On the asymptotic behavior of solutions of second order parabolic partial differential equations

by Wei-Cheng Lian and Cheh-Chih Yeh (Chung-Li)

Abstract. We consider the second order parabolic partial differential equation

$$
\sum_{i, j=1}^{n} a_{i j}(x, t) u_{x_{i} x_{j}}+\sum_{i=1}^{n} b_{i}(x, t) u_{x_{i}}+c(x, t) u-u_{t}=0
$$

Sufficient conditions are given under which every solution of the above equation must decay or tend to infinity as $|x| \rightarrow \infty$. A sufficient condition is also given under which every solution of a system of the form

$$
L^{\alpha}\left[u^{\alpha}\right]+\sum_{\beta=1}^{N} c^{\alpha \beta}(x, t) u^{\beta}=f^{\alpha}(x, t)
$$

where

$$
L^{\alpha}[u] \equiv \sum_{i, j=1}^{n} a_{i j}^{\alpha}(x, t) u_{x_{i} x_{j}}+\sum_{i=1}^{n} b_{i}^{\alpha}(x, t) u_{x_{i}}-u_{t}
$$

must decay as $t \rightarrow \infty$.

1. Introduction. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be a point of the n-dimensional Euclidean space \mathbb{R}^{n} and let t be a nonnegative number. The distance of the point $x \in \mathbb{R}^{n}$ from the origin of \mathbb{R}^{n} is denoted by $|x|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$. Let Ω be an unbounded domain in \mathbb{R}^{n}. The $(n+1)$-dimensional Euclidean domain $D:=\Omega \times(0, T)$ is our domain of interest; here $0<T \leq \infty$.

Consider the second order parabolic partial differential equation of the form

$$
\begin{equation*}
L u:=\sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x, t) \frac{\partial u}{\partial x_{i}}+c(x, t) u-\frac{\partial u}{\partial t}=0 \tag{1}
\end{equation*}
$$

1991 Mathematics Subject Classification: Primary 35B40; Secondary 35K40.
Key words and phrases: asymptotic behavior, second order partial differential equation, maximum principles.
in D. We consider only classical solutions of (1), thus we require $u(x, t) \in$ $C^{0}(\bar{D}) \cap C^{2}(D)$.

In 1962, Krzyżański [11] proved the existence of the fundamental solution of the following parabolic differential equation:

$$
L_{0} u:=\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}+\left(-k^{2}|x|^{2}+l\right) u-\frac{\partial u}{\partial t}=0, \quad k>0
$$

in $\mathbb{R}^{n} \times(0, \infty)$. Using this fundamental solution, we see that the solution $u(x, t)$ of the above equation with Cauchy data $u(x, 0)=M \exp \left(a|x|^{2}\right)$ is given by

$$
\begin{aligned}
u(x, t)= & M\left(\frac{k}{k \cosh 2 k t-2 a \sinh 2 k t}\right)^{n / 2} \\
& \times \exp \left[\frac{k(2 a \cosh 2 k t-k \sinh 2 k t)}{2(k \cosh 2 k t-2 a \sinh 2 k t)}|x|^{2}+l t\right]
\end{aligned}
$$

where $2 a<k$. Hence, if $l-k n<0$, then $u(x, t)$ converges to zero uniformly on every compact set in \mathbb{R}^{n} as $t \rightarrow \infty$. And, if $t>\frac{1}{4 k} \ln \frac{2 a+k}{k-2 a}$, then $u(x, t)$ converges to zero as $|x| \rightarrow \infty$.

Results on the asymptotic behavior as $t \rightarrow \infty$ of solutions $u(x, t)$ of more general parabolic equations and systems with unbounded coefficients have been obtained by various authors, for example, Chen [2]-[4], Kuroda [12], Kuroda and Chen [13], Kusano [14], [15] and Kusano, Kuroda and Chen [16], [17]. They considered the coefficients of (1) satisfying one of the following two conditions:
(I) There exist constants $K_{1}>0, K_{2} \geq 0, K_{3}>0, \mu>0$ and $\lambda>0$ such that

$$
0<\sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} \leq K_{1}\left[\log \left(|x|^{2}+1\right)+1\right]^{-\lambda}\left(|x|^{2}+1\right)^{1-\mu}|\xi|^{2}
$$

for all nonzero real vectors $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$, and

$$
\begin{aligned}
& \left|b_{i}(x, t)\right| \leq K_{2}\left(|x|^{2}+1\right)^{1 / 2}, \quad i=1, \ldots, n \\
& c(x, t) \leq K_{3}\left[\log \left(|x|^{2}+1\right)+1\right]^{\lambda}\left(|x|^{2}+1\right)^{\mu}
\end{aligned}
$$

(II) There exist constants $K_{1}>0, K_{2} \geq 0, K_{3}>0$, and $\lambda \geq 1$ such that

$$
\begin{gathered}
0<\sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} \leq K_{1}\left(|x|^{2}+1\right)^{1-\lambda}|\xi|^{2} \quad \text { for any nonzero } \xi \in \mathbb{R}^{n}, \\
\left|b_{i}(x, t)\right| \leq K_{2}\left(|x|^{2}+1\right)^{1 / 2}, \quad i=1, \ldots, n, \\
c(x, t) \leq-K_{3}\left(|x|^{2}+1\right)^{\lambda} .
\end{gathered}
$$

