0

{ ∫
Ω

%β0 dx−
Mβ(βp0)β−1

[cδβ%0 + (d− h∗M)(β − 1)]β−1

}
≤ δ0.

We see that the left-hand side of (2.13) tends to 0 as β → 1, so for β
sufficiently close to 1, it is as small as we wish.

3. Local existence. To prove the local existence for (1.1) we rewrite it
in the Lagrangian coordinates introduced by (1.2) and (1.3):

(3.1)

ηut − µ∇2
uu− ν∇u∇u · u+∇up(η, Γ ) = ηg in ΩT ≡ Ω × (0, T ),

ηt + η∇u · u = 0 in ΩT ,

ηcv(η, Γ )Γt − κ∇2
uΓ = −ΓpΓ (η, Γ )∇u · u

+
µ

2

3∑
i,j=1

(ξxi∇ξuj + ξxj∇ξui)2

+ (ν − µ)(∇u · u)2 + ηk in ΩT ,

Tu(u, p) · n = −p0n on ST ,

n · ∇uΓ = Γ1 on ST ,

u|t=0 = v0 in Ω,

η|t=0 = %0 in Ω,

Γ |t=0 = θ0 in Ω,
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where u(ξ, t) = v(Xu(ξ, t), t), Γ (ξ, t) = θ(Xu(ξ, t), t), η(ξ, t) = %(Xu(ξ, t), t),
g(ξ, t) = f(Xu(ξ, t), t), k(ξ, t) = r(Xu(ξ, t), t), ∇u = ξx∇ξ ≡ {ξix∂ξi

},
Tu(u, p) = −pI+Du(u), Du(u) = {µ(ξkxi

∂ξk
uj+ξkxj

∂ξk
ui)+(ν−µ)δij∇uu}

(here the summation convention over the repeated indices is assumed), and
Γ1(ξ, t) = θ1(Xu(ξ, t), t).

Let A = {aij} be the Jacobi matrix of the transformation x = Xu(ξ, t),
where aij = δij +

∫ t
0
∂ξj

ui(ξ, t′) dt′. Assuming that |∇ξu|∞,ΩT ≤ M we
obtain

0 < c1(1−Mt)3 ≤ det{xξ} ≤ c2(1 +Mt)3, t ≤ T,
where c1, c2 > 0 are constants and T > 0 is sufficiently small. Moreover,
detA = exp(

∫ t
0
∇uu dt′) = %0/η.

Let St be determined (at least locally) by the equation ϕ(x, t) = 0. Then
S is described by ϕ(x(ξ, t), t)|t=0 = ϕ̃(ξ) = 0. Thus, we have

n(x(ξ, t), t) = − ∇xϕ(x, t)
|∇xϕ(x, t)|

∣∣∣∣
x=x(ξ,t)

and n0(ξ) = − ∇ξϕ̃(ξ)
|∇ξϕ̃(ξ)|

.

Now, we are able to formulate the local existence theorem.

Theorem 3.1 (see [16], Theorem 3.7). Let S ∈W 4−1/2
2 , f ∈ C2,1(R3 ×

[0, T ]), r ∈ C2,1(R3 × [0, T ]), θ1 ∈ C2,1(R3 × [0, T ]), v0 ∈ W 3
2 (Ω), θ0 ∈

W 3
2 (Ω), 1/θ0 ∈ L∞(Ω), θ0 > 0, %0 ∈ W 3

2 (Ω), 1/%0 ∈ L∞(Ω), %0 > 0,
cv ∈ C2(R2

+), cv > 0, p ∈ C3(R2
+). Moreover , assume that the following

compatibility conditions are satisfied :

(3.2) Dα
ξ (Dξ(v0) · n0 − p(%0, θ0)n0) = −Dα

ξ (p0n0), |α| ≤ 1, on S

and

(3.3) Dα
ξ (n0 · ∇ξθ0) = Dα

ξ (θ1(ξ, 0)), |α| ≤ 1, on S.

Let T ∗>0 be so small that 0<c1(1−CK0T
∗)3≤det{xξ}≤c2(1 +CK0T

∗)3

(where x(ξ, t) = ξ +
∫ t
0
u0(ξ, t′) dt′ for t ≤ T ∗, u0 is given by (3.74) of [16],

K0 ≤ c(‖%0‖3,Ω + |%0|∞,Ω + |1/%0|∞,Ω + ‖v0‖3,Ω + ‖θ0‖3,Ω + ‖ut(0)‖1,Ω +
‖Γt(0)‖1,Ω), c > 0 is a constant , C = C(K0) is a nondecreasing continuous
function of K0 satisfying (3.94) of [16]). Then there exists T ∗∗ with 0 <
T ∗∗ ≤ T ∗ such that for T ≤ T ∗∗ there exists a unique solution (u, Γ, η) ∈
W 4,2

2 (ΩT ) ×W 4,2
2 (ΩT ) × C0(0, T ;Γ 3,3/2

0 (Ω)) of problem (3.1). Moreover ,
ηt ∈ C0(0, T ;W 2

2 (Ω)) ∩ L2(0, T ;W 3
2 (Ω)), ηtt ∈ L2(0, T ;W 1

2 (Ω)) and
‖u‖4,ΩT + ‖Γ‖4,ΩT ≤ CK0,

sup
t
‖η‖3,Ω + sup

t
‖ηt‖2,Ω + ‖ηt‖L2(0,T ;W 3

2 (Ω))

