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Plurisubharmonic saddles

by SIEGFRIED MoMM (Diisseldorf)

Abstract. A certain linear growth of the pluricomplex Green function of a bounded
convex domain of CV at a given boundary point is related to the existence of a certain
plurisubharmonic function called a “plurisubharmonic saddle”. In view of classical results
on the existence of angular derivatives of conformal mappings, for the case of a single
complex variable, this allows us to deduce a criterion for the existence of subharmonic
saddles.

Introduction. If ¢ : [-4,0] — [0,00[ (§ > 0) is a convex function
with ¢(0) = 0, a subharmonic saddle for ¢ is a subharmonic function u
on {z € C: |z| <4} (0 < <9) with u(z) < p(Imz) for all |z| < ¢,
u(0) = 0, and u(z) < 0 for all x € [—0’,6’]\{0}. In complex analysis the
existence of subharmonic saddles for ¢(y) = |y|, y € R, like the harmonic
function u(z) = — Re 22, is sometimes applied as a technical tool. There
are harmonic saddles also for ¢(y) = |y|¢ (d > 1). Of course, there is no
subharmonic saddle for ¢ = 0. We prove

THEOREM. Let ¢ : [—6,0] — [0,00] be convex with ¢(0) = 0 and with
o(y) = o(—y), ly] <. A subharmonic saddle for ¢ exists if and only if
5
f log ¢(t) dt > —oo.
0
This result will be deduced from a theorem of Warschawski and Tsuji on
the existence of angular derivatives of conformal mappings. The key of this
reduction is an observation which we prove for several complex variables:
Let ¢ be a nonnegative convex function defined on a zero neighborhood in
CN=1 xR, with ¢(z) = 0 if and only if z = 0, and with lim, .o ¢(2)/|z| = 0.
If p(2) = ¢(—=2) for all z, a plurisubharmonic saddle for ¢ exists if and only
if the pluricomplex Green function of every bounded convex domain {2 of
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C¥ has a certain linear growth at each point of the boundary of (2 at which
0{2 can be represented as the graph of the Legendre conjugate function ¢*
over the supporting hyperplane of 92 (Proposition 11). This is a type of
local version of a result of [6], for which the results of Kiselman [1], Lempert
[4], and Zakharyuta [10] have been applied. In the course of the proof, for
every bounded convex domain {2 C C, we prove that two cones Ry Py and
R Pj; in C coincide, where the first is related to the boundary behavior of
the complex Green function of {2 and the second is related to the complex
Green function of C\ {2 (Proposition 6). The several-variable analogue of this
identity does not hold. For convex polyhedra, in general, Ry Py C Ry Pj;.
We give an example of a convex polyhedron in C? for which this inclusion
is in fact strict (Example 8).

NOTATIONS. For z,w € CV, we write (z,w) := Zf\il z;w; and |z| :=
(z,2)'/2. We put Br(a) :={z € CN : |z —a| < R} for R >0 and a € CV,
S:={2eCV:]z|=1},D:={2€C:|z| <1}, Ry :=={z € R:z > 0}.
For each set FF C CN we write R, F := {ta:t >0, a € F}. Throughout
this paper, we identify CY and CN—! with R?Y and R?N~2, respectively.
We refer to Schneider [8] for notions from convex analysis.

1. DEFINITION. For § > 0 let ¢ : (CV~! x R) N Bs(0) — Ry be a
convex function with ¢(0) = 0. A plurisubharmonic function u on By (0)
(0 < 0" <) is called a plurisubharmonic saddle for ¢ if

(i) u(0) = 0,
(i) u(0,zn) < 0 for all xy € [—d,8']\{0},
(iii) u(2’, z2n) < (', Imzy) for all (2/,zy) € (CVN~1 x C) N Bs:(0).

2. Remark. (a) Let Cq,Cy > 0. There is a plurisubharmonic saddle
for ¢ if and only if there is a plurisubharmonic saddle for Cy¢(-/Cs).

(b) If ¢ > 0 outside the origin and if ¢ admits a plurisubharmonic
saddle u then we may assume that u < ¢ outside the origin (otherwise
consider u/2).

3. ExaMPLE. Let N = 1. For each d > 1 there is a (sub)harmonic
saddle u : B1(0) — R for ¢(y) = |y|¢. Just choose an even integer [ > d,
a sufficiently small ¢ > 0 and put u(z) := —eRez! = —erl cos(18) for all
z =re'? € By(0).

