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Convergence of iterates
of Lasota–Mackey–Tyrcha operators

by Wojciech Bartoszek (Pretoria)

Abstract. We provide sufficient and necessary conditions for asymptotic periodicity
of iterates of strong Feller stochastic operators.

1. Let (X, d) be a locally compact, metric, Polish space and B denote
the σ-algebra of Borel subsets in X. Given a σ-finite measure µ on (X,B)
we denote by (L1(µ), ‖·‖) the Banach lattice of µ-integrable functions on X.
Functions which are equal µ-almost everywhere are identified. A linear op-
erator P on L1(µ) is called stochastic (or Markov according to Lasota’s
terminology) if

Pf ≥ 0 and
∫
X

Pf dµ = 1

for all nonnegative and normalized (densities) f ∈ L1(µ). The convex set of
all densities is denoted by Dµ (simply D if X = R+ and µ is the Lebesgue
measure on R+). If there exists a Borel measurable function k : X×X → R+

such that

Pf(x) =
∫
X

k(x, y)f(y) dµ(y)

then P is called a kernel operator .
We notice that each kernel stochastic operator may be extended to

the Banach lattice M(X) of all bounded signed Borel measures on (X,B).
Namely, if ν ∈M(X) and A is Borel we define
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Pν(A) =
∫
X

∫
X

k(x, y)1A(x) dµ(x) dν(y).

Obviously Pν ∈ L1(µ).
The paper is particularly devoted to stochastic kernel operators on

L1(R+) with kernels

(∗) k(x, y) =

{
− ∂

∂x
H(Q(λ(x))−Q(y)) if 0 ≤ y ≤ λ(x)

0 otherwise.
They appear in mathematical modelling of the cell cycle. A systematic study
of the asymptotic properties of iterates of (∗) is being continued by Lasota
and his collaborators. The reader is referred to [6] for a comprehensive and
updated review of the subject. Here we shall concentrate on the mathemati-
cal side rather than on biological applications. Our paper often refers to [1].
Following it we shall assume:

(H) H : [0,∞) → [0,∞) is nonincreasing and absolutely continuous,
H(0) = 1 and limx→∞H(x) = 0,

(Qλ) Q : [0,∞) → [0,∞) and λ : [0,∞) → [0,∞) are nondecreas-
ing, absolutely continuous, Q(0) = λ(0) = 0 and limx→∞Q(x) =
limx→∞ λ(x) =∞.

The class of stochastic operators P with kernels (∗) satisfying (H) and (Qλ)
is denoted by LMT (Lasota, Mackey, Tyrcha (cf. [7]) who contributed much
to the discussed matters). It has recently been proved in [1] that if a LMT
stochastic operator P additionally satisfies:

(α)
∫∞
0
xαh(x) dx < lim infx→∞Q(λ(x))α − Q(x)α for some 0 < α ≤ 1,

where h(x) = −dH(x)/dx for almost all x, and

(c) there exists a nonnegative c such that h(x) > 0 for almost all x ≥ c,

then there exists a unique f∗ ∈ D such that

lim
n→∞

‖Pnf − f∗‖ = 0 for all f ∈ D

(P is asymptotically stable). In this paper we drop condition (c) and prove
that the iterates of a LMT operator with (H), (Qλ) and (α) are strong op-
erator topology convergent to a finite-dimensional projection (with a slight
abuse of the terminology such operators are also called stable (cf. [9])).

We begin with considering a general case. Let us recall (cf. [10]) that a
kernel stochastic operator P on L1(µ) is called strong Feller in the strict
sense if
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(SFS) X 3 y → k(·, y) ∈ Dµ is L1-norm continuous.

Note that (SFS) implies the continuity of P ∗h, where h ∈ L∞(µ) and
P ∗ stands for the adjoint operator. This easily follows from P ∗h(y) =∫
X
k(x, y)h(x) dµ(x). It is also well known that if X is compact then (SFS)

kernel stochastic operators are compact (see [10]). More details concern-
ing asymptotic properties of iterates of compact (or quasi-compact) positive
contractions on Banach lattices can be found in [3] and [4].