+ ‖ηtt‖L2(0,T ;W 1
2 (Ω)) ≤ Φ1(T, T aK0)‖%0‖3,Ω ,(3.4)

|1/η|∞,ΩT + |η|∞,ΩT

≤ Φ2(T 1/2K0)|1/%0|∞,Ω + Φ3(T 1/2K0)|%0|∞,Ω ,
where Φ1, Φ2 and Φ3 are increasing continuous functions, and a > 0.
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In order to consider the global existence we need

R e m a r k 3.2. Assume that g = 0 and define

pσ = p− p0, γ0 = Γ − θe, ησ = η − %e

(where θe and %e are introduced in Definition 1.1). Then problem (3.1) can
be written in the form

(3.5)

ηut − µ∇2
uu− ν∇u∇u · u+∇upσ = 0,

ησt + η∇u · u = 0,

ηcv(η, Γ )γ0t − κ∇2
uγ0 + ΓpΓ (η, Γ )∇u · u

− µ

2

3∑
i,j=1

(ξxi∇ξuj + ξxj∇ξui)2 − (ν − µ)(∇u · u)2 = ηk,

Tu(u, pσ) · n = 0,
n · ∇uγ0 = Γ1,

u|t=0 = v0, ησ|t=0 = %σ0, γ0|t=0 = ϑ00,

where %σ0 = %0 − %e and ϑ00 = θ0 − θe.
Let the assumptions of Theorem 3.1 be satisfied and let (u, Γ, η) be the

corresponding local solution of problem (3.1). Then by Theorems 3.5, 3.6
and Lemma 3.3 of [16] for a solution (u, γ0, ησ) of (3.5) such that

T a(‖u‖4,ΩT + ‖v0‖3,Ω + ‖ϑ00‖3,Ω + ‖%σ0‖3,Ω)ϕ1(T,K0) ≤ δ

(where a > 0 is a constant, ϕ1 is an increasing continuous function of its
arguments, δ > 0 is sufficiently small) the following estimate holds:

(3.6) ‖u‖4,ΩT + ‖ησ‖3,ΩT + ησ 3,0,∞,ΩT + ‖γ0‖4,ΩT

≤ ϕ2(T,K0)(‖v0‖3,Ω + ‖%σ0‖3,Ω + ‖ϑ00‖3,Ω

+ ‖k‖2,ΩT + ‖k(0)‖1,Ω + ‖Γ1‖3−1/2,ST + D2
ξ,tΓ1 1/4,ST ),

where ϕ2 is an increasing continuous function of its arguments.

4. Differential inequality. In order to prove the global existence of
solutions we need the differential inequality derived in [19] (Theorem 3.13).
Assume that the existence of a sufficiently smooth local solution of problem
(1.1) has been proved and consider the motion near the constant state (see
Definition 1.1) ve = 0, pe = p0, θe = (1/|Ω|)

∫
Ω
θ0 dξ and %e, where %e is a

solution of the equation

(4.1) p(%e, θe) = p0.
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Let

(4.2)
pσ = p− p0, %σ = %− %e, ϑ0 = θ − θe,
ϑ = θ − θΩt , %Ωt

= %− %Ωt ,

where θΩt = (1/|Ωt|)
∫
Ωt
θ dx, and %Ωt = %Ωt(t) is a solution of the problem

(4.3) p(%Ωt
, θΩt

) = p0, %Ωt
|t=0 = %e.

Then problem (1.1) takes the form

(4.4)

%[vt + (v · ∇)v]− div T(v, pσ) = %f in Ωt, t ∈ [0, T ],
%t + div(%v) = 0 in Ωt, t ∈ [0, T ],
%cv(%, θ)(ϑ0t + v · ∇ϑ0) + θpθ(%, θ) div v

− κ∆ϑ0 −
µ

2

∑
i,j

(∂xivj + ∂xjvi)
2

− (ν − µ)(div v)2 = %r inΩt, t ∈ [0, T ],
T(v, pσ) · n = 0 on St, t ∈ [0, T ],
∂ϑ0/∂n = θ1 on St, t ∈ [0, T ],

where T(v, pσ) = {µ(∂xi
vj + ∂xj

vi) + (ν − µ)δij div v − pσδij} and T is the
time of the local existence.

Define

ϕ(t) =
∫
Ωt

%
∑

1≤|α|+i≤3

|Dα
x∂

i
tv|2 dx

+
∫
Ωt

(
p1

%
%2
σ + %2

Ωt
+
p2%cv
pθθ

ϑ2
0

)
dx

+
∫
Ωt

pσ%
%

∑
1≤|α|+i≤3

|Dα
x∂

i
t%σ|2 dx

+
∫
Ωt

%cv
θ

∑
1≤|α|+i≤3

|Dα
x∂

i
tϑ0|2 dx,

ϕ(t) = |v|23,0,Ωt
+ |ϑ0|23,0,Ωt

+ |%σ|23,0,Ωt
+ ‖%Ωt

‖20,Ωt
,(4.5)

Φ(t) = |v|24,1,Ωt
+ |ϑ0|24,1,Ωt

− ‖ϑ0‖20,Ωt
+ ‖ϑ‖20,Ωt

+ |%σ|23,0,Ωt
− ‖%σ‖20,Ωt

+ ‖%Ωt
‖20,Ωt

,

F (t) = ‖fttt‖20,Ωt
+ |f |22,0,Ωt

+ ‖rttt‖20,Ωt
+ |r|22,0,Ωt

+ ‖r‖0,Ωt + |θ1|24,1,Ωt
+ ‖θ1‖1,Ωt ,

ψ(t) = ‖v‖20,Ωt
+ ‖pσ‖20,Ωt

.