4. DEFINITION. Let {2 be a bounded convex domain of CV with 0 € (2.
By H : CV — R, we denote its support function, i.e.

H(z) := sup Re(z,w), =z C".
wes?

(a) Let vy : CV — R, be the largest plurisubharmonic function on C¥
with vy < H and for which v (2) —log || remains bounded if z € CV tends
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to infinity (for the existence see [6]). Since H is positively homogeneous,
there is a lower semicontinuous function Cy : S — |0, 00| such that

Py :={2cCV :vg(z)=H()}={)a:ac 8, 0<\<1/Cyla)}.

(b) Let v} : CN — R, be the largest plurisubharmonic function on C¥
with v, < H and for which v};(z) —log |z| remains bounded if z € CV tends
to zero (for the existence see [7]). Since H is positively homogeneous, there
is an upper semicontinuous function C}; : S — [0, oo such that

Ph={zcCV:vi(z)=H(2)} ={ a:ac S, 1/Cx(a) < \}.
If N=1,and ¢ : D — 2 and ¢ : C\D — C\{2 are biholomorphic map-

pings, then the numbers C'y(a) and C};(a) are closely related to the angular
derivatives of ¢ and ¢, respectively (see [5]-[7]).

NoTATION. If {2 is a bounded convex domain with 0 € {2, we consider
its polar set

2° = {w € CV :Re(z,w) < 1 for all z € 2}.

(2° is a compact convex set with 0 in its interior. Since we deal with polar
sets, we use the following normalization of {2:

5. PROPOSITION. Let (2 be a bounded convexr domain in {z € CN :
Rezy < 1}, such that 0 € 2 and (0,1) := (0,...,0,1) € 9f2. There are
e > 0 and a continuous convex function h : (CN=1 x R) N B.(0) — R, with
h(0) = 0 and such that

(1) 902N B.(0,1) = {(2,1—h(Z,t)+it)| (z,t) € (CVN~! x R) U B.(0)}.

The polar set §2° is contained in {w € CV : Rewy < 1} and (0,1) € 992°.
There are § > 0, and a continuous convex function ¢ : (CN =1 xR)NBs(0) —
Ry with ¢(0) =0, such that

(2)  902°NBs(0,1) = {(w',1—p(w', ) +is)| (W', s) € (CN~Lx R)NB5(0)}.

If ©>0 outside the origin, i.e. lim(./ 4o h(2',t)/|(#',t)| = 0 (see Schneider
[8], Lemma 2.2.3), and if in addition p(w’,s) = o(—w', —s), or, what is the
same, h(z',t) = h(—2',—t), then the following assertions are equivalent:

(i) There is a plurisubharmonic saddle for ¢.
(ii) CH(O, 1) < Q.
(iii) C3(0,1) > 0.

Proof. Choose 0 < ¢,0 < 1 with B.(0) C 2 C By/5(0). Then B;(0)
C 2°. By the convexity of {2 and 2°, 92N B.(0,1) is a graph over {(z/,
1+4it) : (2/,t) € (CN=! x R) N B.(0)}, and 902° N Bs(0,1) is a graph over
{(w';141s) : (w',s) € (CVN=1 x R) N Bs(0)}. Thus h and ¢ exist.

We may assume that ¢ and J are chosen so small that A and ¢ are
bounded from above by 1/2 on B.(0) and Bs(0), respectively.
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Since 2° = {w € CN : H(w) < 1}, it follows that
I''={Xz2:X>0, z€00° x{1}}
is the graph of H. Let G := I' N E be its intersection with the hyperplane
E := CV~1 x (1 +4R) x R. Then there is a convex function 1 : (CN¥~! x
R) N Bs(0) — Ry with ¢(0) = 0 and
G N Bs((0,1),1) = {(2/, 1 +1is,1 + (2, 5))| (2, 5) € (CV~1 x R) N Bs(0)}.
Let (2/,5) € (CN=1 xR)NBs(0). The ray from the origin of CV x R through
the point (2/,1 — (2’ s) + is,1) hits the plane E at the point
A1 — (2 s) +is,1) = (M2, 1 +iAs, 1+ (A2, 8)))
for some \ > 1. This shows that
/ 1 /

L—p(2s)  1—p(Z,s) 1— (2, s)

Since ¢ is bounded by 1/2, for all (2/,5) € (CV~! x R) N Bs(0) we obtain

0 P(2'5) S B2 5) and (' s) < 20( ).
For the sequel we note that {(z, Re zy) : 2 € CV} is a supporting hyperplane
for I" at ((0,1),1).