If X is not compact then (SFS) does not guarantee automatically any
regularity of the trajectories Pnf . For instance, it may happen that for
some f ∈ Dµ the sequence Pnf converges to a density, while for other f
we have

∫
K
Pnf dµ → 0 for every compact K ⊂ X. Roughly speaking,

starting from “good” states the process is rather concentrated, but start-
ing from “bad” states it escapes to “infinity”. Also all mixed situations
may occur. The so-called Doeblin condition is never satisfied if the transi-
tion kernels k(·, ·) do not allow “long jumps” (i.e. if d(y, z) → ∞ implies∫
X
|k(x, y)− k(x, z)| dµ(x)→ 0).
For noncompact X, in order to obtain asymptotic regularity of iterates

of (SFS) stochastic operators, we must impose some extra assumptions. Fol-
lowing [5] we say that a stochastic operator P on L1(µ) is asymptotically
periodic if there exist densities g1, . . . , gr ∈ L1(µ) with disjoint supports,
functionals Λ1, . . . , Λr on L1(µ) and a permutation α of {1, . . . , r} so that
for all f ∈ L1(µ) we have

lim
n→∞

∥∥∥Pnf − r∑
j=1

Λj(f)gαn(j)

∥∥∥ = 0.

P is said to be constrictive if there exists an L1-norm compact set F ⊆ Dµ
such that dist(Pnf,F) → 0 for all f ∈ Dµ. It has been proved in [5]
that each constrictive stochastic operator P on L1(µ) is asymptotically
periodic.

Given a (SFS) stochastic operator P on L1(µ) we identify here an in-
variant sublattice on which P is asymptotically periodic. This sublattice
appears to be trivial exactly when for each compact K ⊆ X there exists
f ∈ Dµ such that

lim
N→∞

1
N

N−1∑
j=1

∫
K

P jf dµ = 0.

Condition (SFS) is usually easy to verify. We remark that many im-
portant kernels used in mathematical modelling of biological systems have
this property. For instance, using [8], Theorem 7.4.8, we easily check that if
yn → y then
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∞∫
0

∣∣∣∣ ∂∂xH(Q(λ(x))−Q(y))− ∂

∂x
H(Q(λ(x))−Q(yn))

∣∣∣∣ dx
=
∞∫
0

|h(Q(λ(x))−Q(y))− h(Q(λ(x))−Q(yn))|(Q ◦ λ)′(x) dx

=
∞∫
0

|h(t−Q(y))− h(t−Q(yn))| dt−−→
n→∞

0,

with our convention that h(x) ≡ 0 if x ≤ 0. Hence LMT operators satisfy
(SFS).

2. The purpose of this section is to show asymptotic periodicity of (SFS)
operators. The reader can view it as a generalization of [2].

We denote by C0(X) the Banach lattice of all continuous functions h on
X such that for every ε > 0 there exists a compact set Eε ⊆ X such that
|h(x)| ≤ ε for all x 6∈ Eε (endowed with the ordinary sup-norm ‖ · ‖sup).
Given a stochastic operator P we denote by F the minimal (modulo sets
of measure zero) measurable set which carries supports of all P -invariant
densities (its existence follows from separability of the L1(µ)). Obviously
L1(F ) is P -invariant.

The next result, which will be the main ingredient of the proofs in Section
3, is also of some independent interest.

Theorem 1. Let P be a (SFS ) stochastic operator on L1(µ) such that
P ∗ preserves C0(X). If

(i) there exists a compact set K ⊆ X such that

lim
N→∞

1
N

∫
K

N−1∑
j=0

P jf dµ > 0 for all f ∈ Dµ,

then F is nontrivial and P is asymptotically periodic on L1(F ). In partic-
ular , there are only finitely many P -invariant ergodic densities.