The following theorem is proved in [19] (see Theorem 3.13).
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Theorem 4.1. Let ν > 1
3µ. Then for a sufficiently smooth solution (v,

ϑ0, %) of (4.4) we have

dϕ

dt
+ c0Φ ≤ c1P (ϕ)

(
ϕ+

t∫
0

‖v‖24,Ωt′
dt′
)

(1 + ϕ3)(ϕ+ Φ)(4.6)

+ c2F + c3ψ,

where P is an increasing continuous function; 0 < c0 < 1 is a constant de-
pending on %∗, %∗, θ∗, θ∗, µ, ν, κ; and ci (i = 1, 2, 3) are positive constants
depending on %∗, %∗, θ∗, θ∗,

∫ t
0
‖v‖3,Ωt′dt

′, ‖S‖4−1/2, T and the constants
from the imbedding Lemma 2.1 and the Korn inequalities from [20] (Sec-
tion 5).

R e m a r k 4.2. Theorem 3.13 of [20] was proved under the assumption
that ν ≥ µ. This assumption implies that

(4.7)
µ

2
EΩt(v) + (ν − µ)‖div v‖20,Ωt

≥ 0,

where EΩt
(v) =

∫
Ωt

∑3
i,j=1(vi,xj

+ vj,xi
)2.

It turns out that the condition ν ≥ µ is too restrictive and we can now
show that (4.7) is satisfied for ν > 1

3µ, which is assumed in Theorem 4.1. In
fact, we have

µ

2
EΩt(v) + (ν − µ)‖div v‖20,Ωt

=
µ

2

∫
Ωt

(vi,xj
+ vj,xi

)2 dx+ (ν − µ)
∫
Ωt

(div v)2 dx

=
µ

2

∑
i 6=j

∫
Ωt

(vi,xj
+ vj,xi

)2 dx+
µ

2

∑
i=j

∫
Ωt

(vi,xj
+ vj,xi

)2 dx

+ (ν − µ)
∫
Ωt

(div v)2 dx

=
µ

2

∑
i 6=j

∫
Ωt

(vi,xj
+ vj,xi

)2 dx

+
µ

2
ε1
∑
i=j

∫
Ωt

(vi,xj + vj,xi)
2 dx

+
µ

2
(1− ε1) · 4

∑
i

∫
Ωt

(vi,xj
)2 dx

+ (ν − µ)
∫
Ωt

(div v)2 dx ≡ I,

where ε1 ∈ (0, 1).
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Since (ξ1+ξ2+ξ3)2 ≤ 3(ξ21 +ξ22 +ξ23) the last two terms in I are estimated
from below by [

ν − (1 + 2ε1)
µ

2

] ∫
Ωt

(div v)2 dx.

Assuming that ν = (1 + 2ε1)µ/3 we obtain ε1 = 3
2µ (ν − µ/3), so

I ≥ µ

2
ε1
∫
Ωt

(vi,xj
+ vj,xi

)2 dx =
3
4

(
ν − µ

3

) ∫
Ωt

(vi,xj
+ vj,xi

)2 dx

> 0 for ν > 1
3µ.

5. Global existence. We assume that

(5.1) f = 0, θ1 ≥ 0,

and

(5.2) ‖r‖20,Ωt
+ |r|22,0,Ωt

+ ‖r‖0,Ωt
+ |θ1|24,1,Ωt

+ ‖θ1‖1,Ωt
≤ η1e−η2t,

where η1 > 0 is sufficiently small and η2 > 1.
Let ϕ(t) and Φ(t) be defined by (4.5). We introduce the spaces

N(t) = {(v, ϑ0, %σ, %Ωt
) : ϕ(t) <∞},

M(t) =
{

(v, ϑ0, ϑ, %σ, %Ωt
) : ϕ(t) +

t∫
0

Φ(t′) dt′ <∞
}
.

Notice that (v, ϑ0, %σ, %Ωt
) ∈ N(t) iff ϕ(t) < ∞ and (v, ϑ0, ϑ, %σ, %Ωt

) ∈
M(t) iff ϕ(t) +

∫ t
0
Φ(t′) dt′ < ∞. Moreover, c′ϕ(t) ≤ ϕ(t) ≤ c′′ϕ(t), where

c′, c′′ > 0 are constants.

Lemma 5.1. Let the assumptions of Theorem 3.1 be satisfied. Let the
initial data v0, %0, θ0, S of problem (1.1) be such that (v, ϑ0, %σ, %Ωt

) ∈ N(0)
and S ∈W 4−1/2

2 . Let∫
Ω

%0v0 dξ = 0,
∫
Ω

%0ξ dξ = 0.

