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Representation formulae for (C;) m-parameter
operator semigroups

by M1 ZHOU and GEORGE A. ANASTASSIOU (Memphis, Tenn.)

Abstract. Some general representation formulae for (Cp) m-parameter operator semi-
groups with rates of convergence are obtained by the probabilistic approach and multiplier
enlargement method. These cover all known representation formulae for (Cp) one- and m-
parameter operator semigroups as special cases. When we consider special semigroups we
recover well-known convergence theorems for multivariate approximation operators.

1. Introduction. Recently the study of representation formulae for (Cp)
operator semigroups has attracted much attention (Shaw [17, 18], Butzer—
Hahn [2], Pfeifer [13-15] and Chen—Zhou [3]). They gave some general formu-
lae that include earlier (Post-Widder, Hille-Phillips [8] and Chung [4]) con-
crete representation formulae. But most of the work done so far is confined to
the one-parameter case, while Shaw’s method for the multi-parameter case
is not an easy one to get new formulae and the results are without rates
of convergence. In this article we try to give some general representation
formulae for (Cy) m-parameter operator semigroups. The main idea is the
use of a probabilistic setting in the representation of operator semigroups,
initiated by Chung [4] and developed by Butzer-Hahn [2] and Pfeifer [13],
and the so-called multiplier enlargement method of Hsu-Wang [9, 19] and
Shaw [17, 18]. At the same time, by introducing a modified second modu-
lus of continuity of an operator semigroup and a Steklov-type element we
establish quantitative estimates of the obtained formulae.

To the best of our knowledge, all existing representation formulae for
(Co) one- and multi-parameter operator semigroups are special cases of our
results. In particular, Shaw’s formulae [17, 18] for m-parameter operator
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semigroups are special cases of our results when specifying the random vec-
tors considered. Also with our method it is easier to obtain new formulae.

At the end we give examples to show the application of our results in
multivariate operator approximation theory when we consider particular
operator semigroups.

2. Preliminaries. Let X be a Banach space with norm ||-||, and £(X") be
the Banach algebra of endomorphisms of X. If T' € £(X), ||T|| also denotes
the norm of T. Let R™ be the m-dimensional Euclidean space supplied
with the usual definition of arithmetical operations and metric. We write
t=(t1,...,tm) ER™, T =1+ ...+ by, [t| = |t1| + ... + |tin] and denote
the unit vectors by ey, ..., e, where e, = (0,...,1,...,0) with 1 in the kth
place and 0 elsewhere. Further, let

R ={tcR™:1, >0, k=1,...,m},
the first closed 2™-ant in R™. Z, denotes the set of all non-negative integers
and
Z0 ={n=(ni,...,ny) :ng € Zy, k=1,...,m},
while N is the set of all positive integers.
A family of bounded linear operators {T'(t) : ¢ € R} on X is called

a (Cy) m-parameter operator semigroup in £(X) when the following three
conditions are satisfied:

(1) T(t+s)=Tt)T(s), t,secR];
(2) T(0) =1 (identity operator);
(3) SAm TOf=f fex.

It is known that {7'(¢) : ¢ € R} is then the direct product of m (Cj)
one-parameter operator semigroups in £(X):

() 1) = T] Zutto).
k=1

where Ty (tx) = T(txer). The operators {Tj(tx) : 0 < t < oo} (k =
1,...,m) commute with each other.

Let Ay be the infinitesimal generator of {Tj(tx) : 0 < ¢ < oo} with
domain D(Ag), k = 1,...,m. Then if f is in D(Ay) so is T'(t)f for each
t € R and

AT f = T(1)Arf.

Further, if f € D(A;) and f € D(A;Ay) then f € D(AxA;) and
AyA;f = AjArf (j,k=1,...,m). In the following we use the notation
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m

D?:= (] D(Ar4;).
k,j=1
D? is a linear subspace of X.
To each k =1,...,m, there correspond two numbers My > 1 and wg > 0

such that
||Tk(tk)|| < Mkewktk, 0 <t < o0.
Hence we have the inequality
(5) IT@A)|| < Mexp(w(ty + ...+ tnm)) = Me¥t, ¢t € R,

where M = M; ... M,, and w = max{wy : 1 <k <m}.

In the following it is always understood that {T'(t) : t € R} satisfies
(5), unless otherwise specified.

For the above definitions and properties of operator semigroups we refer
to Butzer—Berens [1], Hille-Phillips [8] or W. Kéhnen [11].

Let (£2, A, P) be a probability space. For every real-valued random vari-
able X defined on (2, A, P), E(X) denotes its expectation. If £ = F(X)
exists then 02 = 0%(X) = E[(X — £)?] is the variance of X. Let fur-
ther Uy (u) = E(u™), u > 0, and ¥%(u) = E(e*X), u € R, denote the
probability-generating function and the moment-generating function of X
respectively.

