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Lp-convergence of Bernstein–Kantorovich-type operators

by Michele Campiti (Bari) and Giorgio Metafune (Lecce)

Abstract. We study a Kantorovich-type modification of the operators introduced in
[1] and we characterize their convergence in the Lp-norm. We also furnish a quantitative
estimate of the convergence.

In [1] and [2] we introduced a modification of classical Bernstein oper-
ators in C([0, 1]) which we used to approximate the solutions of suitable
parabolic problems. These operators are defined by

(1) An(f)(x) :=
n∑
k=0

αn,kx
k(1− x)n−kf(k/n), f ∈ C([0, 1]), x ∈ [0, 1],

where the coefficients αn,k satisfy the recursive formulas

αn+1,k = αn,k + αn,k−1, k = 1, . . . , n,(2)
αn,0 = λn, αn,n = %n,(3)

and (λn)n∈N, (%n)n∈N are fixed sequences of real numbers.
In [1], we investigated convergence and regularity properties of these op-

erators; in particular, we found that (An)n∈N converges strongly in C([0, 1])
if and only if (λn)n∈N and (%n)n∈N converge. In this case An(f)→ w · f , for
every f ∈ C([0, 1]), where

(4) w(x) =
∞∑
m=1

(λmx(1− x)m + %mx
m(1− x))

is continuous in [0,1] and analytic in ]0,1[.
Connections with semigroup theory and evolution equations, via a Voro-

novskaya-type formula, have been explored in [2].
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In this paper we deal with a Kantorovich-type version of the operators
(1) (see [3, p. 30]) and characterize the convergence in the Lp-norm giving
also a quantitative estimate.

Let 1 ≤ p <∞ and define an operator Kn : Lp([0, 1])→ Lp([0, 1]) by

(5) Kn(f)(x) :=
n∑
k=0

αn,kx
k(1− x)n−k(n+ 1)

(k+1)/(n+1)∫
k/(n+1)

f(t) dt,

for every f ∈ Lp([0, 1]) and x ∈ [0, 1], where the coefficients αn,k satisfy (2)
and (3).

If λm = %m = 1 for every m = 1, . . . , n, then αn,k =
(
n
k

)
, k = 0, . . . , n,

whence the operator Kn becomes the well-known nth Bernstein–Kanto-
rovich operator on Lp([0, 1]) (see, e.g., [3, p. 31]), in the sequel denoted
by Un.

We define

(6) s(n) := max
m≤n
{|λm|, |%m|}, M := sup

n≥1
s(n) ≤ ∞.

Note that
∑n
k=0

(
n
k

)
xk(1 − x)n−k = 1 and xk(1 − x)n−k ≥ 0 for every

x ∈ [0, 1]. Hence by the convexity of the function t→ tp (p ≥ 1) and Jensen’s
inequality applied to the measure (n+ 1)dt, we get, for every f ∈ Lp([0, 1]),

|Kn(f)(x)|p ≤ s(n)p
n∑
k=0

(
n

k

)
xk(1− x)n−k(n+ 1)

(k+1)/(n+1)∫
k/(n+1)

|f(t)|p dt.

Consequently, the equality
1∫

0

xk(1− x)n−k dx =
1

n+ 1

(
n

k

)−1

, k = 0, . . . , n,

yields ‖Kn(f)‖p ≤ s(n)‖f‖p and hence

(7) ‖Kn(f)‖p ≤ s(n).

On the other hand, if we take the function f = sign(λn) · χ[0,1/(n+1)],
then ‖f‖p = 1/(n+ 1)1/p and

‖Kn‖p ≥
‖Kn(f)‖p
‖f‖p

= |λn|
(
n+ 1
np+ 1

)1/p

≥ p−1/p|λn|,

from which
|λn| ≤ p1/p‖Kn‖p.

Analogously,
|%n| ≤ p1/p‖Kn‖p.

These last inequalities together with (7) lead us to the following result.
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Proposition 1. The sequence (‖Kn‖p)n∈N is bounded if and only if the
sequences λ = (λn)n∈N and % = (%n)n∈N are bounded. In this case

(8) sup
n≥1
‖Kn‖p ≤M.