Moreover , assume

(5.3) ϕ(0) ≤ ε1,
where ε1 is sufficiently small. Then the local solution (v, θ, %) of problem (1.1 )
is such that (v, ϑ0, ϑ, %σ, %Ωt

) ∈M(t) for t ≤ T , where T is the time of local
existence and

(5.4) ϕ(t) +
t∫

0

Φ(t′) dt′ ≤ cε1.
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P r o o f. Take (v, ϑ0, %σ, %Ωt
) ∈ N(0), S ∈W 4−1/2

2 . Then (v0, ϑ00, %σ0) ∈
W 3

2 (Ω) (%σ0 = %0− %e, ϑ00 = θ0− θe) and by Theorem 3.1, Remark 3.2 and
(5.2) there exists a solution of problem (1.1) such that

(5.5)
u ∈W 4,2

2 (ΩT ), ϑ0 ∈W 4,2
2 (ΩT ),

ησ ∈W 3,3/2
2 (ΩT ) ∩ C0(0, T ;Γ 3,3/2

0 (Ω))

and

(5.6) ‖u‖24,ΩT + ‖ησ‖23,ΩT + ησ
2
3,0,∞,ΩT + ‖γ0‖24,ΩT

≤ c(‖v0‖23,Ω + ‖%σ0‖23,Ω + ‖ϑ00‖23,Ω) ≤ cϕ(0) ≤ cε1,

where u = v(x(ξ, t), t), ησ = %σ(x(ξ, t), t), γ0 = ϑ0(x(ξ, t), t).
Using estimate (5.6) for the local solution and the imbeddings (see Lem-

mas 2.2 and 2.1)

sup
t

(‖u‖23,Ω + ‖ut‖21,Ω) ≤ c(‖u‖24,ΩT + ‖u(0)‖23,Ω + |u(0)|21,0,Ω) ≤ cϕ(0) ≤ cε1

and
t∫

0

|uξ|∞,Ω dt′ ≤ cT 1/2‖u‖4,ΩT ≤ cT 1/2ϕ(0)

we have the following estimate for the solution ησ of (3.5)2 (see [22],
Lemma 6.1):

N1 ≡ sup
t

(‖ησtt‖20,Ω + ‖ησt‖22,Ω + ‖ησ‖23,Ω)(5.7)

+ ‖ησtt‖2L2(0,T ;W 1
2 (Ω)) + ‖ησt‖2L2(0,T ;W 3

2 (Ω))

≤ ϕ1(T, ϕ(0)) ≤ cε1,

where ϕ1 is an increasing continuous function of its arguments.
Repeating the proof of Lemma 3.10 of [19] we get

(5.8)
1
2
d

dt

∫
Ωt

(
%v2
xxt +

pσ%
%
%2
σxxt +

%cv
θ
ϑ2

0xxt

)
dx

+ C(‖vxxt‖21,Ωt
+ ‖%σxxt‖20,Ωt

+ ‖ϑ0xxt‖21,Ωt
)

≤ (ε′1 + cN)(‖vxttt‖20,Ωt
+ ‖vxxxt‖20,Ωt

+ ‖vxxtt‖20,Ωt
+ ‖ϑ0xttt‖20,Ωt

+ ‖ϑ0xxtt‖20,Ωt
+ ‖ϑ0xxxt‖20,Ωt

) + cM(1 +N)2 + cF (t),

where C, c > 0 are constants, N = N1 +N2, N2 = supt(‖u‖23,Ω + ‖ut‖21,Ω +

‖γ0‖23,Ω + ‖γ0t‖21,Ω) and M is such that
∫ T
0
M dt′ ≤ cϕ(0) holds in view of

the estimates for the local solution.
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Similarly, using Lemma 3.11 of [19] yields

(5.9)
1
2
d

dt

∫
Ωt

(
%v2
xxt +

pσ%
%
%2
σxxt +

%cv
θ
ϑ2

0xxt

)
dx

+ C(‖vxtt‖21,Ωt
+ ‖%σxtt‖20,Ωt

+ ‖ϑ0xtt‖21,Ωt
)

≤ (ε′2 + cN)(‖vxttt‖20,Ωt
+ ‖vxxtt‖20,Ωt

+ ‖vxxxt‖20,Ωt

+ ‖ϑ0xttt‖20,Ωt
+ ‖ϑ0xxtt‖20,Ωt

+ ‖ϑ0xxxt‖20,Ωt
) + c(1 +N)2

× (‖vxxt‖21,Ωt
+ ‖ϑ0xxt‖21,Ωt

) + cM(1 +N)2 + cF (t).