We need to consider m-dimensional random vectors, also denoted by
X,Y,...,on (£2, A, P). For an m-dimensional random vector X = (Xo1,...,
Xom), we also use F(X) to denote its expectation:

E(X) = (E(X()l), e ,E(Xom))
and define
U?(X) = 0'2(X0i).

It is not difficult to extend the theory of the extended Pettis integral
developed in [13] to the multivariate case.

Let {T'(t) : t € RT'} be as above and X be an R'’-valued random vector
such that

W;%(w)<oo, X =Xo1 + ...+ Xom.
Then for every f € X define

EIT(X)f] := [ T(X)fdP,
(%

which exists in the Bochner sense in X by the strong continuity of {7(¢) :
t € R} and (5). Moreover, the map E[T(X)]: f — E[T(X)f] on X defines
a bounded linear operator E[T(X)] € £(X) with

IET(X)]] < M&(w).
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E[T(X)] is called the expectation of T'(X) and is understood as an extended
Pettis integral following [13].

If X and Y are independent R!-valued random vectors such that !P)*?(w)
< 00 and ¥ (w) < oo then E[T(X)], E[T(Y)] and E[T(X + Y] exist in
E(X) and

EIT(X) o T(Y)] = E[T(X +Y)] = E[T(X)] o B[T(Y)],

({9}

where “o” denotes composition.
For the above see [13], [15], [16] and the references cited there.

3. Auxiliary results. We need a Taylor expansion integral formula for
(Cy) m-parameter operator semigroups.

LEMMA 1. Assume {T'(t) : t € R} is a (Cy) m-parameter operator
semigroup satisfying (5). Then for every g € D? and s,t € R7?,

(6) T(t)g—T(s)g
=T(s)[(t1 —s1)A19+ ...+ (tm — Sm)Amg]

+ [ =w)T(s+ut = 5)((tr = 1) A1 + ... + (tm — $m) Am)?g du.
0

Proof. Let G(u) =T (s+u(t—s))g € X, u € [0,1]. Then

G (u) = dG(u)

=T(s+u(t—s))[(t1 —s1)A1+ ...+ (tmn — Sm)Amlg

and
G"(u) =T(s +u(t —s))[(t1 — s1)A1 4+ ... + (tm — 5m)Am]?g.

Now (6) follows from the Taylor formula with integral remainder for Banach
space valued functions (see, e.g., [5, Theorem 8.14.3]). m

For our purpose we need a second modulus of continuity ws(7'f,d) and
the Steklov operator J,(f) (h > 0) for a (Cy) m-parameter operator semi-
group {T'(t) : t € R’} and f € X.

DEFINITION 1.

(T8 = s {IT0)- D2L1L I(Tits) = D(T5(t5) — DY
o<t 1<

We have wy(T'f,d) — 0as § — 0, by the strong continuity of {T'(¢) : t € R}
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DEFINITION 2.

9 2m h/2 h/2
nn=(3) S JEr@ )
0 0
2m

The integral may be considered as a multi-A-valued Riemann integral.
We have the following lemma:

LEMMA 2. (i) Ju(f) € D? for all f € X;
(i) |If = Jn(S)l < w2(Tf, h);
(iif) || A A Jn (f)] < 9Me2m=Dhew, (T h) /A%, 1 <i,5 < m.
Proof. (i) Let
h/2 h/2
7 = [ [ TE A, ot 0w dErdny . dE A,
0 - 0

h/2 h/2

(8) JQ = f e f T(2€1 + 27]1, . ,2£m + 2T]m)f dfl d’l71 . dﬁm dT]m

0 0
—_——

1275m h h
=<2> [ [ T +m, et nm) fdSadny ... dép dnp.
0 0

—_————

2m

It is not difficult to show that J; € D? Jy € D? (cf. [1, p. 10]) and hence
(i) holds.
(ii) We have
9 2m h/2 h/2
== () o S
2m

2m h/2 h/2
H( > f f (EL+ 115 bm +1m) — T2 f

2m
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92 2m h/2 h/2
< (h) f f NT(E + 01, m +n0m) — 112 f]
0 0

2m

X d&ydny ... d&y, dnm,
< w2(Tf7 h)

(iii) When 7 # j, similar to the one-parameter operator semigroup case
(ibid.), we can show

h/2 h/2
AiAj T, = f f 1T Te(& +me)Ti () T3 ()
0 k#i,j
2m—2
x (Ty(h/2) = D(T;(h/2) = D) f T] déw dm dn; dny
k#i,j
and
1 2m h h
AiAjdy = <2> f f H T (§k + i) Ti (i) T (n;5)
0 0 k#i,j
N—_——
2m—2
x (Ti(h) = I)(T;(h) = D) f ] dé dnw dn; dn;.
k#i,j
So
1A A; Tn (PN = [(2/h)* ™ [24:A;01 — Ai A T |

h/2  h/2
f f H M,k Exme) N gitli M i

SORG R
) e 1)