In the following, we assume that the sequences λ = (λn)n∈N and % =
(%n)n∈N are bounded. Consequently, the function w defined by (4) satisfies

(9) ‖w‖∞ ≤M.

Observe that w is not necessarily continuous on [0,1]. More precisely, if
λn ≥ 0 and %n ≥ 0 for every n ≥ 1, then the existence of the limit

lim
x→0+

w(x) ( lim
x→1−

w(x), respectively)

is equivalent to the existence of the limit

lim
n→∞

λ1 + . . .+ λn
n

(
lim
n→∞

%1 + . . .+ %n
n

, respectively
)
,

and these two limits coincide (see, e.g. [5, Ch. 7, §5, pp. 226–229]).
However, by (9), the operator K : Lp([0, 1]) → Lp([0, 1]) defined by

K(f) = w · f for every f ∈ Lp([0, 1]) is continuous in the Lp-norm and
satisfies

‖K‖p = ‖w‖∞.

Before stating our convergence results, we need some elementary formu-
las for Kantorovich operators. Using the following identities for Bernstein
operators:

Bn(1) = 1, Bn(id) = id, Bn(id2) =
n− 1
n

id2 +
1
n

id,

we obtain by direct computation

Un(1) = 1, Un(id) =
n

n+ 1
id +

1
2(n+ 1)

,

Un(id2) =
n(n− 1)
(n+ 1)2

id2 +
2n

(n+ 1)2
id +

1
3(n+ 1)2

and consequently, for fixed x ∈ [0, 1],

(10) Un((id−x · 1)2)(x)

=
n− 1

(n+ 1)2
x(1− x) +

1
3(n+ 1)2

≤ 3n+ 1
12(n+ 1)2

≤ 1
4(n+ 1)

.

Moreover, we give an explicit expression of the function Kn(1) in terms
of the assigned sequences (λn)n∈N and (%n)n∈N.
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Lemma 2. We have

(11) Kn(1) =
n−1∑
m=1

(λmx(1− x)m + %mx
m(1− x)) + λn(1− x)n + %nx

n.

P r o o f. We proceed by induction on n ≥ 1; if n = 1, (11) is obviously
true. Supposing (11) true for n ≥ 1, we have by (2) and (3),

Kn+1(1) =
n+1∑
k=0

αn+1,kx
k(1− x)n+1−k

= λn+1(1− x)n+1 + %n+1x
n+1

+
n∑
k=1

(αn,k + αn,k−1)xk(1− x)n+1−k

= λn+1(1− x)n+1 + %n+1x
n+1

+ (1− x)
n∑
k=1

αn,kx
k(1− x)n−k + x

n−1∑
k=0

αn,kx
k(1− x)n−k

= (λn+1 − λn)(1− x)n+1 + (%n+1 − %n)xn+1

+ (1− x)
n∑
k=0

αn,kx
k(1− x)n−k + x

n∑
k=0

αn,kx
k(1− x)n−k

= (λn+1 − λn)(1− x)n+1 + (%n+1 − %n)xn+1 +Kn(1)
= (λn+1 − λn)(1− x)n+1 + (%n+1 − %n)xn+1

+
n−1∑
m=1

(λmx(1− x)m + %mx
m(1− x)) + λn(1− x)n + %nx

n

= λn+1(1− x)n+1 + %n+1x
n+1 +

n−1∑
m=1

(λmx(1− x)m

+ %mx
m(1− x)) + λn(1− x)nx+ %nx

n(1− x)
= λn+1(1− x)n+1 + %n+1x

n+1

+
n∑

m=1

(λmx(1− x)m + %mx
m(1− x))

and hence (11) holds for n+ 1.

Theorem 3. The following statements are equivalent :

(a) For every f ∈ Lp([0, 1]), the sequence (Kn(f))n∈N converges in the
Lp-norm;

(b) The sequences (λn)n∈N and (%n)n∈N are bounded.
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Moreover , if statement (a) or equivalently (b) is satisfied , then

(12) lim
n→∞

‖Kn(f)− w · f‖p = 0

for every f ∈ Lp([0, 1]).