(i)=(ii). If there is a plurisubharmonic saddle for ¢, then by (3) and
Remark 2(a), there is also a saddle u for 1((1—9)-)/(1+9). By the hypothesis,
(3), and Remark 2(b), we may assume that v < ¢(-/(1 +0))(1 — §) outside
the origin. We consider the plurisubharmonic function

v(z) :==u(z—(0,1)) + Rezny, z€ Bs(0,1).
Then v(0,1) =1 = H(0,1). If z = (2/,2n) € Bs(0,1), put A := Rezy and
w:=z/A. Since 1 —§ < X\ <149, it follows that
v(2) <Y((2',Imzy)/(146))(1 — ) + Rezn
=M w',Imwy)/(1+8))(1 —6) + Rezy
<M (w',Imwy) + Rezy = M H(w) — Rewy) + Rezy = H(z)
and v(z) < H(z) if z # (0,1). By [6], Prop. 1.13, there is C' > 0 such that
Cvg(z/C) > v(z) for all z € 9Bs(0,1). Then
B(z) = Cvy(z/C) if z € CNV\B;s(0,1),
’ max{Cvg(z/C),v(z)} if z € B;(0,1),

is plurisubharmonic on C with v < H and 9(0,1) = H(0, 1), and such that
9(z) —C'log | 2| remains bounded if z € C" tends to infinity. This shows that
Cu (0, 1) <C.
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(ii)=(i). Put
<H 'UH(O C)

function

t C:=Cy(0,1) and vy (-;C) := Cvg(-/C). Then vy (-;C)
= H(0,1) and vy (0,s;C) < H(0,s) if s > 1. Hence the

v(z) :=vy(2,C) —Rezy, 2z€CV,
is plurisubharmonic with v(0,1) = 0 and with v(0,s) < 0 for all s > 1.
Moreover, as in “(i)=-(ii)” we obtain

v(2) < H(z) —Rezy = M(w',Imwy) < (14 0)y((2',Im zy)/(1 — 4))
for all z € Bs((0,1)). This shows that
u(z) == v(z +(0,1)) +v(—2+(0,1)), z=(,2x5) € C",

is a plurisubharmonic saddle for 2(1+9)1(-/(1—¢)). Hence by Remark 2(a)
and by (3), there is a plurisubharmonic saddle for ¢.
(i)<(iii). As (i)<(ii). Just apply [7] instead of [6].

A corollary to the proof of Proposition 5 is the following;:

6. PROPOSITION. For N =1 let 2 be a bounded convex domain in C

which contains the origin. Then for each a € S, Cy(a) < oo if and only if
Ct(a) >0, i.e. Ry Py =Ry Pj.

Proof. For N = 1, in the proof of (ii)=-(i) of Proposition 5, we may
replace u by

u(z) :=v(z+1)+v(—Rez+ilmz+1), zeC,

which is a subharmonic saddle for 2(1 + §)1(-/(1 — §)). This shows that for
N =1, we need no assumption on the symmetry of ¢.

Furthermore, since a nonnegative subharmonic function u on a domain
is negative everywhere if it is negative at some point, for N = 1 each sub-
harmonic saddle u for ¢ is proper in the sense that u < ¢ outside the origin
(see Remark 2(b)). This shows that for N = 1, we need no assumption on
the smoothness of 0f2.

For N > 1, the assertion of Proposition 6 does not hold. To give an ex-
ample, first we recall from [6], Thm. 2.11 (see also Krivosheev [3]), and from
[7] a result which compares the cones Ry Py, Ry P}, and supp (dd°H)",
which is defined to be the smallest closed subset of CV for which H is a
maximal plurisubharmonic function on its complement (see Klimek [2]). By
the homogeneity of H, this is a cone.

7. PROPOSITION. Let 2 C CV be an open bounded convex polyhedron
which contains the origin. Then

supp (dd°H)N c R, Py C Ry Py,

where equalities hold for N = 1. More precisely: Let a € S belong to the
relative interior of the cone Ry F' for some face F' of 0£2°. Let L(F') denote
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the R-linear span of Ry F. Then
a € supp (dd°H)N < L(F)NiL(F) = {0};
Ch(a) <oco < Ry FN(L(F)NiL(F)) = {0},
Ch(a) >0 Rian (L(F)NiL(F)) ={0}.