1T & dni dn; dn;

ki,
1 2m h h
+ <2> f o f Mkewk(fk-i-ﬁk)MiewmiMjewjnj
0 0 k#i,j
————
2m—2
< Ty — D) — DA TT dfkdnkdmdm}

k4,
< (Q/h)QmM{2€(2m—2)wh/2(h/2)2m—2 + (1/2)2m6(2m—2)whh2m—2}
xwa(Tf,h)
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< MePm=2m9(h/2)7% + 1/h*}ws (Tf, h)
= 9Me2m=Dwh (T, h) /B2
When ¢ = j, the same estimate holds. =

LEMMA 3. For any R7*-valued random vector Y = (Yo1,...,Yom) with
EY)=xz=(z1,...,xm) and f € X,

@) BT =T@)f
= [[E[T(Y)f] = T(x)f]

< Mus(T¥, h){?E(eM

3

_'_gmMGZwieQ(m—l)hw epr l/p[z Yvoz_x 2q l/q]/hQ}

where p>0,q>0,1/p+1/g=1, h>0. [ 0, we have

(10) BTV - T(@)f] < 2Ma( Tfh[ e Za ()|

Proof. We have

(11)  [[ETW)]f = T(z)f|| = |E[T(Y)f] = T(2)f|
<|ETX)f] = ETY)In Il + | ETY)Inf] = T(x)Inf]|
+ T (@) Jnf — T(x)f]l
=11+ 1+ Is.

(12) L < ETY)(nf = DI
< BEMe<Y | Jnf — f]l] < ME(e*Y )ws(Tf, )
by Lemma 2, and

(13) Iy < Me“Twy(Tf,h) < ME(e*Y Jws(T f, h)

by Jensen’s inequality.
Note that g := J,(f) € D?, by Lemma 2. Apply Lemma 1 to get

a4 HE{ D)(Yor = 21) A1+ ..+ (Yo — @) Alg
+f (1— )T (@ +u(Y — 2))[(Yor —21) A1 + ...

+ (Yom — m)Am]?g du} H
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= [B{ J 4w e A+
+ (Yom — xm)AmPgdu}H

{ j 1—w)|T(z +uY —2))]|
x I[O(Ym — 1) A1+ ...+ Yom — ) Am) 9| du}

< ME{ [ (1-u)explw(e+u(Y — )

X [YVor = 20) A1 + -+ Yom — ) A9l du}

1 . . m m
< Iuep{e VYLD ol ¥y - 4 Ajgll}
_ m m 1
< MegwwE{ewyzzz[(}/Ol_xz) (YO] _-:U]) ]}
i=1 j=1
x 9Me2m=Vhe o (T f h)/h?  (by Lemma 2(iii))
9 : S v
— §M2€2wxe2(m—1)hwmZE[ewY(}/Oi _ l’i)Q]WQ(Tf, h)/h2
i=1
9 5 31 [ ¥ -
< 5mM2€2wz€2(m h [E<ep Y)]l/p[Z(E((YE)i _ xi)Zq»l/q}
i=1

x wa(Tf, h)/h?
by Holder’s inequality.
Therefore by (11)—(14) we get (9).
If w = 0 we have I < Mwy(Tf,h), Is < Mws(Tf,h), and I < §M?*m x
S 02 (Yoi)wa (T f, h)/R? so (10) follows. =

4. Main results. Here comes our first main result:

THEOREM 1. Let X = (Xo1,...,Xom) be an R’ -valued random wvec-
tor with E(X) = ¢ = (x1,...,%m) and suppose that there exists a § > 0
such that W5(5) < co. Then for any (Co) m-parameter operator semigroup

satisfying (5), and all n > max(pw/§,1/6%),
(15)  {ET(X/n)}"f = T(2)f]]
2nw?

< 2Mwy(Tf, 1/\/5){6“”” exp [(500)2!7;{(6)



Representation formulae for operator semigroups 255

2.2
+21/q9Mm2q e3w£€2(mfl)w/\/ﬁ
&

2 5%
<o | (o + =) %0
where p,q >0, 1/p+1/q = 1, is an arbitrary conjugate pair. If w =0, then
(16) BT/ f - T@)f|
< 2Mws(Tf,1/v/n) [1 + ZmMi 02(X0¢)]~

i=1

Note. All the right hand sides of (15) and (16) are finite.