In 1980, Cosner [8] generalized the above results to the more general parabolic equations (1) whose coefficients satisfy the following condition.
(A) There exist positive constants μ, K_{1}, K_{2} and K_{3} such that

$$
\begin{gathered}
\sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} \leq K_{1} \phi\left(1+r^{2}\right)|\xi|^{2} \quad \text { for all } \xi \in \mathbb{R}^{n}, \\
\left|b_{i}(x, t)\right| \leq K_{2} \phi\left(1+r^{2}\right) \theta\left(1+r^{2}\right)\left(1+r^{2}\right)^{-1 / 2}, \quad i=1, \ldots, n, \\
c(x, t) \leq K_{3}\left[\theta\left(1+r^{2}\right)\right]^{\mu}
\end{gathered}
$$

for $(x, t) \in D$, where $r=|x|$ and $\theta(\eta), \phi(\eta)$ satisfy the following condition (H):
(H) $\quad \theta(\eta)$ is a C^{2} function on $[1, \infty)$ such that $d \theta(\eta) / d \eta=1 / \phi(\eta), \theta(\eta) \geq$ $1, \phi(\eta)$ is a C^{1} positive function of η, and there exist nonnegative constants m_{1} and m_{2} such that for $\eta \geq 1, \eta \phi^{\prime \prime}(\eta) \leq m_{1} \phi(\eta) \phi^{\prime}(\eta)$, and $\eta \phi^{\prime}(\eta) \leq m_{2}[\phi(\eta)]^{2-\mu}$.

He gave some sufficient conditions under which every solution $u(x, t)$ of (1) converges to zero uniformly on every compact set in \mathbb{R}^{n} as $t \rightarrow \infty$.

In 1974, Chen-Lin-Yeh [5] discussed the asympotic behavior of solutions for large $|x|$ of equation (1) whose coefficients satisfy (I) or (II). To our knowledge, there is no other paper discussing the asymptotic behavior for large $|x|$ of solutions of equation (1) whose coefficients satisfy assumption (A).

The purpose of this paper is to give sufficient conditions under which every solution of (1) must decay as $|x| \rightarrow \infty$ and to give sufficient conditions under which every solution of (1) must tend to infinity as $|x| \rightarrow \infty$. We also generalize the results to a system of the form

$$
\begin{equation*}
L^{\alpha}\left[u^{\alpha}\right]+\sum_{\beta=1}^{N} c^{\alpha \beta}(x, t) u^{\beta}=0, \quad \alpha=1, \ldots, N \tag{2}
\end{equation*}
$$

where

$$
L^{\alpha}[u] \equiv \sum_{i, j=1}^{n} a_{i j}^{\alpha}(x, t) u_{x_{i} x_{j}}+\sum_{i=1}^{n} b_{i}^{\alpha}(x, t) u_{x_{i}}-u_{t}
$$

A sufficient condition is also given under which every solution of

$$
L^{\alpha}\left[u^{\alpha}\right]+\sum_{\beta=1}^{N} c^{\alpha \beta}(x, t) u^{\beta}=f^{\alpha}(x, t)
$$

must decay as $t \rightarrow \infty$, where $\alpha=1, \ldots, N$.
The techniques used in the present article are primarily adapted from those used in Chen, Lin and Yeh [5] and Cosner [7], [8].
2. Main results. In order to prove our main results, we need the following maximum principle which is due to Cosner [7], [8].

Lemma 1 (Phragmén-Lindelöf principle). Let $u(x, t) \in C^{0}(\bar{D}) \cap C^{2}(D)$ satisfy the inequalities

$$
\left\{\begin{array}{l}
L[u] \geq 0 \text { in } D, \tag{3}\\
u \leq 0 \text { on } \Sigma:=(\bar{\Omega} \times\{0\}) \cup(\partial \Omega \times(0, T)) .
\end{array}\right.
$$

Suppose that the coefficients of L satisfy assumption (A) in D. If there is a constant $k \geq 1$ such that

$$
\begin{equation*}
\liminf _{r \rightarrow \infty}\left[\max _{\substack{(x, t) \in D \\|x|=r}} u(x, t)\right] \exp \left\{-k\left[\theta\left(1+r^{2}\right)\right]^{\mu}\right\} \leq 0 \tag{4}
\end{equation*}
$$

then $u(x, t) \leq 0$ in \bar{D}.
Remark 1. If (3) and (4) in Lemma 1 are replaced by

$$
\begin{cases}L[u] \leq 0 & \text { in } D, \\ u \geq 0 & \text { on } \Sigma,\end{cases}
$$

and

$$
\limsup _{r \rightarrow \infty}\left[\max _{\substack{(x, t) \in D \\|x|=r}} u(x, t)\right] \exp \left\{-k\left[\theta\left(1+r^{2}\right)\right]^{\mu}\right\} \geq 0
$$

respectively, then $u \geq 0$ in \bar{D}. Lemma 1 can be easily generalized to weakly coupled systems (2) (see Cosner [7]).