P r o o f. By the Banach–Steinhaus theorem and Proposition 1, we only
have to prove the implication (b)⇒(a). By Proposition 1 again, the sequence
(Kn)n∈N is equibounded in the Lp-norm, and therefore it is sufficient to show
that limn→∞ ‖Kn(f)− w · f‖p = 0 for every f ∈ C([0, 1]).

If f ∈ C([0, 1]), then

(i) ‖Kn(f)− w · f‖p ≤ ‖Kn(f)− f ·Kn(1)‖∞ + ‖f‖∞ · ‖Kn(1)− w‖p.

By (10) and the inequality |f(t)−f(x)| ≤ (1+δ−2(t−x)2)ω(f, δ), where
ω(f, δ) is the modulus of continuity of f , we get

|Kn(f)(x)− f(x) ·Kn(1)(x)|

≤M
n∑
k=0

(
n

k

)
xk(1− x)n−k(n+ 1)

(k+1)/(n+1)∫
k/(n+1)

|f(t)− f(x)| dt

≤Mω(f, δ)
n∑
k=0

(
n

k

)
xk(1− x)n−k(n+ 1)

(k+1)/(n+1)∫
k/(n+1)

(
1 +

(t− x)2

δ2

)
dt

≤Mω(f, δ)
(

1 +
1
δ2
· 1

4(n+ 1)

)
.

Taking δ = 1/
√
n+ 1, we obtain

‖Kn(f)− f ·Kn(1)‖∞ ≤
5
4
Mω

(
f,

1√
n+ 1

)
.

Finally, we estimate the second term on the right-hand side of (i). By
Lemma 2, we have

|Kn(1)(x)− w(x)|

=
∣∣∣λn(1− x)n + %nx

n −
∞∑
m=n

(λmx(1− x)m + %mx
m(1− x))

∣∣∣
=
∣∣∣(1− x)n

∞∑
m=0

(λn − λn+m)x(1− x)m + xn
∞∑
m=0

(%n − %n+m)xm(1− x)
∣∣∣

≤ 2M((1− x)n + xn);
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this yields

‖f ·Kn(1)− w · f‖p ≤ 2M
( 1∫

0

((1− x)n + xn)p dx
)1/p

‖f‖∞

≤ 4M
( 1∫

0

xnp dx
)1/p

‖f‖∞

= 4M
(

1
np+ 1

)1/p

‖f‖∞

and the proof is complete.

It is well known that if f ∈ Lp([0, 1]) and x ∈ [0, 1] is a Lebesgue point
for f , i.e.,

lim
δ→0

1
δ

δ∫
0

|f(x+ t)− f(x)| dt = 0,

then (see [3, p. 30])

(13) lim
n→∞

Un(f)(x) = f(x).

In particular,

lim
n→∞

Un(f) = f a.e.

Next we prove an analogous result for the operators Kn.

Proposition 4. If λ = (λn)n∈N and % = (%n)n∈N are bounded sequences
and f ∈ Lp([0, 1]), then

(14) lim
n→∞

Kn(f)(x) = w(x) · f(x)

at every Lebesgue point x ∈ ]0, 1[. Consequently , limn→∞Kn(f) = w ·f a.e.

P r o o f. Let x ∈ ]0, 1[ be a Lebesgue point for f . Then

|Kn(f)(x)− f(x) ·Kn(1)(x)|

≤M
n∑
k=0

(
n

k

)
xk(1− x)n−k(n+ 1)

(k+1)/(n+1)∫
k/(n+1)

|f(t)− f(x)| dt

= MUn(ux)(x),

where ux(t) := |f(t)− f(x)|.
Since x is a Lebesgue point for ux and ux(x) = 0, by (13) it follows that

limn→∞ Un(ux)(x) = 0 and hence limn→∞ |Kn(f)(x)−f(x) ·Kn(1)(x)| = 0.
Moreover, limn→∞ |f(x)| · |Kn(1)(x) − w(x)| = 0 since x ∈ ]0, 1[ and

therefore (14) follows.
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Finally, we state a quantitative estimate of the convergence in terms of
the averaged modulus of smoothness τ(f, δ)p defined by