Next, Lemma 3.12 of [19] implies

(5.10)
1
2
d

dt

∫
Ωt

(
%v2
ttt +

pσ%
%
%2
σttt +

%cv
θ
ϑ2

0ttt

)
dx

+ C(‖vttt‖21,Ωt
+ ‖%σttt‖20,Ωt

+ ‖ϑ0ttt‖21,Ωt
)

≤ (ε′3 +N +M)(‖vttt‖20,Ωt
+ ‖ϑ0ttt‖20,Ωt

)

+ cN(‖vxtt‖21,Ωt
+ ‖vxttt‖20,Ωt

+ ‖vxxt‖21,Ωt
+ ‖ϑ0xtt‖21,Ωt

+ ‖ϑ0xttt‖20,Ωt
+ ‖ϑ0xxt‖21,Ωt

+ ‖%σttt‖20,Ωt
) + c‖vxtt‖21,Ωt

+ c‖ϑ0xtt‖21,Ωt
+ cM(1 +N)2 + cF (t),

where in virtue of the continuity equation (4.4)2 we have

(5.11) ‖%σttt‖20,Ωt
≤ c(1 +N)‖vxtt‖20,Ωt

+ cM(1 +N)2.

Finally, to estimate ‖%Ωt
‖20,Ωt

+ ‖ϑ‖20,Ωt
rewrite the equation

p(%Ωt , θΩt)− p(%e, θe) = 0

using the Taylor formula as

p%(%Ωt
− %e) + pθ(θΩt

− θe) = 0.

Hence

(5.12) ‖%Ωt
‖20,Ωt

+ ‖ϑ‖20,Ωt

≤ ‖%σ‖20,Ωt
+ ‖%e − %Ωt

‖20,Ωt
+ ‖ϑ0‖20,Ωt

+ ‖θe − θΩt
‖20,Ωt

≤ c(‖%σ‖20,Ωt
+ ‖ϑ0‖20,Ωt

+ ‖θe − θΩt
‖20,Ωt

)

≤ c
(
‖%σ‖20,Ωt

+ ‖ϑ0‖20,Ωt
+
∥∥∥∥ 1
|Ωt|
∫
Ωt

ϑ0 dx

∥∥∥∥2

0,Ωt

)
≤ cϕ(0) ≤ cε1,

where to estimate ‖%σ‖20,Ωt
and ‖ϑ0‖20,Ωt

we have used (5.6).
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From (5.8)–(5.12) and (5.1)–(5.2), for sufficiently small ε′1, ε′2, ε′3, N ,∫ T
0
M dt′ and η1 from (5.2), we deduce that (v(t), %σ(t), %Ωt

(t), ϑ0(t), ϑ(t)) ∈
M(t) for t≤T and (5.4) is satisfied. Of course to prove the last statement the
standard technique of mollifiers or differences should be used. This concludes
the proof.

Lemma 5.2. Assume that there exists a local solution to problem (1.1)
which belongs to M(t) for t ≤ T , i.e. let the assumptions of Lemma 5.1 be
satisfied. Let the assumptions of Lemma 2.3 be satisfied. Then there exist
δ1, δ2 ∈ (0, 1) sufficiently small such that

‖pσ‖20,Ωt
≤ δ1,(5.13)

‖ϑ0‖20,Ωt
+ ‖%σ‖20,Ωt

≤ δ2,(5.14)

where δ1 = cε1δ
′ + c(δ′)δ̃, δ2 = cε1δ

′ + c(δ′)(δ0 + δ̃), δ′ ∈ (0, 1) is as small
as needed , c(δ′) is a decreasing function of δ′, and δ0 and δ̃ are taken from
Lemma 2.3.

P r o o f. Estimate (5.13) can be proved in exactly the same way as esti-
mate (6.13) in [20]. In order to prove (5.14) we use the relation

|Ω| − |Ωe| =
1
%e

∫
Ω

(%e − %0) dξ.

Hence, by assumption (2.8) of Lemma 2.3 we have

(5.15) ||Ω| − |Ωe|| ≤ cδ0.
Using (5.15) and Remark 2.4 we obtain

(5.16) ||Ωt| − |Ωe|| ≤ cδ,
where δ = δ(δ0)→ 0 as δ0 → 0.

If % > %e then (1/%e)
∫
Ωt
|%− %e| dx = |Ωe| − |Ωt|.

If % < %e then (1/%e)
∫
Ωt
|%− %e| dx = |Ωt| − |Ωe|.

Therefore, from (5.16) it follows that

(5.17)
∫
Ωt

(%− %e)2 dx ≤ c
∫
Ωt

|%− %e| dx ≤ cδ.

Hence

(5.18) ‖%σ‖0,Ωt
≤ δ′2.

Using the Taylor formula we have

(5.19) pσ = p1%σ + p2ϑ0,

where p1 = p1(%, θ) and p2 = p2(%e, θ) (see (3.4) of [19]). Now estimates
(5.13), (5.18) and formula (5.19) yield

(5.20) ‖ϑ0‖0,Ωt
≤ δ′′2 .

By (5.19) and (5.20) we get (5.14).
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Lemma 5.3. Assume that there exists a local solution of (1.1) in M(t)
for 0 ≤ t ≤ T . Let the assumptions of Lemma 2.3 be satisfied. Assume that
the initial data are in N(0) and

(5.21) ϕ(0) ≤ γ, γ ∈ (0, 1/2],

where γ is sufficiently small. Then the solution at t ∈ [0, T ] belongs to N(t)
and

(5.22) ϕ(t) ≤ γ.

P r o o f. Assumption (5.21) and Lemma 5.1 imply that the estimate (4.6)
can be written as

(5.23)
dϕ

dt
+ c0Φ ≤ c′1

(
ϕ+

t∫
0

Φ(t′) dt′
)

(1 + ϕ3)(ϕ+ Φ) + c2F + c3ψ.