Theorem 1. Suppose that
$\left(\mathrm{C}_{1}\right) \quad u \in C^{0}(\bar{D}) \cap C^{2}(D)$ satisfies $L u=0$ in D,
$\left(\mathrm{C}_{2}\right) \quad$ the coefficients of L satisfy the following condition: There exist constants $k_{1} \geq 0, K_{1}>0, K_{2} \geq 0, K_{3} \geq 0$ and $0<\mu \leq 1$ such that

$$
\begin{gathered}
k_{1} \phi\left(1+r^{2}\right)|\xi|^{2} \leq \sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} \leq K_{1} \phi\left(1+r^{2}\right)|\xi|^{2} \quad \text { for } \xi \in \mathbb{R}^{n}, \\
\left|b_{i}(x, t)\right| \leq K_{2} \phi\left(1+r^{2}\right) \theta\left(1+r^{2}\right)\left(1+r^{2}\right)^{-1 / 2}, \quad i=1, \ldots, n \\
c(x, t) \leq K_{3}\left[\theta\left(1+r^{2}\right)\right]^{\mu}, \text { where } \theta(\eta) \text { and } \phi(\eta) \text { satisfy condition }(\mathrm{H}),
\end{gathered}
$$

$\left(\mathrm{C}_{3}\right) \quad$ for every $T>0$, there exists a constant $k(T) \geq 1$ such that

$$
\lim _{r \rightarrow \infty}\left[\max _{\substack{|x|=r \\ 0 \leq t \leq T}}|u|\right] \exp \left\{-k(T)\left[\theta\left(1+r^{2}\right)\right]^{\mu}\right\}=0 .
$$

Then:
(a) If $\theta^{\prime \prime}(\eta) \geq 0$ for $\eta \geq 1$ and

$$
\begin{equation*}
|u| \leq M \exp \left\{-k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\} \quad \text { on } \Sigma \tag{5}
\end{equation*}
$$

for some constant M, where
(6) $\tau=-\left[4 k^{2} K_{1} \mu^{2} m_{2}-4 k \mu(\mu-1) K_{1} m_{2}+2 k \mu K_{2} n+K_{3}\right] /(k \ln \varrho)$,
then
$\left(\mathrm{R}_{1}\right)$

$$
|u| \leq M \exp \left\{-k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\} \quad \text { in } \bar{D} .
$$

(b) If there exists a constant $m_{3} \geq 0$ such that $\eta \theta^{\prime \prime}(\eta) \geq-m_{3} \theta^{\prime}(\eta)$ for $\eta \geq 1$ and $|u| \leq M \exp \left\{-k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\}$ on Σ for some constant M, where
$\tau=-\left[4 k^{2} K_{1} \mu^{2} m_{2}-4 k \mu(\mu-1) K_{1} m_{2}+4 k \mu m_{3} K_{1}+2 k \mu K_{2} n+K_{3}\right] /(k \ln \varrho)$, then $\left(\mathrm{R}_{1}\right)$ also holds.

Moreover, if, in addition, $\Omega=\mathbb{R}^{n}$ and $\theta(\eta) \rightarrow \infty$ as $\eta \rightarrow \infty$, then the solution u of (1) decays exponentially to zero as $|x| \rightarrow \infty$.

Proof. (a) Let $\omega(x, t)=M \exp \left\{-k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\}$, where $\varrho>1$ is a parameter and $\tau=\tau(\varrho)$ is defined in (6). Thus

$$
\begin{aligned}
L[\omega] \equiv & \sum_{i, j=1}^{n} a_{i j} \omega_{x_{i} x_{j}}+\sum_{i=1}^{n} b_{i} \omega_{x_{i}}+c \omega-\omega_{t} \\
= & \left\{4 k^{2} \mu^{2} \theta^{2 \mu-2}\left(\theta^{\prime}\right)^{2} \varrho^{2 \tau t} \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}\right. \\
& -4 k \mu(\mu-1) \theta^{\mu-2}\left(\theta^{\prime}\right)^{2} \varrho^{\tau t} \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \\
& -4 k \mu \theta^{\mu-1} \theta^{\prime \prime} \varrho^{\tau t} \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}-2 k \mu \theta^{\mu-1} \theta^{\prime} \varrho^{\tau t} \sum_{i=1}^{n} a_{i i} \\
& \left.-2 k \mu \theta^{\mu-1} \theta^{\prime} \varrho^{\tau t} \sum_{i=1}^{n} b_{i} x_{i}+c+k \theta^{\mu} \tau \varrho^{\tau t} \ln \varrho\right\} \omega .
\end{aligned}
$$

By $\left(\mathrm{C}_{1}\right),\left(\mathrm{C}_{2}\right),\left(\mathrm{C}_{3}\right)$ and $\theta^{\prime \prime}(\eta)>0$ for $\eta \geq 1$, we obtain

$$
\begin{aligned}
L[\omega] \leq & \left\{4 k^{2} K_{1} \mu^{2} m_{2} \varrho^{2 \tau t} \theta^{\mu}-4 k \mu(\mu-1) K_{1} m_{2} \varrho^{\tau t}\right. \\
& \left.+2 k \mu K_{2} \theta^{\mu} \varrho^{\tau t} n+K_{3} \theta^{\mu}+k \theta^{\mu} \tau \varrho^{\tau t} \ln \varrho\right\} \omega \\
\leq & \left\{4 k^{2} K_{1} \mu^{2} m_{2}-4 k \mu(\mu-1) K_{1} m_{2}\right. \\
& \left.+2 k \mu K_{2} n+K_{3}+k \tau \ln \varrho\right\} \theta^{\mu} \varrho^{2 \tau t} \omega .
\end{aligned}
$$