Proof of Theorem 1. Let X be a sequence of independent random
vectors identically distributed as X, and Y = (1/n) Y ,_; Xi. Then

BY)= S B(Xo) =z, BTV = (BITX/m)])".
k=1

For u > 0 we have

W%(u) = E(e(u/")Ezlek) — (E(e(u/n)X))n

u —= UQXQ X "
< (14 —-E(X)+E( ——-e/mX
< ( + (X) + ( 52 ¢

u_ u? 2\ apoexy)
< ey 2 -
_<1+nx+2n2<5—u/n> e Ble )>

- 2nu?
< UT R | / ol
< e"exp [62(715 — u)2WX(5)]

whenever u/n < 4.
Above we made use of the inequalities (see also Pfeifer [14, p. 275])

(17) reel” < <(&7> e~ (forn <6, r>0, a>0)
and
(18) (14+r)" <e".

So for n > pw/d > w/4d,

v - 2nw?
E wY < pWT W*—
@) seron{ B o)
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and

v z 2np2w? L/
pwY\11/p < PWET P *
[E(eP“")]P < {e exp [62(n5 )2 &Z/X((F)} }

 wE 2npw? «
— o 0]

Observe that for Y = (Yyq, ..., Yo,,) we have
E((Yoi — 24)%%)

< <2q) e—2qE(€x/ﬁ|(l/n)Eﬁlem—xil) (by (17))
n
29
< <2q> =2 BV (Xui=20)) | (VDB (1= X01) )
n
2q r
< <2q> 212 exp E(;(Xm _xi)zeu/ﬁnxm—m)]
n
(by Taylor’s expansion and (18))
2¢ \ [ 2 2 1
O L
(by (17) for 1/y/n < 9)
< 2e 2q6_2q2 exp _27n6_2eéiwi(5) 1<i<m
—\Vn | (6y/n—1)2 X - =
Hence we established that
4q° 2n =
E((Yoi — x;)%))Y/1 < Z—e~221/a 20T (§) |
B0 = )] < S22 e | e ()

Now apply Lemma 3 and take h = 1/y/n:
{ET X/ f = T(z)f|| = |E[T(Y)]f = T(2)f|

2nw?

< Muws(TF,1 /\/ﬁ){Qe“”—” exp [w (5)]

e2(nd —w)2 X

2npw?

9 _ i
ZmM 2T 2(m—1)w//n Wz UE(S
+2m e“’e e“" exp (3 — po)? <(9)
4q? 2 _
X m%e‘221/q exp [”2@—%&@;(5)} n

q(0yn —1)
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— 2Muwn(Tf, 1 /\/ﬁ){ew exp {Mw*(a)}

nd —w)? X

2.2
+21/q9Mm2q e3w5062(m—1)w/\/ﬁ
(&

2npw? 2ned”
vr .
e [(62(n5 —p)? gl - 1)2) X(é)] }
When w = 0, noting that o2(Yy;) = 02(Xo;)/n by (10), we get (16). =

A ramification of Theorem 1 follows:

THEOREM 2. Let N be a Z4-valued random variable with E(N) = n,
n >0, and let Y = (Yp1,..., Yom) be an R} -valued random vector indepen-

dent of N with E(Y) =~ = (71,-..,7vm). Assume that there exists a 6 > 0
such that

Then for n > max(pw/6,1/6%),
(19) (e~ [ET Y /n)I}"f =T/
2
< 2Mun(T, wm{em exp [%%W&))}
1 oM/ agy L e 2=
e
2npw? 2ned .
<o | (G + g )P0 |

where p,q >0, 1/p+1/q =1, is an arbitrary conjugate pair. If w =0, then
(20) (N[BT /)] f =T )/

< 2Mws(T'f, 1/\/5){1 + %mM Z[naz(Yo@-) + 02(N)%‘2]}~

Proof. Consider Yy L Y, which are also independent of N. In Theo-
rem 1, take X = 21?;1 Y} (as usual, an empty sum equals 0). Then

(3] 0] S s
- Sro-ole (o ()] (e ()

oo

l
E(X)= Y P(N=IE [Z Yk] = E(N)E(Y) =n7.

3
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If X =(Xo1,...,Xom) we have
*(Xoi) = <ZYIM> = iP(N:l)E((zl:me) — i
k=1

ZP JIE(Yg) + 11— 1)77) — 0y}
=

— 1o (Vo) + 0*(N)2.
Then (19), (20) follow by (15), (16). =
An application of Lemma 3 comes next:

THEOREM 3. For each positive real number 7, let N, be a Zy-valued
random variable with E(N;) = 7n, where n € Ry is fized. Let X be an
R -valued random vector with E(X) = v = (y1,...,Ym), independent of
N;. Assume that there exists a 6 > 0 such that W3(6) < oo and further
there are p,q > 0 with 1/p+ 1/q =1 such that

(21) lim sup ¥y, <!l7* (pw)) =d; < 00,
T—00 T
1 2q 1/‘1
(22) limsupT{E [(NT — 17) ] } =dy < 00
T—00 T
and
23 li I8 2 TPES) ) =d
( ) lisolip N, m@ )?( ) = dasg < 00.