Since Φ+ ‖ϑ0‖20,Ωt
+ ‖%σ‖20,Ωt

≥ ϕ, using Lemma 5.2 we obtain

(5.24) Φ+ δ2 ≥ ϕ,

where δ2 is independent of γ.
Next, by Lemmas 5.2 and 2.3 and assumptions (5.1)–(5.2) we have

(5.25) F + ψ ≤ η + δ1 + cδ̃,

where η = η1e
−η2t and δ1, δ̃ are sufficiently small. Using (5.24) in (5.23)

gives

(5.26)
dϕ

dt
+ c0Φ ≤ c′1

(
ϕ+

t∫
0

Φ(t′) dt′
)

(1 + ϕ3)(2Φ+ δ2) + c2F + c3ψ.

Assuming that the initial data are so small that

2c′1
(
ϕ+

t∫
0

Φ(t′) dt′
)

(1 + ϕ3)Φ ≤ c0Φ

2
,

instead of (5.26) we get

(5.27)
dϕ

dt
+
c0Φ

2
≤ c′1

(
ϕ+

t∫
0

Φ(t′) dt′
)

(1 + ϕ3)δ2 + c2F + c3ψ.

Now using (5.24), (5.25), (5.21) and Lemma 5.1 in (5.27) yields

(5.28)
dϕ

dt
+
c0Φ

2
≤ c4

(
γδ2 +

δ2
2

+ η + δ1 + cδ̃

)
.

By (5.21), ϕ(0) ≤ γ, γ ∈ (0, 1/2]. Assume that t∗ = inf{t ∈ [0, T ] : ϕ(t) >
γ}. Consider (5.28) in the interval [0, t∗]. From the definition of t∗ we have
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ϕ(t∗) = γ. Therefore (5.28) implies

(5.29) ϕt(t∗) ≤ −
γ

2
+ c4

(
γδ2 +

δ2
2

+ η + δ1 + cδ̃

)
.

Assume that δ2, η, δ1 and δ̃ are so small that

c4

(
γδ2 +

δ2
2

+ η + δ1 + cδ̃

)
<
γ

4
.

Hence (5.29) yields ϕt(t∗) < 0, a contradiction. Therefore (5.22) holds.

Lemma 5.3 suggests that the solution can be continued to the interval
[T, 2T ], but to do this we need the following facts:

(5.30) (a) The existence of the transformation x = x(ξ, t) and its inverse
for t ∈ [T, 2T ].

(b) The validity of the Korn inequality with the same constant for
the whole interval [0, 2T ].

(c) The variations of the shape of Ωt for t ∈ [0, 2T ] are so small that
the constants in Lemma 2.1 (imbedding (2.1)) can be chosen
independently of t.

Generally, to prove the global existence we need these facts for all t.
Theorem 2.7 of [18] implies that the volume of Ωt does not change much
but we have not shown yet any restriction on the variations of its shape.

It is sufficient to show (c), because (a) and (b) follow.

Lemma 5.4. Assume that there exists a local solution of (1.1) in M(t)
for 0 ≤ t ≤ T with initial data in N(0) sufficiently small (see (5.3)). Then
there exist constants µ1 > 0 and µ2 > 0 (µ2 is sufficiently small) such that

(5.31) ϕ(t) ≤ ce−µ1t(ϕ(0) + µ2), t ≤ T,

where c > 0 is a constant and T is the time of local existence. Moreover , if
we assume (5.2) with η1 = 0, then (5.31) holds with µ2 = 0.

P r o o f. Inequalities (3.20) and (3.28) of [19] (see the proof of Lemma 3.1
and the assertion of Lemma 3.2 of [19]) imply

(5.32)
d

dt

∫
Ωt

[
%(v2 + v2

t ) +
1
%

(p1%
2
σ + p%%

2
σt) +

%cv
θ

(
p2

pθ
ϑ2

0 + ϑ2
0t

)]
dx

+ c0(‖v‖21,Ωt
+ ‖vt‖21,Ωt

+ ‖div v‖20,Ωt
+ ‖div vt‖20,Ωt

+ ‖ϑ0x‖20,Ωt
+ ‖ϑ0t‖21,Ωt

+ ‖%σt‖20,Ωt
)

≤ C2ϕ
2(t)(1 + ϕ(t)) + C1F (t).
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Multiplying both sides of (5.32) by e−αt (where 0 < α < 1) we obtain

(5.33)
d

dt

{
e−αt
∫
Ωt

[
%(v2 + v2

t ) +
1
%

(p1%
2
σ + p%%

2
σt)

+
%cv
θ

(p2

pθ
ϑ2

0 + ϑ2
0t

)]
dx

}
+ αe−αt

∫
Ωt

[
%(v2 + v2

t )

+
1
%

(p1%
2
σ + p%%

2
σt) +

%cv
θ

(
p2

pθ
ϑ2

0 + ϑ2
0t

)]
dx

+ c0e
−αt(‖v‖21,Ωt

+ ‖vt‖21,Ωt
+ ‖div v‖20,Ωt

+ ‖div vt‖20,Ωt

+ ‖ϑ0x‖20,Ωt
+ ‖ϑ0t‖21,Ωt

+ ‖%σt‖20,Ωt
)

≤ C2e
−αtϕ2(t)(1 + ϕ(t)) + C1e

−αtF (t).