By (6), we have $L[\omega] \leq 0$ in D, and hence $L[u-\omega]=L[u]-L[\omega]=-L[\omega] \geq 0$ in D. It follows from (5) that $u-\omega \leq 0$ on Σ. Thus, by the PhragménLindelöf principle, we see that $u-\omega \leq 0$ in $\Omega \times(0, T)$ for every fixed T. Hence, $u-\omega \leq 0$ in D and thus, by continuity, in \bar{D}. We can apply Remark 1
to $u+\omega$ in a similar way and conclude that $u+\omega \geq 0$ in \bar{D}. Thus $|u| \leq \omega$ in \bar{D}, that is, $\left(\mathrm{R}_{1}\right)$ holds.
(b) For the same ω and $L[\omega]$ computed as before, we now obtain the estimate

$$
\begin{aligned}
L[\omega] \leq & \left\{4 k^{2} K_{1} \mu^{2} m_{2} \varrho^{2 \tau t} \theta^{\mu}-4 k \mu(\mu-1) K_{1} m_{2} \varrho^{\tau t}+4 k \mu \theta^{\mu-1} m_{3} K_{1} \varrho^{\tau t}\right. \\
& \left.+2 k \mu K_{2} \theta^{\mu} \varrho^{\tau t} n+K_{3} \theta^{\mu}+k \theta^{\mu} \tau \varrho^{\tau t} \ln \varrho\right\} \omega \\
\leq & \left\{4 k^{2} K_{1} \mu^{2} m_{2}-4 k \mu(\mu-1) K_{1} m_{2}\right. \\
& \left.+4 k \mu m_{3} K_{1}+2 k \mu K_{2} n+K_{3}+k \tau \ln \varrho\right\} \theta^{\mu} \varrho^{2 \tau t} \omega .
\end{aligned}
$$

Thus $L[\omega] \leq 0$ in D, and we conclude as before that $\left(\mathrm{R}_{1}\right)$ holds.
Theorem 2. Let $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{3}\right)$ hold. Suppose that the coefficients of L satisfy the following condition:
$\left(\mathrm{C}_{4}\right) \quad$ there exist constants $K_{1}>0, K_{2} \geq 0, k_{3}>0, K_{3} \geq 0$ and $0<\mu \leq 1$ such that for all $(x, t) \in D$,

$$
\begin{aligned}
0 \leq & \sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} \leq K_{1} \phi\left(1+r^{2}\right)|\xi|^{2} \quad \text { for } \xi \in \mathbb{R}^{n} \\
\left|b_{i}(x, t)\right| & \leq K_{2} \phi\left(1+r^{2}\right) \theta\left(1+r^{2}\right)\left(1+r^{2}\right)^{-1 / 2}, \quad i=1, \ldots, n \\
& -k_{3}\left[\theta\left(1+r^{2}\right)\right]^{\mu} \leq c(x, t) \leq K_{3}\left[\theta\left(1+r^{2}\right)\right]^{\mu}
\end{aligned}
$$

where $\theta(\eta)$ and $\phi(\eta)$ satisfy condition (H).
Then:
(a) If $\theta^{\prime \prime}(\eta) \geq 0$ for $\eta \geq 1$ and

$$
\begin{equation*}
|u| \geq M \exp \left\{k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\} \quad \text { on } \Sigma \tag{7}
\end{equation*}
$$

for some constant M, where

$$
\begin{equation*}
\tau=\left[4 k K_{1} m_{2} \mu(\mu-1)-2 k K_{2} \mu n-k_{3}\right] /(k \ln \varrho) \tag{8}
\end{equation*}
$$

then
$\left(\mathrm{R}_{2}\right)$

$$
|u| \geq M \exp \left\{k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\} \quad \text { in } \bar{D}
$$

(b) If there exists a constant $m_{3} \geq 0$ such that $\eta \theta^{\prime \prime}(\eta) \geq-m_{3} \theta^{\prime}(\eta)$ for $\eta \geq 1$ and $|u| \geq M \exp \left\{k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\}$ on Σ for some constant M, where $\tau=\left(4 k K_{1} m_{2} \mu(\mu-1)-4 k K_{1} \mu m_{3}-2 k K_{2} \mu n-k_{3}\right) /(k \ln \varrho)$, then $\left(R_{2}\right)$ holds.

Moreover, if, in addition, $\Omega=\mathbb{R}^{n}$ and $\theta(\eta) \rightarrow \infty$ as $\eta \rightarrow \infty$, then the solution $u(x, t)$ of (1) tends to infinity as $|x| \rightarrow \infty$.