Then for T > 1/62,
(24) N, (E[T(X/T)DS = T) ]l
S MwQ(Tf, 1/\/’7’){2d1

+9mM62wn'ye2(m—l)w/ﬁd}/P|: 21/q( > 1/q+d Z’yz:|}
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If w=0, then
(25) o, (BITX/T)f — TOr) S|
< M (11D {1+ Yty 1020600 +92 020 |

i=1

Proof. Take random vectors X - x , which are also independent of
N.. Consider Y, = (1/71) Z,]fv;l X, where Y. = (Yo1,...,Yom), then apply
Lemma 3 with h = 1/4/7. We have

) 1 l
TOLS = 3 P =08 T (1 32 )| 1 = o (BT
= iP(NT i (i:Xk) = —E(N:)E(X) =7,

E(eY7) < B(ePYr) = Wy (W (pw/7)) < di.
Furthermore,

(E((Yos — m7:)*)) /¢

=: 2[1 + 2[2
We observe that

ol )

k=1

< <2q> 2 BleUVIIEL K= (by (17))

< ( ) (1/f)2 1 (Xki— )] Ele (1/VD)BT, (vi— in)]}

< <f> (B (VD Ko\ Ne] 4 B(B(e/VPi-Xoi) ) Ve
R .
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[\D

1 N
o (X - %)26(1/\/;)|X0i—’7i|>> ]

N EKE( \F( Xt T(Xm B %)26(1/ﬁ)|X01—w>)NT:|}
_ 2<£%>24E{ (exp [(5 - 1/\[>262E(66|X0i%I)DNT/(%)}
) N, /(27)
<(3f) H{ (0 [(remn) “ne]) )
()

g

4 2
[1 < 21/q2id§/q

€T

1 2q 1/q
Iy =~} <E<<TNT - 77> >> < 7da/T.

Therefore by inequality (9) of Lemma 3 for Y =Y, and h = 1//7, we
get

and

1N, [E(T(X/7)]f =T )/
< Muwy(Tf,1 /ﬁ){le + gmMe%We?(m*lW VTl

x2}" [21/q <62q7d§/q> + dﬂ;] r}

i=1

= Muwy(Tf,1 /\E){le + 9mM 20 2(m=1w/VT g1/P

<[ () ]}

If w =0, we apply inequality (10) of Lemma 3. Note that

0)
2(Yo:) = 0 < ZXk> :%i E(<;Xk>2) — P2

=5 Zp DIE(XZ) +1(1 — 1)72) — 042
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= SB(NDB(XE) + (BN —

T2

(BE(N))V; =07

=
. n02(X0')+72302(N)
7_ 1 Z’T T .

By (10), when h = 1/4/7, we obtain (25). m
Another generalization of Theorem 1 is presented next.

THEOREM 4. Let N = (Ny,...,Np) be a Z7'-valued random vector with
E(N)=n=(m,...,0m). Foreach i (1 <i<m), let {Yii}32, be a sequence
of i.i.d. real-valued random variables distributed as Y, a fixed random vari-
able with E(Y') = ~. N and Yy; are assumed to be independent. Also assume
that there exists a § > 0 such that

'PN(EP;}((S)) < 0.
Then for n > max(pw/d,1/6%),

(26) H{E[T( i i % iykmmﬂ}nf—T(w)fH

ki=1 km=1

2nw?

< 2Muws(Tf, 1/\/5){6“”’7 exp L?( QWN(!"?(&)]

nd —w)

2 2
4 olagp 4 2q 3w 2(m—1)w/Vn
e

nd —pw)? = e2q(dy/n —1
where p,q >0, 1/p+1/q = 1, is an arbitrary conjugate pair. If w =0, then

(27) H{E[T( i i % TllYkmmﬂ}nf—T(m)fH

ki1=1 km=1

< 2Mwy (T, 1/\/’71){1 + ZmM Z[mgz(Y) + az(Ni),)ﬂ]}.

i=1
Proof. In Theorem 1, take X := (Zivll:l Yigty .-y ,ﬁ:‘:l Yk, m) and
let X}, " X Then
Ny Ny,
BE(X) = (E[ 3 Ykl}E[ 3 YkmmD
ki=1 k=1

= (EN,EY,...,EN,EY) = .
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‘We observe that

v () = B(e™X)

N N
(66(2k11:1Yk11+"'+Ek$:1Y’<mm))

=

e o]

1 Im
N PN = (L)) B( = Y e O Y

M

N
S
I
=)
~
3
I

N =(l1,. .. L)) B h=Ymny (51 Yemm)

N
=
I
=)
-~
|
=)

)
slm
I

N =(ly,...,l)(EEY ). (B(eY))ln

M
N
i

N
=
I
=)

L=

’ Z P(N = (l1,...,lm))(E(e5Y))l1+...+zm

lm=0

(( (TNt ) = W (0(9)).