P r o o f. The set of all subprobabilistic positive measures on X is a com-
pact convex set with respect to the vague topology (we say that a varia-
tion norm bounded sequence of measures νn is vaguely convergent to ν if
limn→∞

∫
X
h dνn =

∫
X
h dν for all h ∈ C0(X)). Given f ∈ Dµ we may

choose a sequence nk ↗∞ so that the measures with densities

1
nk

nk−1∑
j=0

P jf = Ank
f

are vaguely convergent. By (i) the limit ν is nonzero and PAnjf tends to
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Pν vaguely. Since

‖Ank
f − PAnk

f‖ =
∥∥∥∥Pnkf − f

nk

∥∥∥∥−−→k→∞
0

we conclude that ν = Pν ∈ L1(µ) is a fixed point of P . Normalizing ν if
necessary we obtain a P–invariant density.

Now we show that the linear subspace (sublattice) Fix(P ) of all P -
invariant functions is finite-dimensional. Assume we are given pairwise or-
thogonal P -invariant densities f1, . . . , fk. By (i) we have

∫
K
fj dµ > 0. Con-

sider the following family of (restricted to K) continuous functions:

gj = (P ∗1Fj )|K , where Fj = supp(fj).

Clearly
gj(x) = 1 for all x ∈ F j ∩K,

and
gj(x) = 0 if x ∈

⋃
l 6=j

F l ∩K.

As a result, ‖gj − gl‖sup = 1 for j 6= l. The condition (SFS) combined with
the Arzelà theorem easily gives ‖ · ‖sup-compactness of P ∗B1|K , where B1

stands for the unit ball of L∞(µ). Hence, k is bounded and there are only
finitely many ergodic P -invariant densities f1, . . . , fr.

For fixed 1 ≤ j ≤ r we show that P is asymptotically periodic on L1(Fj).
First we notice that each trajectory

γ(f) = {Pnf}n≥0, where f ∈ L1(Fj),

is L1-norm relatively compact. We may confine discussion to 0 ≤ f ≤ fj .
Clearly γ(f) is weakly compact, which follows from invariance and weak
compactness of the order interval [0, fj ] = {f ∈ L1(Fj) : 0 ≤ f ≤ fj} (see
[11], II.5.10). Let Pnlf be an arbitrary sequence. We choose a subsequence
Pnlm f which is weakly convergent to f̃ . Suppose Pnlm f is not norm rela-
tively compact. Choosing a further subsequence if necessary we may assume
that

‖Pnlm+1+1f − Pnlm+1f‖ > ε

for some ε > 0 and all m. By Prokhorov’s theorem the sequence of densities
Pnf is tight. Hence there exists a compact set Kε ⊆ X such that for all n,∫

X\Kε

Pnf dµ ≤ ε/4.

Now we find hm ∈ L∞(Fj) with |hm| ≤ 1 so that∫
X

P (Pnlm+1 f − Pnlm f)hm dµ > ε.
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Then ∫
Kε

(Pnlm+1 f − Pnlm f)P ∗hm dµ ≥ ε/2.

As before {P ∗hm|Kε
}∞m=1 is relatively compact for the uniform convergence

on Kε. Choosing again a subsequence we may assume that P ∗hm → h
uniformly on Kε. This leads to a contradiction as

ε/2 ≤ lim
m→∞

∫
Kε

(Pnlm+1 f − Pnlm f)P ∗hm dµ

= lim
m→∞

∫
Kε

(Pnlm+1 f − Pnlm f)h dµ = 0.

We denote by Ωj the subspace of all L1-norm recurrent f ∈ L1(Fj). It is
well known that Ωj consists of all limit vectors in L1(Fj) (see [3], [4] for all
details). Given a sequence n = nk ↗ ∞ we denote the by Ωn the closed
sublattice of Ωj consisting of all vectors f which are recurrent along the
sequence nk (i.e. ‖Pnkf − f‖ → 0 as k → ∞). We notice that regardless
of the dimension of Ωn, for every compact C ⊆ X the restricted sublattice
Ωn|C is finite-dimensional. In fact, dimΩn|C ≤ rC , where rC denotes the
largest j such that there are 0 ≤ h1, . . . , hj ≤ 1, hl ∈ P ∗B1, with

sup
x∈C
|hl(x)− hl̃(x)| = 1

for distinct l, l̃ (it follows from (SFS) that rC is finite). Let g̃1 = β1g1|C , . . . ,
g̃rC

= βrC
grC
|C form a normalized, positive and orthogonal basis in Ωn|C

(for some βl ≥ 1 and gl ∈ Ωn). Given ε > 0 we find a compact set C=Cε⊆
X such that ∫

C

fj dµ > 1− ε.