Proof. (a) Let $\omega=M \exp \left\{k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\}$, where $\varrho>1$ is a parameter and $\tau=\tau(\varrho)$ is defined in (8). Then

$$
\begin{aligned}
L[\omega]= & \left\{4 k^{2} \mu^{2} \theta^{2 \mu-2}\left(\theta^{\prime}\right)^{2} \varrho^{2 \tau t} \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}\right. \\
& +4 k \mu(\mu-1) \theta^{\mu-2}\left(\theta^{\prime}\right)^{2} \varrho^{\tau t} \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \\
& +4 k \mu \theta^{\mu-1} \theta^{\prime \prime} \varrho^{\tau t} \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}+2 k \mu \theta^{\mu-1} \theta^{\prime} \varrho^{\tau t} \sum_{i=1}^{n} a_{i i} \\
& \left.+2 k \mu \theta^{\mu-1} \theta^{\prime} \varrho^{\tau t} \sum_{i=1}^{n} b_{i} x_{i}+c-k \theta^{\mu} \tau \varrho^{\tau t} \ln \varrho\right\} \omega \\
\geq & \left\{4 k K_{1} m_{2} \mu(\mu-1) \varrho^{\tau t}-2 k K_{2} \mu \theta^{\mu} \varrho^{\tau t} n-k_{3} \theta^{\mu}-k \theta^{\mu} \tau \varrho^{\tau t} \ln \varrho\right\} \omega \\
\geq & \left\{4 k K_{1} m_{2} \mu(\mu-1)-2 k K_{2} \mu n-k_{3}-k \tau \ln \varrho\right\} \theta^{\mu} \varrho^{\tau t} \omega .
\end{aligned}
$$

It follows from (8) that $L[\omega] \geq 0$ in D. By (7), we have

$$
|u| \geq M \exp \left\{k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\}=\omega \quad \text { on } \Sigma
$$

Case 1. If $u \geq 0$, then $u-\omega \geq 0$ on Σ and $L[u-\omega]=L[u]-$ $L[\omega]=-L[\omega] \leq 0$ in D. Thus, by the Phragmén-Lindelöf principle, we have $u-\omega \geq 0$ in $\Omega \times(0, T)$ for each fixed $T>0$. Hence, $u-\omega \geq 0$ in D and, by continuity, $u \geq \omega$ in \bar{D}.

Case 2. If $u \leq 0$, then $u+\omega \leq 0$ on Σ and $L[u+\omega] \geq 0$ in D. Thus, by the Phragmén-Lindelöf principle, we have $u+\omega \leq 0$ in $\Omega \times(0, T)$ for each fixed $T>0$. Hence, $u+\omega \leq 0$ in D and, by continuity, in \bar{D}. Thus, $|u| \geq \omega$ in \bar{D}, that is, $\left(\mathrm{R}_{2}\right)$ holds.
(b) For the same ω and $L[\omega]$ computed as before, we now obtain the estimate

$$
\begin{aligned}
L[\omega] \geq & \left\{4 k K_{1} m_{2} \mu(\mu-1) \varrho^{\tau t}-4 k K_{1} \mu \theta^{\mu-1} \varrho^{\tau t} m_{3}\right. \\
& \left.-2 k K_{2} \mu \theta^{\mu} \varrho^{\tau t} n-k_{3} \theta^{\mu}-k \theta^{\mu} \tau \varrho^{\tau t} \ln \varrho\right\} \omega \\
\geq & \left\{4 k K_{1} m_{2} \mu(\mu-1)-4 k K_{1} \mu m_{3}-2 k K_{2} \mu n-k_{3}-k \tau \ln \varrho\right\} \varrho^{\tau t} \theta^{\mu} \omega .
\end{aligned}
$$

Thus $L[\omega] \geq 0$ in D. As in the proof of case (a), we easily see that $\left(\mathrm{R}_{2}\right)$ holds.

Similarly, we can obtain the following results:
Theorem 3. Let $\left(\mathrm{C}_{1}\right)$, $\left(\mathrm{C}_{2}\right)$ and $\left(\mathrm{C}_{3}\right)$ hold with $\mu \geq 1$. Then:
(a) If $\theta^{\prime \prime}(\eta) \geq 0$ for $\eta \geq 1$ and $|u| \leq M \exp \left\{-k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\}$ on Σ for some constant M, where $\tau=-\left[4 k^{2} K_{1} \mu^{2} m_{2}+2 k \mu K_{2} n+K_{3}\right] /(k \ln \varrho)$, then $\left(\mathrm{R}_{3}\right)$

$$
|u| \leq M \exp \left\{-k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\} \quad \text { in } \bar{D} .
$$

(b) If there exists a constant $m_{3} \geq 0$ such that $\eta \theta^{\prime \prime}(\eta) \geq-m_{3} \theta^{\prime}(\eta)$ for $\eta \geq 1$ and $|u| \leq M \exp \left\{-k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\}$ on Σ for some constant M,
where $\tau=-\left[4 k^{2} K_{1} \mu^{2} m_{2}+4 k \mu m_{3} K_{1}+2 k \mu K_{2} n+K_{3}\right] /(k \ln \varrho)$, then $\left(\mathrm{R}_{3}\right)$ also holds.

Moreover, if, in addition, $\Omega=\mathbb{R}^{n}$ and $\theta(\eta) \rightarrow \infty$ as $\eta \rightarrow \infty$, then the solution $u(x, t)$ decays exponentially to zero as $|x| \rightarrow \infty$.