As the following example shows, for NV > 2, in general, both inclusions
of Proposition 7 are strict.

8. EXAMPLE. Let

4
2= {z = (21,22) = (21,22, w3, 24) € C*: Z\l’jl < 1}~
j=1
Its support function H : C2 — R, is given by
H(z) = H(zy1,...,24) = 4rr11ax4|1‘j|, z € C%
J=4

It has been proved in [6], 2.13, that supp (dd°H)" # R Py. Moreover, for
the face F:={2€ C? 121 =x4 =1} N9N2° of 92° = {2 € C?: H(z) = 1},
it has been calculated that L(F) NiL(F) = R(1,0,0,1) + R(0,1,1,0) and
that Ry FF'N (L(F) NiL(F)) # {0}. Since Ry F has dimension 3, there
exists @ in the relative interior of Ry F' with a ¢ L(F) NiL(F) and a € S.
Thus Ria N (L(F) NiL(F)) = {0}, and by Proposition 7, this gives a €
R, P;\R, Py

NOTATION. Let e > 0and h: (CV~1 xR)NB.(0) — R, be a continuous
convex function with ~(0) = 0. We extend h to a convex function on CV~1 x
R by h(w’,t) := oo whenever (w',t) ¢ B.(0). Its conjugate function h* :
CN=1 x R — R, is defined by
h*(2',s) = sup (Re(?’,w') + st — h(w', 1)), (#/,s) € CVN "1 xR.

(w',t)eCN—1xR

h* is again a convex function with A*(0) = 0. Moreover, h** = h (see
Schneider [8], Thm. 1.6.5).

9. Remark. If hj, j = 1,2, are two convex functions which coincide on
(CN=1 x R) N B.(0) for some & > 0, vanish in 0 and are positive outside 0,
then there is § > 0 such that h}, j = 1,2, coincide on (CN=1 x R) N Bs(0).

Proof. Since h; > 0 outside the origin, we may choose 0 < § <
min|, . hj(a)/e, j =1,2. Fix j = 1,2 and let (2/,s) € (CV~1 x R) N B;(0).
If (w',t) € (CN~! x R)\B.(0), we put

(@', t) :=e(w',t)/|(w,t)] € B.(0)
and get |(@',1)| < |(w’,t)|. By the convexity of h; we obtain
hy(@',8) /1@ )] < hy(w',£)/|(w, )]
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Since
Re((/, 5), (@, 1)) e] <8 < hy(@,8)/|(@, 7)),
we get
Re<zl7wl> + St—hj(w/ﬂt) = ‘(wlvt)‘(Re«Z/? 5)7 (@’,tN)>/€—hj(w’,t)/|(w',t)|)
< e(Re((2,5), (@', 1)) /e=h; (@', ) /| (@', )])
= Re(z/,@0') + st — hj(@',1).
This shows that

hi(,s) = sup (Re(z',w') + st — hj(w', 1))
(w',t)€CN—1xR

= sup (Re(z',w') + st — hj(w', t)).
(w’ £)€(CN~1xR)NB. (0)

Hence h} = h3 on (CV~=1 x R) N B;(0).

10. LEMMA. Let h, @, €, and 6 be as in Proposition 5. Assume that
h > 0 outside the origin. Then there is 0 < &' <& such that for all (2, s) €
(CN=1 x R) N Bs(0),

h*(2',s) < (2, s) < 2h* (2, s).

Proof. Since h > 0 outside the origin, we can choose 0 < ¢’ < § such
that
(4) £2°NBs(0,1)

= {2z € CY :Re(w, z) <1 for all w € 92N B.(0,1)} N Bs:(0,1).

Let (2/,s) € (CN~! x R) N Bs:/(0). Then a := (2/,1 — ¢(2/,s) +is) € 902°,
by (2). Thus by the definition of £2°, by (4) and (1), we have

1= sup Re(w, a)

wedNNB.(0,1)
= sup (Re(w’, 2") + (1 = h(w', 1))(1 — (2, 5)) + ts).
(w’,t)e(CN—1xR)NB. (0)
Hence
1 —Re(w', 2") —ts
1 _ ! — . f Y
#s9) (w/,t)e((CNlPl xR)NB. (0) 1 —h(w',t)

Re(w’,2') +ts — h(w',t)
=1- sup ;
(w’,t)e(CN—1xR)NB.(0) 1 — h(w',1)
Since we may assume that 0 < h(w',t) < 1/2, we obtain h*(z/,s) <
o(2',s) < 2h*(2, s).