(15) τ(f, δ)p :=
( 1∫

0

ω(f, x, δ)p dx
)1/p

for every f ∈ Lp([0, 1]), 1 ≤ p <∞, and δ > 0, where

(16) ω(f, x, δ) := sup{|f(t+h)−f(t)| | t, t+h ∈ [x− δ/2, x+ δ/2]∩ [0, 1]}.

Denote by M([0, 1]) the space of all bounded measurable real functions
on [0,1].

If L : M([0, 1]) → M([0, 1]) is a positive operator satisfying L(1) = 1
and

(17) d = ‖ id2 +L(id2)− 2 id ·L(id)‖∞,

it is well known that

(18) ‖L(f)− f‖p ≤ 748τ(f,
√
d)p

for every f ∈M([0, 1]) and 1 ≤ p <∞ (see, e.g., [4, Theorem 4.3]).
In the case of Bernstein–Kantorovich operators, the preceding inequality

yields

(19) ‖Un(f)− f‖p ≤ 748τ
(
f,

1√
n+ 1

)
p

.

If L(1) is strictly positive, we may apply (18) to the operator L/L(1) and
we have

(20) ‖L(f)− f · L(1)‖p ≤ ‖L(1)‖
∥∥∥∥L(f)
L(1)

− f
∥∥∥∥
p

≤ 748‖L(1)‖τ(f,
√
δ)p,

where

(21) δ =
∥∥∥∥ id2 ·L(1) + L(id2)− 2 id ·L(id)

L(1)

∥∥∥∥
∞
.

Theorem 5. Assume that the sequences λ = (λn)n∈N and % = (%n)n∈N
are bounded. Then, for every n ≥ 1 and f ∈M([0, 1]),

(22) ‖Kn(f)− w · f‖p ≤ Cτ
(
f,

1√
n+ 1

)
p

+ 4M
(

1
np+ 1

)1/p

‖f‖∞,

where the constant C depends only on λ and % (e.g., C = 1683M).

P r o o f. For every f ∈M([0, 1]), we write

(i) ‖Kn(f)− w · f‖p ≤ ‖Kn(f)− f ·Kn(1)‖p + ‖f‖∞ · ‖Kn(1)− w‖p
and we estimate separately the two right-hand terms.
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If c > M , then we consider Kn,c = Kn + c · I which satisfies Kn,c(1) > 0
and

(ii) Kn,c(f)− f ·Kn,c(1) = Kn(f)− f ·Kn(1).

By (19) and (20) we have

(iii) ‖Kn,c(f)− f ·Kn,c(1)‖p ≤ 748‖Kn,c(1)‖τ(f,
√
δ)p,

where, by (10),

δ =
∥∥∥∥ id2 ·Kn,c(1) +Kn,c(id2)− 2 id ·Kn,c(id)

Kn,c(1)

∥∥∥∥
∞

=
∥∥∥∥ id2 ·Kn(1) +Kn(id2)− 2 id ·Kn(id)

Kn,c(1)

∥∥∥∥
∞

= sup
0≤x≤1

∣∣∣∣Kn((id−x · 1)2)(x)
Kn,c(1)(x)

∣∣∣∣
≤ M

c−M
sup

0≤x≤1
|Un((id−x · 1)2)(x)| ≤ M

4(c−M)(n+ 1)
.

Choosing c = 5
4M , we obtain δ ≤ 1/(n+ 1) and ‖Kn,c(1)‖∞ ≤ 9

4M . Conse-
quently, by (ii) and (iii), it follows that

‖Kn(f)− f ·Kn(1)‖p ≤ 1683Mτ

(
f,

1√
n+ 1

)
p

.

The second term on the right-hand side of the inequality (i) has been
already estimated in the proof of Theorem 3.
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Reçu par la Rédaction le 6.11.1994
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