Theorem 4. Let $\left(\mathrm{C}_{1}\right)$, $\left(\mathrm{C}_{3}\right)$ and $\left(\mathrm{C}_{4}\right)$ hold with $\mu \geq 1$. Then:
(a) If $\theta^{\prime \prime}(\eta) \geq 0$ for $\eta \geq 1$ and $|u| \geq M \exp \left\{k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\}$ on Σ for some constant M, where $\tau=\left(-2 k K_{2} \mu n-k_{3}\right) /(k \ln \varrho)$, then

$$
\begin{equation*}
|u| \geq M \exp \left\{k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\} \quad \text { in } \bar{D} \tag{4}
\end{equation*}
$$

(b) If there exists a constant $m_{3} \geq 0$ such that $\eta \theta^{\prime \prime}(\eta) \geq-m_{3} \theta^{\prime}(\eta)$ for $\eta \geq 1$ and $|u| \geq M \exp \left\{k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\overline{\tau t}}\right\}$ on Σ for some constant M, where $\tau=\tau(\varrho)=\left(-4 k K_{1} \mu m_{3}-2 k K_{2} \mu n-k_{3}\right) /(k \ln \varrho)$, then $\left(\mathrm{R}_{4}\right)$ holds.

Moreover, if, in addition, $\Omega=\mathbb{R}^{n}$ and $\theta(\eta) \rightarrow \infty$ as $\eta \rightarrow \infty$, then the solution $u(x, t)$ of (1) tends to infinity as $|x| \rightarrow \infty$.
3. Further results. In this section, we generalize the results of Section 2 to weakly coupled systems of the form

$$
L^{\alpha}\left[u^{\alpha}\right]+\sum_{\beta=1}^{N} c^{\alpha \beta} u^{\beta}=0, \quad \alpha=1, \ldots, N
$$

where

$$
L^{\alpha}[u] \equiv \sum_{i, j=1}^{n} a_{i j}^{\alpha} u_{x_{i} x_{j}}+\sum_{i=1}^{n} b_{i}^{\alpha} u_{x_{i}}-u_{t}
$$

Theorem 5. Suppose that
$\left(\mathrm{C}_{5}\right) \quad$ the functions $u^{\alpha}, \alpha=1, \ldots, N$, satisfy

$$
L^{\alpha}\left[u^{\alpha}\right]+\sum_{\beta=1}^{N} c^{\alpha \beta} u^{\beta}=0 \quad \text { in } D
$$

and $u^{\alpha} \in C^{0}(\bar{D}) \cap C^{2}(D)$ for each $\alpha=1, \ldots, N$,
$\left(\mathrm{C}_{6}\right)$ for $\alpha, \beta=1, \ldots, N$, the operators L^{α} and the functions $c^{\alpha \beta}$ satisfy the following conditions: There exist constants $k_{1} \geq 0, K_{1}>0$, $K_{2}>0, K_{3}>0$ and $0<\mu \leq 1$ such that for $\alpha=1, \ldots, N$ and $(x, t) \in D$,

$$
\begin{gathered}
k_{1} \phi\left(1+r^{2}\right)|\xi|^{2} \leq \sum_{i, j=1}^{n} a_{i j}^{\alpha}(x, t) \xi_{i} \xi_{j} \leq K_{1} \phi\left(1+r^{2}\right)|\xi|^{2}, \\
\left|b_{i}^{\alpha}(x, t)\right| \leq K_{2} \phi\left(1+r^{2}\right) \theta\left(1+r^{2}\right)\left(1+r^{2}\right)^{-1 / 2}, \quad i=1, \ldots, n
\end{gathered}
$$

$$
\sum_{\beta=1}^{N} c^{\alpha \beta}(x, t) \leq K_{3}\left[\theta\left(1+r^{2}\right)\right]^{\mu}
$$

where $\theta(\eta)$ and $\phi(\eta)$ satisfy condition (H),
$\left(\mathrm{C}_{7}\right)$ for each $\alpha=1, \ldots, N$ and for every $T>0$, there exists a constant $k(T) \geq 1$ such that

$$
\lim _{r \rightarrow \infty}\left[\max _{\substack{x|=r\\| t \mid<T}}\left|u^{\alpha}\right|\right] \exp \left\{-k(T)\left[\theta\left(1+r^{2}\right)\right]^{\mu}\right\}=0
$$

Then:
(a) If $\theta^{\prime \prime}(\eta) \geq 0$ for $\eta>1$, and $\left|u^{\alpha}\right| \leq M \exp \left\{-k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\}$ on Σ for some constant M and $\alpha=1, \ldots, N$, where $\tau=-\left[4 k^{2} K_{1} \mu^{2} m_{2}-\right.$ $\left.4 k \mu(\mu-1) K_{1} m_{2}+2 k \mu K_{2} n+K_{3}\right] /(k \ln \varrho)$, then
$\left(\mathrm{R}_{5}\right) \quad\left|u^{\alpha}\right| \leq M \exp \left\{-k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\} \quad$ in \bar{D} for $\alpha=1, \ldots, N$.
(b) If there exists a constant $m_{3} \geq 0$ such that $\eta \theta^{\prime \prime}(\eta) \geq-m_{3} \theta^{\prime}(\eta)$ for $\eta \geq 1$ and $\left|u^{\alpha}\right| \leq M \exp \left\{-k\left[\theta\left(1+r^{2}\right)\right]^{\mu} \varrho^{\tau t}\right\}$ on Σ for some constant M and for $\alpha=1, \ldots, N$, where $\tau=-\left[4 k^{2} K_{1} \mu^{2} m_{2}-4 k \mu(\mu-1) K_{1} m_{2}+4 k \mu m_{3} K_{1}+\right.$ $\left.2 k \mu K_{2} n+K_{3}\right] /(k \ln \varrho)$, then $\left(\mathrm{R}_{5}\right)$ also holds.