Thus (26) follows from (15).
If w =0 we see that

or'%g

“(Xoi) =0 (ZYk z) =00 (Y) + 0*(Ni)y?,

established similarly to the fact at the end of the proof of Theorem 2. Now
(27) follows from (16). m

5. Further results: multiplier enlargement formulae. In this sec-
tion we modify the formulae obtained in the previous section by the so-called
multiplier enlargement method (see [6]) initiated by Hsu—Wang [9, 19] in the
60’s and also used by Shaw [17, 18] in the representation of operator semi-
groups. The modified representation formulae have a larger range of appli-
cations and when we specify the random vectors (variables) considered, we
recover the representation formulae for m-parameter operator semigroups
of Shaw [18]. For simplicity we only consider equibounded operator semi-
groups, i.e.,

|T(t)|] <M  foralltecRY.

Here we only need to give two versions related to Theorems 1 and 4. Others
can be similarly obtained.

THEOREM 5. Suppose |T(t)]| < M for all t € R, and ay, is a se-
quence of positive real numbers with liminf, .., a,, > 0. For each n € N
let X(n) be an R} -valued random vector with E[X(n)] = x/a,. Assume
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limsup,, ., ano2(X(n)) < oo, i=1,...,m. Then

el ()|} 7m0

< 2Mwo (T f, (o /)Y ?) [1 + %mMan Zaf(X(n))] .

i=1

(28)

Proof. For each fixed n, let Xy i X(n), k=1,...,n, and consider

1 n
Y = — nXk.

Then
B(Y) = E(}z ; anXk> — W B(X(n)) = anz/an =
and
E[T(Y)f =E [T(:L kz::l anXk>] f= {E [T(‘Z‘X@))] }nf
Furthermore,

Now take h = (a,,/n)'/?; then by (10), we get (28). m
THEOREM 6. Let o, be a sequence of positive real numbers satisfying

lim a,/n=0 and liminfa, > 0.

n—oo n—o0o

For each n € N, let N(n) := (Ny(n),...,Npn(n)) be a ZT-valued random
vector with E(N(n)) = (1/an)n = (1/an)(m, ..., Mm) and
limsup a,,0?(N(n)) < oo foralli=1,...,m.

For each i (1 < i < m), let {Yi(n)}2, be a sequence of i.i.d. random
variables, distributed as Y (n), where Y (n) is a fized real-valued random
variable for each n € N and E(Y (n)) = ayy. Suppose that Yo, (n) (i =
1,...,m) and N(n) are all independent. Assume also that

limsup o?(Y (n))/a? < oco.

n—oo

Consider the equibounded operator semigroup {T'(t) : t € R} with
ITt)|| <M  forallt € RT.
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Then
@) |{e]r (ZZ(_) Yt ]:Z:)iykmmm))}}nf—Twn)fu

< 20T, (o)) {1+ ZmM > [ 2o () + et |

=1

Proof. We want to apply Lemma 3. Let

Ni(n) Non(n)
X, = (X Vi) 3 Yium()
ki1=1 kmym=1
and
y-1 Zn:X
= .
k=1
Then
Nl(n) an(n)
EY)=EX)=(E( Y Yiam).....E( 3 Ykmm(n)>)
k1=1 km=
1
= | — MY,y — Dm0y (MY -y MmY) =N
Moreover
Ni(n) 1 N, (n) 1 n
E[T(Y)]f = {EH D Vi) Y] Ykmmm))]} f
ki1=1 km=
Furthermore
n Ni(n)
1 1
2 Y) = 2 = X — = 2 Y, i
) = (52X = ot (X ()

LLWQ(Y(H)) + UQ(Ni(n))afﬂﬂ .

Pick h := (a,/n)/?; then by (10) of Lemma 3 we have

Ny (n) N, (n)

(G ST, S|



Representation formulae for operator semigroups 265

< QMWQ(Tf, (Oén/n)l/Q)

< 2Muws(Tf, (an /1) "/?)

{1+ mMZ[ N+ anUZ(N(n))]}. -

6. Applications. In this section we specify the random vectors (vari-
ables) and «, of Theorems 1-6 to derive some concrete representation for-
mulae for (Cy) m-parameter operator semigroups. We also illustrate how
to get the results on multivariate approximation operators from the corre-
sponding ones on operator semigroups. Unless otherwise mentioned all (Cp)
m-parameter operator semigroups considered satisfy (5).

ExAMPLE 1. Take X = (Xo1, ..., Xom) that follows the multi-point dis-
tribution with EX =2 = (z1,...,2m):

P(XZGZ):QZl (61:(0,,1,,0))
and
P(X=0)=1-7, where0<Z<1(@T=x1+...+zy).
Then
* _ 5XY\ _ ~ _
Ve(6) = E()=P(X =0)+P(X = e’ =1 -7 +7e’ < o0.