NOTATION. Let {2 be a bounded convex domain of CV and fix wy € £2.
By gn we denote the pluricompler Green function of 2 with pole at wq,
i.e. gp is the largest negative plurisubharmonic function on (2 for which
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go(z) —log |z — wol, z € 2\{wop}, is bounded (for the existence see Klimek
[2]). We consider the level sets £2, := {z € 2: gn(z) < x}, x < 0, which are
convex by a result of Lempert (see [6], Lemma 1.2). By H, : CY¥ — R we
denote their support functions

H,(z) := sup Re(z,w), ze€CV, z<0.

WE 2y
Then (see [6], Prop. 1.3) the limits
H(a) — H,
Dg(a) := li%l(a)m) €10,00|, a€S,
T —ZT

exist. By [6], Thms. 1.14 and 1.20, there is C' > 0 with Cy < Dy, < CCy.

11. PROPOSITION. Let 2 C CV be a bounded convexr domain normalized
as in Proposition 5. Let h and ¢ be convex functions as there. In addition,
assume that also h > 0 outside the origin. If g is the pluricomplex Green
function of 2 with pole at 0, the following are equivalent:

(i) There is a plurisubharmonic saddle for h*.
(ii) There is a plurisubharmonic saddle for ¢.
(iii) Dp(0,...,0,1) < co.

Proof. (i)<(ii). Since h > 0 outside the origin, this follows from the
remark in Proposition 5, Lemma 10, and Remark 2(a).

(ii)«<(iii). By the hypothesis and by the remark in Proposition 5, we
have ¢ > 0 outside the origin. Hence we deduce from Proposition 5 that (ii)
holds if and only if Cg(0,...,0,1) < co. By [6], Thms. 1.14 and 1.20, this
is equivalent to (iii).

For N = 1 there is a close relation between the limits Dg(a) and the

angular derivatives of the Riemann conformal mappings from the unit disc
D onto §2. This relationship is applied in the proof of the following lemma.

12. LEMMA. Let §2 be a bounded convex domain of CN. Let w € 952 and
let a € S be an outer normal to 92 at w. Put 21 :={z € C: zia+w € 2}
and let 22 be the set of all z € C such that zia + w is contained in the
image of the orthogonal projection of (2 onto Ca + w. Then 21 C 22 C
{z € C:Imz > 0}. Assume that there are € > 0 and convex functions
hj : [—e,e] — R4 with hj(0) =0 and

O N B.(0) = {t +ihj(t): t € [-5,¢]}, Jj=1,2.

Let go be the pluricomplex Green function of (2 with pole at some fized
wo € 2. If [°_(hi(t)/t?)dt < oo then Dg(a) < co. If Dg(a) < oo then

J2_(ha(8)/#2) dt < oo, where ha(t) := min{ha(t), ha(—1)}, [t] < e.

Proof. After a translation followed by a unitary transformation of CV,
we may assume that a = (0,...,0,—i) and w = 0. Since the finiteness
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of Dg(a) does not depend on the choice of the pole, we may assume that
wo € Cat+w = {0} xC, i.e. wo = (0,wp). Since {0} x ' C 2 C CN=1x 2
for the complex Green functions g of 27, j = 1,2, with pole at wy{, the
following holds:
g1 (28) > go(0,2n), 2y € 24,
and
902 2n) 2 go2(2n),  (#,2n) € CVTH x 22,
Hence for the corresponding level sets 27, z < 0, j = 1,2, we obtain
{0} x 2t c R, cCV7t x 2.
This shows that H!(—i) < H(a) < H2(—i), © < 0, for the corresponding
support functions. Hence Dg2(—i) < Dg(a) < Dgi(—1).
Now the assertion follows from [5], Lemma 3.3, Ex. 4.2, [6], Lemma 2.3,
and a result of Warschawski and Tsuji (see Tsuji [9], Thm. IX.10).
13. LEMMA. Let € > 0 and let h : [—¢,e] — Ry be a convex function
with h(0) = 0.
(a) If h(t) = tq(t), t > 0, with lim; o q(t) = 0, such that q(t) is strictly
increasing for t > 0, then there is § > 0 such that for all 0 < s < 4§,
2¢7 " (s)s 2 h*(s) 2 ¢~ '(s/2)s/2.