Next multiplying inequality (4.6) by e−αt we have

(5.34)
dϕ1

dt
+ αϕ1 + c0Φ1

≤ c1P (ϕ)
(
ϕ+

t∫
0

‖v‖24,Ωt′
dt′
)

(1 + ϕ3)(ϕ1 + Φ1)

+ c2F1 + c3ψ1,

where ϕ1 = ϕe−αt, ϕ1 = ϕe−αt, Φ1 = Φe−αt, F1 = Fe−αt, and ψ1 = ψe−αt.
From the assumption that the initial data are sufficiently small we de-

duce that ϕ +
∫ t
0
‖v‖24,Ωt′

dt′ is also small (see Lemma 5.1). Therefore, for
sufficiently small data from (5.34) we get

(5.35)
dϕ1

dt
+ c4(ϕ1 + Φ1) ≤ c5F1 + c6(‖pσ‖20,Ωt

+ ‖v‖20,Ωt
)e−αt.

Now, applying the same argument as in the proof of Lemma 6.2 of [20] we
obtain

(5.36) ‖pσ‖20,Ωt
≤ ε(‖pσx‖20,Ωt

+ ‖vxx‖20,Ωt
) + c(ε)(‖v‖20,Ωt

+ ‖vt‖20,Ωt
).

Moreover,

(5.37) ‖pσx‖20,Ωt
≤ c(‖%σx‖20,Ωt

+ ‖ϑ0x‖20,Ωt
).

Using (5.36) and (5.37) in (5.35) we have

(5.38)
dϕ1

dt
+ c4(ϕ1 + Φ1) ≤ c5F1 + c7(‖v‖20,Ωt

+ ‖vt‖20,Ωt
)e−αt.

Multiplying (5.33) by a sufficiently large constant c8, adding the result to
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(5.38) and using the fact that ϕ(0) is sufficiently small we obtain

(5.39)
dϕ̃

dt
+ c9(ϕ̃+ Φ̃) ≤ c10F1,

where

ϕ̃ = ϕ1 + c8e
−αt
∫
Ωt

[
%(v2 + v2

t ) +
1
%

(p1%
2
σ + pσ%

2
σt)

+
%cv
θ

(
p2

pθ
ϑ2

0 + ϑ2
0t

)]
dx,

ϕ̃ = ϕ1 + c8e
−αt
∫
Ωt

[
%(v2 + v2

t ) +
1
%

(p1%
2
σ + pσ%

2
σt)

+
%cv
θ

(
p2

pθ
ϑ2

0 + ϑ2
0t

)]
dx,

Φ̃ = Φ1 + c8e
−αt(‖v‖21,Ωt

+ ‖vt‖21,Ωt
+ ‖div v‖20,Ωt

+ ‖div vt‖20,Ωt
+ ‖ϑ0x‖20,Ωt

+ ‖ϑ0t‖21,Ωt
+ ‖%σt‖20,Ωt

).

There exist constants c′0, c′′0 > 0 such that

c′0ϕ1 ≤ ϕ̃ ≤ c′′0ϕ1 and c′0Φ1 ≤ Φ̃ ≤ c′′0Φ1.

Hence by assumptions (5.1) and (5.2) inequality (5.39) implies

(5.40) ϕ1 ≤ c12e−c10t(ϕ(0) + c11),

where c11 > 0 is sufficiently small.
For α sufficiently small, from (5.40) we obtain (5.31).

Finally, we prove the main result of this paper.

Theorem 5.5. Let ν > 1
3µ. Let (5.1), (5.2) with η1 = 0 and the as-

sumptions of Theorem 3.1 with r ∈ C2,1
B (R3 × [0,+∞)) and θ1 ∈ C2,1

B (R3 ×
[0,+∞)) be satisfied. Furthermore, let (v, ϑ0, %σ, %Ωt

) ∈ N(0) and

(5.41) ϕ(0) ≤ ε1,

where ε1 ∈ (0, 1) is sufficiently small. Let the following compatibility condi-
tions be satisfied :

(5.42)
Dα∂it(T · n+ p0n)|t=0,S = 0, |α|+ i ≤ 2,

Dα∂it(n · ∇θ − θ1)|t=0,S = 0, |α|+ i ≤ 2.

Assume also that the internal energy per unit mass ε = ε(%, θ) has the form
(2.3) and conditions (2.4)–(2.5) hold. Moreover , assume that
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Ω

%0
v2
0

2
dξ + κ sup

t

t∫
0

dt′
∫
St′

θ1(s, t′) ds(5.43)

+
∫
Ω

%0(h(%0, θ0)− h∗) dξ ≤ ε2,∫
Ω

|%0 − %e| dξ ≤ ε2,(5.44)

(β − 1)β−1

ββpβ−1
0

(a0%
β
e + p0)β − a0%

β
e ≤ ε2,(5.45)

a0

{ ∫
Ω

%β0 dx−
Mβ(βp0)β−1

[cδβ%0 + (d− h∗M)(β − 1)]β−1

}
≤ ε2,(5.46)

where ε2 > 0 is a sufficiently small constant , β = α + 1, and c > 0 and
δ > 0 are the constants from Remark 2.6. Assume, finally , that

(5.47)
∫
Ω

%0v0(a+ b× ξ) dξ = 0,
∫
Ω

%0ξ dξ = 0,
∫
Ω

%0 dξ = M,

where a, b are arbitrary constant vectors. Then there exists a global solution
of (1.1) such that (v, ϑ0, ϑ, %σ, %Ωt

) ∈M(t) for t ∈ R1
+ and St ∈W 4−1/2

2 .