Furthermore, we have

E[T(X/n)] = I+sz (1/n) —1I).
Hence by Theorem 1 there is a constant K = K(w, M, x, 0, m) such that
(30) (I + Z zi(Ti(1/n) = D))" f = T(x)f|

< Kws(Tf, 1/y/n) =0 (n— o0).

From the above result on operator semigroups we are able to recover
the approximation theorem for multivariate Bernstein operators as follows.
Choose

X :=BUC(R™)
:={f: f is a bounded uniformly continuous function from R"™ into R}

and define
Tt f(z) = f(x+t)=f(z1+t1, .., T +tm)
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for each f € X and x € R™. Then {T'(t) : t € R} is a (Cp) m-parameter
operator semigroup in £(X).

Now let = 0, t = (t1,...,tm), 0 <t < 1,0<t; <1,i=1,...,m.
Then

{1 umm - 0} o)

n!

- kez%:kgnf(kl/”’ L0 py e Py e |
x b k(1 =) F
=Bl (t1,....tm),
where BJ(t1,...,t,,) is the m-variate Bernstein operator over a simplex (cf.

[12]). So by (30), we obtain
lim BI(ty,...,tm) =Tt)f(0) = f(t1,...,tm), uniformly.

Remark. The fact that the approximation theorem for the Bernstein
operator can be derived from simple operator semigroup considerations has
been observed by many authors (see, e.g., [1, p. 28], [10] and [14]). When
considering other representation formulae for m-parameter operator semi-
groups in the following examples we may derive other known convergence
theorems for multivariate approximation operators, but we avoid to go into
details here.

ExXAMPLE 2. Let a, be a sequence of positive real numbers with
liminf, . o, > 0 and lim, o a,/n = 0. For each n € N take X(n) =
(Xo1(n),..., Xom(n)) to have a modified multi-point distribution:

P(X(n)=1¢€)=x;/a,, 1<i<m,
P(X(n)=0)=1-%7/a,, (0<7T/c, <1and z; >0).

Then
Ewmﬂ=§; (@ = (21, 2m)
and
X; x?
ot (X(n) = B(X}(n) = (B(X;(m))* = 7% = =5

For an equibounded (Cy) m-parameter operator semigroup {7'(t) : t €
R} with ||T(t)|| < M for all t € R, we have
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E [T(O‘”X(n)ﬂ =T(0)P(X(n) =0)+ Z:T(O:e> P(X(n) =€)

Thus by Theorem 5, we obtain

o [fre 2 (n (%) - 1)} r-re|
< a0t o+ v, 3 (25— 2]

i=1

2

= 2Muws(T'f, (an/n)"/?) [1 + ZmMg <$ - m)] —0  (n— o0).

Qp

Remark. (30) is the special case of (31) when «,, = 1, but (30) is true
for an arbitrary (Cy) m-parameter operator semigroup.

Inequalities (31) and the following (32)—(34) are Shaw’s formulae [17, 18]
supplied with rates of convergence.

EXAMPLE 3. Assume «,, is as in Example 2. For each n, let X (n) :=
(Xo1(n), ..., Xom(n)) follow the negative multi-point distribution:

P(X(n) = (k- km)) = (Z) (1 N alnx>‘1 ﬁ (anmjr x>k

i=1

for all k = (kyi,...,km) € ZT = {(n1,...,np) 1 n; € Zy,1 < i < m}, where
r=(x1,...,0p) € R is fixed and

n\ nmn-1)...(n—k+1)

k) kil k! ’
Then

and
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For an equibounded (Cy) m-parameter operator semigroup {7'(t) : t €
R} with ||T(t)|| < M for all t € R, we have

a[r(5x)]
:klzo... if(os(kl,...,km)) <:) <1+ ;x>‘1£[1 (anﬂc)ki
5002 R

— (1 + 1$>_1 [I ~miTi(on/n) +... + mem(an/n)] -1
{

a, +7T
I T T -t
I+ —7— 2Ty (an/n)—...— me(an/n)}

Qn Qn Qnp

oty (an/mwa{uzmM%i(“2>}

2
o o
i=1 N "

— OMus(Tf, (/) 72) {1 + ZmMi (x + 962)] L0 (n—o0).

i=1 n

EXAMPLE 4. In Theorem 6 take N(n) that follows the multi-point dis-
tribution:

P(N(n)=¢;) =x;/an, 1<i<m,
P(N(n)=0)=1-7/ay,, wherex = (21,...,2,) € R}, is fixed.