Moreover, if, in addition, $\Omega=\mathbb{R}^{n}$ and $\theta(\eta) \rightarrow \infty$ as $\eta \rightarrow \infty$, then the solution $u^{\alpha}(x, t)$ of (2) decays exponentially to zero as $|x| \rightarrow \infty$, for $\alpha=1, \ldots, N$.

Remark 6. Similarly, if the functions $u^{\alpha}, c^{\alpha \beta}$ and the coefficients of the operator $L^{\alpha}(\alpha, \beta=1, \ldots, N)$ satisfy the hypotheses of Theorems $2-4$, then results of the above-mentioned theorems are true with respect to u^{α}, $\alpha=1, \ldots, N$.
4. Exponential decay of solutions as $t \rightarrow \infty$. In [1], Chabrowski discussed the decay as $t \rightarrow \infty$ of solutions of a single parabolic equation

$$
L u=f(x, t)
$$

with bounded coefficients in $\mathbb{R}^{n} \times[0, \infty)$. In this section, we extend Chabrowski's result to the system

$$
\begin{equation*}
L^{\alpha}\left[u^{\alpha}\right]=f^{\alpha}(x, t), \quad \alpha=1, \ldots, N \tag{9}
\end{equation*}
$$

with unbounded coefficients. Here L and L^{α} are defined as in (1) and (2) respectively. To do this, we need the following maximum principle which is an easy extension of the maximum principle stated in Kusano-KurodaChen [16].

Lemma 7. Suppose that the coefficients of (9) in $\mathbb{R}^{n} \times[0, \infty)$ satisfy
$\left(\mathrm{C}_{8}\right)\left\{\begin{array}{l}0 \leq \sum_{i, j=1}^{n} a_{i j}^{\alpha}(x, t) \xi_{i} \xi_{j} \leq K_{1} \phi\left(1+|x|^{2}\right)|\xi|^{2} \quad \text { for all } \xi \in \mathbb{R}^{n}, \\ \left|b_{i}^{\alpha}(x, t)\right| \leq K_{2} \phi\left(1+|x|^{2}\right) \theta\left(1+|x|^{2}\right)\left(1+|x|^{2}\right)^{-1 / 2}, \quad i=1, \ldots, n, \\ c^{\alpha \beta}(x, t) \geq 0, \alpha \neq \beta, \sum_{\beta=1}^{n} c^{\alpha \beta}(x, t) \leq K_{3}\left[\theta\left(1+|x|^{2}\right)\right]^{\mu},\end{array}\right.$
for $\alpha=1, \ldots, N$, where $K_{1}>0, K_{2} \geq 0, K_{3}>0$ and $\mu>0$ are constants, and $\theta(\eta)$ and $\phi(\eta)$ satisfy condition (H). Let $u^{\alpha}(x, t), \alpha=1, \ldots, N$, satisfy

$$
L^{\alpha}\left[u^{\alpha}\right]+\sum_{\beta=1}^{N} c^{\alpha \beta}(x, t) u^{\beta} \geq 0, \quad \alpha=1, \ldots, N
$$

in $\mathbb{R}^{n} \times[0, \infty)$ with the properties $u^{\alpha}(x, 0) \leq 0$ for $x \in \mathbb{R}^{n}$, and $u^{\alpha}(x, t) \leq$ $M \exp \left\{k \theta\left(1+|x|^{2}\right)^{\mu}\right\}$ for $(x, t) \in \mathbb{R}^{n} \times(0, \infty)$, where $\alpha=1, \ldots, N$, and M and k are some positive constants. Then $u^{\alpha}(x, t) \leq 0$ in $\mathbb{R}^{n} \times(0, \infty)$ for $\alpha=1, \ldots, N$.

ThEOREM 8. Let the coefficients of (9) satisfy condition $\left(\mathrm{C}_{8}\right)$ and $\sum_{\beta=1}^{N} c^{\alpha \beta}(x, t) \leq-K_{3}$ for $\alpha=1, \ldots, N$. Suppose $u^{\alpha}(x, t), \alpha=1, \ldots, N$, are bounded solutions of (9). If $\lim _{t \rightarrow \infty} f^{\alpha}(x, t)=0, \alpha=1, \ldots, N$, uniformly with respect to $x \in \mathbb{R}^{n}$, then $\lim _{t \rightarrow \infty} u^{\alpha}(x, t)=0, \alpha=1, \ldots, N$, uniformly with respect to $x \in \mathbb{R}^{n}$.