P r o o f. The theorem is proved step by step using the local existence in
a fixed time interval. Under the assumption that

(5.48) (v, ϑ0, %σ, %Ωt
) ∈ N(0),

Theorem 3.1 and Remark 3.2 yield the local existence of solutions of (1.1)
such that

(5.49)
u ∈W 4,2

2 (ΩT ), ϑ0 ∈W 4,2
2 (ΩT ),

ησ ∈W 3,3/2
2 (ΩT ) ∩ C0(0, T ;Γ 3,3/2

0 (Ω)),

where T is the time of the existence. By (5.48) and (5.49), Lemma 5.1
implies that the local solution belongs to M(t) for t ≤ T . For small ε1 the
existence time T is correspondingly large, so we can assume it is a fixed
positive number.

To prove the last result we needed the Korn inequalities (see [20]) and
Lemma 2.1 (imbedding (2.2)).The constants in those theorems depend on
Ωt and the shape of St, so generally they are functions of t. In view of (5.41),
Lemma 5.1 gives

ϕ(t) +
t∫

0

Φ(t′) dt′ ≤ cε1.



Global existence theorem 219

Hence we obtain

(5.50)
∣∣∣ t∫
0

v dt′
∣∣∣ ≤ cε1, t ∈ [0, T ].

Therefore from the relation

(5.51) x = ξ +
t∫

0

u(ξ, t′) dt′, ξ ∈ S, t ∈ T,

it follows that for sufficiently small ε1 and fixed T , the shape of Ωt, t ≤ T ,
does not change too much, so the constants from the imbedding Lemma 2.1
can be chosen independent of time.

Since ϕ(t) ≤ c′′ϕ(t), (5.41), Lemma 5.3 and Remarks 2.5–2.6 imply

(5.52) ϕ(T ) ≤ c′′ε1,

for sufficiently small ε1 and ε2.
Now we wish to extend the solution to the interval [T, 2T ]. Using (5.52)

we can prove the existence of local solutions in M(t) for T ≤ t ≤ 2T . To
prove

(5.53) ϕ(2T ) ≤ c′′ε1
we need inequality (4.6), where the constants depend on the constants from
the imbedding theorems and the Korn inequalities for t ∈ [T, 2T ]. Therefore,
we have to show that the shape of St, t ≤ 2T , does not change more that
for t ≤ T . For this we need the following (see (5.30)). Assume that there
exists a local solution in [0, kT ]. Then in view of Lemma 5.4, for t ∈ [0, kT ]
we have∣∣∣ t∫
0

v dx
∣∣∣+
∣∣∣ t∫
0

vx dx
∣∣∣

≤ c2
t∫

0

‖v‖3,Ωt′ dt
′ ≤ c2

k−1∑
i=0

(i+1)T∫
iT

‖v‖3,Ωt′ dt
′

≤ c2T 1/2
k−1∑
i=0

((i+1)T∫
iT

‖v‖23,Ωt′
dt′
)1/2

≤ c3T 1/2
k−1∑
i=0

((i+1)T∫
iT

ϕ(t′) dt′
)1/2

≤ c3T 1/2
k−1∑
i=0

[
ϕ(iT )

(i+1)T∫
iT

e−µ1(t−iT ) dt
]1/2

≤ c3[T (1− e−µ1T )/µ1]1/2
k−1∑
i=0

(ϕ(iT ))1/2
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≤ c3[T (1− e−µ1T )/µ1]1/2
k−1∑
i=0

(ϕ(iT ))1/2

≤ c3{T [(1− e−µ1T )/µ1]ϕ(0)(1 + e−µ1T + e−2µ1T + . . .)}1/2

= c3[T (1/µ1)ϕ(0)(1− e−µ1T )(1− e−µ1T )−1]1/2

= c3[T (1/µ1)ϕ(0)]1/2 ≤ c4T 1/2ε
1/2
1 .

Taking k = 2 and ε1 sufficiently small we see that |
∫ t
0
v(x, t′) dt′| is small

for any t ∈ [T, 2T ], so (5.51) implies that the shape of St changes no more
than in [0, T ] and then the differential inequality (4.6) can be shown for
this interval with the same constants, too. Hence in view of Lemma 5.1 the
solution of (1.1) belongs to M(t) for t ∈ [T, 2T ]. Next Lemmas 5.1–5.3 and
Remarks 2.5–2.6 imply (5.53).

Repeating the above considerations for the intervals [kT, (k+1)T ], k ≥ 2,
we prove the existence for all t ∈ R1

+. This concludes the proof of the
theorem.

R e m a r k 5.6. Lemma 5.4 implies that ϕ(t)→ 0 as t→∞. Hence the
considered motion converges to the constant state.
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