Here ay, is as in Example 2. Let Yp;(n), 1 < i < m, be exponentially dis-
tributed with density (1/a,)e=*/*" v € R,. Then

E(N(n)) = alnx _ (O}n:pl e alnxm> E(Yoi(n)) = an,
2(Ny(n)) = 22 — i and  o*(Yei(n)) = o2.
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Also
E[Ti (iy‘”(n)ﬂ _ 0T:F,-(v/n)alnev/an dv — (I . nAi) -1

(cf. [8, p. 360] and [18, p. 226]).
Furthermore, we have

Ni(n) 1 Nm(n)
E[T( > ~Yen(n LY Yk m(n ﬂ
km=1

klzl

= T(0)P(N(n) = 0) + éE [Ti (:LYk (n))] P(N(n) =e)

m —1
:I+Z§Z[<IO:A¢> 1].

By (29) of Theorem 6 for an equibounded (Cy) m-parameter operator
semigroup {7T'(t) : t € R} with ||T'(t)|| < M for all t € RT, we get

(33) H{I + i(zi/an) [<I - O;:AZ->_1 - 1} }nf - T(x)fH

< 2Muws (T, (an/n)”){l + imMZ [na +0‘"<§i B f;)]}

= 2Mws(Tf, (an/n)'/?) [1 + imMZ(QxZ - x?/an)] —0 (n— o).

EXAMPLE 5. Take «a;, and Yj;(n) as in Example 4. Let N(n) have the
negative multi-point distribution:

P(N(n) = (l1,...,lm)) = (ﬁ) (Haln"”’)_lﬁ (an$+x)l

=1

for all I = (Iy,...,ln) € ZT7, where x = (21,...,2,) € R is fixed. Then

n

BOV) = o= (o ) B0 = an

2
xX; xX;
OQ(NZ'(?’L)) = é o and  o?(Yoi(n)) = 2.

Furthermore, we observe that
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E[T( %Ykll(n),..., > TllYkmm(n)>]
ki1=1 km=1
= ¥ PN = [T(él iYkll(n)> - ,T<§; iYkmmm))]
02 T
_ {1 o - :1 ZE[Ti(Y/n)]}I
- {I+ an-iZ(I— OZlAz)l}l

Sl )

Thus by (29) of Theorem 6, for an equibounded (Cjy) m-parameter operator
semigroup {7'(t) : t € R} with ||T'(¢)|| < M for all t € RT?, we have

[ S R | R

i=1

1/2 9 S Ti 9 :U? T;
i=1 n

oy

O Muwn(Tf, (an /)2 [1 + ZmMZm: <2xi + f)] S0 (n— o0).

i=1 n
ExAMPLE 6. Take N to be a non-negative integer-valued random variable
that follows the geometric distribution over Z :

k
1
P(N =k) = o0 <1‘7‘77> for all kK € Z, where nn > 0 is a parameter.

Let also Y = (21,...,%m,) € RY. Then
E(N)=n>0, EY=(z1,...,2m) =.

Furthermore,

* x T 1
LDN(EP)?((D) = E<e5( 1+...+ m)N) — i - 65(11+---+wm)77 < 0

for 6 < (1/Z)In(1 + 1/n). So by Theorem 2, there is a constant K =
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K(M,w,d,n,x) such that for sufficiently large n,

(35)  I{¥n~(ET(Y/n))}"f = T(nx)f]]
=L +nll =T(z1/n, ... ,z0/n)]} " f = T(nz) f]]
< Kws(Tf,1/v/n) -0 (n — o).

ExXAMPLE 7. In Theorem 3, take p = ¢ = 2, and N, to be the Poisson
process (7 € Ry):

k
P(N,=k)=¢e"" (77];) for all k € Z'"', where n > 0 is a parameter.

Consider X = (z1,...,2p,) = x € RT. Then
B(N,) =nm, Wy () = €07, () = & < v,
Furthermore, note that

2 w=
dy = limsup ¥y (LP;((W)) = lim sup exp[(e%w — 1)nT]

T—00 T T—00

2 _
< lim sup exp [nwae(z“’/T)m} < 00,
T

1 49+ 1/2 9 1/2
d2 :11mSUpT{E|:<NT—77> :|} :hmsup7-<3772_|_773) < 00
T—0o0 T T—00 T T
and

d3 = limsup ¥y,

2
mow ¥ (a1
. 2 .
= thllp exp { (exp |:e2(\/7>'(5—1)2626 :| — 1)7]7’}

< lim sup exp #e%iexp #6265 nT p < 00

T oo e2(y/T0 — 1)2 e2(y/70 — 1)2 '
So by (24) of Theorem 3 there exists a constant K = K (0, M,w,dy,ds,d3)
such that for sufficiently large n we have

(36)  [[¥n, (E(T(X/7))f —Tnz)f|
= |lexp[n7(T(z1/7,...,xm/7) = D]f = T(nz) |
< Kwy(Tf,1/v/7) —0 (1 — o0).

66”@;‘((6)>
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