Proof. Let $\varepsilon>0$. Then there exists a $\delta>0$ such that

$$
\left|f^{\alpha}(x, t)\right| \leq \varepsilon, \quad \alpha=1, \ldots, N
$$

for $x \in \mathbb{R}^{n}$ and $t \geq \delta$. Put

$$
M^{\alpha}=\sup _{(x, t) \in \mathbb{R}^{n} \times[0, \infty)}\left|u^{\alpha}(x, t)\right|, \quad \alpha=1, \ldots, N .
$$

Define

$$
\omega_{ \pm}^{\alpha}(x, t)=-2 \frac{\varepsilon}{K_{3}}-M^{\alpha} e^{-h(t-\delta)} \pm u^{\alpha}(x, t), \quad \alpha=1, \ldots, N
$$

where h is a positive constant such that $0<h<K_{3}$. Hence

$$
\begin{aligned}
L^{\alpha}\left[\omega_{ \pm}^{\alpha}\right]+\sum_{\beta=1}^{N} c^{\alpha \beta}(x, t) u^{\beta}= & -\frac{2 \varepsilon}{K_{3}} \sum_{\beta=1}^{N} c^{\alpha \beta}(x, t)-M^{\alpha} e^{-h(t-\delta)} \sum_{\beta=1}^{N} c^{\alpha \beta}(x, t) \\
& -h M^{\alpha} e^{-h(t-\delta)} \pm f^{\alpha}(x, t) \\
\geq & \varepsilon+M^{\alpha} e^{-h(t-\delta)}\left(K_{3}-h\right)>0, \quad \alpha=1, \ldots, N
\end{aligned}
$$

for $x \in \mathbb{R}^{n}$ and $t>\delta$. Moreover,

$$
\omega_{ \pm}^{\alpha}(x, \delta)=-2 \frac{\varepsilon}{K_{3}}-M^{\alpha}+u^{\alpha}(x, \delta)<0, \quad \alpha=1, \ldots, N
$$

for $x \in \mathbb{R}^{n}$. From Lemma 7 , we see that $\omega_{ \pm}^{\alpha}(x, t) \leq 0, \alpha=1, \ldots, N$, for $x \in \mathbb{R}^{n}$ and $t>\delta$. Hence

$$
-2 \frac{\varepsilon}{K_{3}}-M^{\alpha} e^{-h(t-\delta)} \leq u^{\alpha}(x, t) \leq 2 \frac{\varepsilon}{K_{3}}+M^{\alpha} e^{-h(t-\delta)}
$$

for $x \in \mathbb{R}^{n}, t>\delta$ and $\alpha=1, \ldots, N$. Therefore

$$
-2 \frac{2 \varepsilon}{K_{3}} \leq \lim _{t \rightarrow \infty} \inf u^{\alpha}(x, t) \leq \lim _{t \rightarrow \infty} \sup u^{\alpha}(x, t) \leq \frac{2 \varepsilon}{K_{3}},
$$

which proves our theorem.

References

[1] P. J. Chabrowski, Propriétés asymptotiques d'une mesure associée à l'équation différentielle aux dérivées partielles de type parabolique, Funkc. Ekvac. 13 (1970), 35-43.
[2] L. S. Chen, On the behavior of solutions for large $|x|$ of parabolic equations with unbounded coefficients, Tôhoku Math. J. 20 (1968), 589-595.
[3] -, Note on the behavior of solutions of parabolic equations with unbounded coefficients, Nagoya Math. J. 37 (1970), 1-4.
[4] -, Remark on behavior of solutions of some parabolic equations, Tôhoku Math. J. 22 (1970), 511-516.
[5] L. S. Chen, J. S. Lin and C. C. Yeh, Asymptotic behavior of solutions for large $|x|$ of weakly coupled parabolic systems with unbounded coefficients, Hiroshima Math. J. 4 (1974), 477-490.
[6] L. S. Chen, C. C. Yeh and H. Y. Chen, On the behavior of solutions of the Cauchy problem for parabolic equations with unbounded coefficients, Hiroshima Math. J. 1 (1971), 145-153.
[7] C. Cosner, A Phragmén-Lindelöf principle and asymptotic behavior for weakly coupled systems of parabolic equations with unbounded coefficients, Dissertation, University of California, Berkeley, 1977.
[8] -, Asymptotic behavior of solutions of second order parabolic partial differentical equations with unbounded coefficients, J. Differential Equations 35 (1980), 407-428.
[9] S. D. Èı̆del'man and F. O. Porper, Properties of solutions of second-order parabolic equations with dissipation, Differential Equations 7 (1971), 1280-1288.
[10] —, 一, On the asymptotic behavior of solutions of parabolic systems with dissipation, Soviet Math. Dokl. 12 (1971), 471-475.
[11] M. Krzyżański, Evaluations des solutions de l'équation linéaire de type parabolique à coefficients non bornés, Ann. Polon. Math. 11 (1962), 253-260.
[12] T. Kuroda, Asymptotic behavior of solutions of parabolic equations with unbounded coefficients, Nagoya Math. J. 37 (1970), 5-12.
[13] T. Kuroda and L. S. Chen, On the behavior of solutions of parabolic equations with unbounded coefficients, Ann. Polon. Math. 23 (1970), 57-64.
[14] T. Kusano, On the decay for large $|x|$ of solutions of parabolic equations with unbounded coefficients, Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A 3 (1967), 203-210.
[15] -, On the behavior of large $|x|$ for solutions of parabolic equations with unbounded coefficients, Funkc. Ekvac. 11 (1968), 169-174.
[16] T. Kusano, T. Kuroda and L. S. Chen, Weakly coupled parabolic systems with unbounded coefficients, Hiroshima Math. J. 3 (1973), 1-14.
[17] —, -, —, Some parabolic equations with unbounded coefficients, Funkc. Ekvac. 16 (1973), 1-28.
[18] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, N.J., 1967.

Department of Mathematics
National Central University
Chung-Li
32054 Taiwan, Republic of China
E-mail: yeh@wangwei.math.ncu.edu.tw