(b) [°_(n(t)/t?)dt < oo if and only if ffélog h*(s)ds > —oo for some
0>0.

Proof. (a) Since ¢(t) is strictly increasing, we have h(t) > 0 for all
0<t<e Fix0<s <4 Since st —tq(t) <0 for all ¢g71(s) <t <e, we
obtain

h*(s)= sup (st—h(t)) < sup st < sq_l(s).
0<t<q—1(s) 0<t<q=1(s)

Let 0 < s < §:=2¢(¢). Then ¢ !(s5/2) < ¢ and

h*(s) = sq7 ' (s/2) — h(g"(s/2)) = sq~"(5/2)/2.

(b) For the proof we have to consider the integrals over negative and
positive numbers separately. It is no restriction to consider the positive ones
only. If ¢(t) := h(t)/t = c is constant for all £ > 0 in a neighborhood of 0,
then the assertion obviously holds (we have to distinguish the cases ¢ = 0
and ¢ > 0). Otherwise the map t — ¢(¢) is strictly increasing for 0 < ¢t < ¢,
with limy o ¢(t) = 0. We claim that

) q="(5)
(5) [ log(sq '(s))ds+ [ Q(tt)dt

= 6log(dq~"(0)) — ¢ (8) — a(n) log(q(n)n)
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for all 0 < n < §. Fix n. Since we may approximate the continuous function
q uniformly on [n, 6] by strictly increasing C!-functions, we may assume that
q itself is of class C'. We obtain

5 a (%)
[ log(sq'(s))ds = [ log(q(t)t)q (1) dt
n 0
a1 (8) a7(6)
= [log(a(t)t)a(v)]) - (f q(t)dt+ [ Q(tzdt)

"
This proves (5)

Let [ (h(t)/t?)dt < oco. Since limsup, g q(t)log(q(t)t) < 0, we deduce
from (5) lettlng n | 0 that fo log(sq~1(s))ds > —oo. This proves
foa log h*(s) ds > —oo0.

Let f05 log h*(s)ds > —o0, i.e. fo(s log(sq~1(s))ds > —oo. Since for all
0 <t < e we have ¢(t) < J and

5 q(t)
—o0 < [ log(sq(s))ds < [ log(sq~'(s)) ds < q(t) log(q(t)t),
0 0

we get liminf; o q(¢) log(q(t)t) > —oo. Hence by (5), we get fo (t)/t?) dt
< oQ.

14. PROPOSITION. Let N =1, > 0, and let ¢ : [=6,6] — R4 be convex
with p(0) = 0 and with ¢(y) = ©(—y), |y| < d. There is a subharmonic
saddle for ¢ if and only if

5
f log ¢(t) dt > —oo0.
0

Proof. If ¢ = 0 in a neighborhood of 0, the integral equals —oo, and by
the maximum principle, there is no subharmonic saddle for . If o(y) = c|y|
in a neighborhood of 0, the integral converges, and by Example 3, there is a
subharmonic saddle for ¢. Thus we may assume that ¢ >0 outside the origin
and that lim,_.o ¢(y)/|y| = 0. We choose a bounded convex domain (2 in C
such that (2) holds. By Proposition 11 (and the remark in Proposition 5),
there is a subharmonic saddle for ¢ if and only if D(1) < co. By Lemmas

12, 10 and 13, this is equivalent to f06 log p(t) dt > —oc.

15. Remark. Let § > 0 and let ¢ : (CN=! x R) N Bs(0) — R, be a
convex function with ¢(0) = 0, ¢ > 0 outside the origin, and ¢(y) = p(—y)
for all y. If there is no plurisubharmonic saddle for ¢, then the following
holds:
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Each plurisubharmonic function u on Bs/(0) (0 < §’' < §) which satisfies

U(Z/7ZN) S (P(Z/,ImZN), z = (Z/,ZN) E CN—I X C’

vanishes on {0} x R if u(0) = 0.

Proof. Consider [a,b] := {s € [¢/,d'] : u(0,s) = 0}. If for example

b # ¢, then

v(z) == §(u(z + (0,b)) + u(—2z + (0,b)), z=(z,2n) e CV"! xC,

would be a plurisubharmonic saddle for ¢.
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