It follows from the ergodicity of fj that for each density g ∈ Ωn we have
Ang → fj in L1(Fj). Hence there exists n such that∫

C

Png dx > 1− ε.

We have

Png|C =
rC∑
l=1

αlg̃l, where αl ≥ 0, and 1 ≥
rC∑
l=1

αl > 1− ε.

Equivalently, for each g ∈ Ωn there is a natural n so that

dist(Png, conv{g̃1, . . . , g̃rC
, 0}) < ε.
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Therefore,

dist(Pn+kg,Fε,n) ≤ ε for all k ≥ 0,

where Fε,n denotes the L1-norm closure of the set{ rC∑
l=1

αlP
kg̃l : k = 0, 1, 2, . . . ,

rC∑
l=1

αl ≤ 1, αl ≥ 0
}
.

As all trajectories in L1(Fj) are norm relatively compact the set Fε,n is
compact. Clearly it is P -invariant. Hence by recurrence of Png we obtain

dist(g,Fε,n) ≤ ε.

Since ε > 0 is arbitrary, this implies that the set of all densities from Ωn is
relatively compact, and Ωn is finite-dimensional with dimΩn ≤ rC . More-
over, P has a positive inverse on Ωn, so from the general theory of Markov
operators P permutes vectors of a unique, positive, normalized and orthog-
onal basis in Ωn. In particular, P is periodic (i.e. P d = Id, where d = d(n)
depends on n) on Ωn.

For arbitrary Ωn, Ωm we may find d (for instance d = d(n) · d(m)) such
that Ωn, Ωm ⊆ Ω{kd}. Hence,

dimΩj |C = dim{f |C : f ∈ Ωj} ≤ rC .

Repeating the arguments applied to Ωn|C , we construct a compact set Fε
such that

dist(g,Fε) ≤ ε for all densities g ∈ Ωj .
Since ε may be taken as small as we wish, Ωj is finite-dimensional. For
each density f ∈ L1(Fj) the iterates Pnf are attracted to the set Dµ ∩Ωj ,
which obviously is norm compact. In particular, P is constrictive. By [5]
(see also [2]–[4]), P is asymptotically periodic on L1(Fj). We easily extend
this property to L1(F ) where F =

⋃r
j=1 Fj .

We want to emphasize that if P satisfies (SFS) and P ∗ preserves C0(X),
and F is nontrivial, then for each f ∈ L1(F ) and ε > 0 there exists fε such
that ‖f − fε‖ ≤ ε and the trajectory γ(fε) asymptotically becomes periodic
(i.e. ω(fε) = {f̃ : limn→∞‖Pnfε− f̃‖ = 0} is finite, and P permutes ω(fε)).
Then we may say that P is almost asymptotically periodic on L1(F ). In
contrast to this, one can show that the substochastic operator P̃ defined on
L1(F c) by P̃ f = (Pf)|F c (where F c = X \ F ) is Cesàro sweeping (consult
[6] for the terminology). For general f ∈ Dµ the asymptotic properties of
the trajectory γ(f) depend on

δ(f) = lim
n→∞

∫
F

Pnf dµ.
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If δ(f) > 0 then an asymptotically nontrivial portion of Pnf behaves pe-
riodically. The case when the quantity δ(f) is uniformly separated from 0,
for all f ∈ D, is discussed below.

Corollary 1. Let P be a kernel stochastic operator on L1(µ) satisfying
(SFS ) and such that P ∗ preserves C0(X). Then the following conditions are
equivalent :

(i) P is asymptotically periodic on L1(µ),
(ii) there exist a compact set K ⊆ X and δ > 0 such that

lim
n→∞

∫
K

f + Pf + . . .+ Pn−1f

n
dµ > δ for all f ∈ Dµ.

P r o o f. Only (ii) implies (i) needs to be proved. By Theorem 1 it is
enough to show that for each f ∈ Dµ we have

lim
n→∞

∫
F

Pnfdµ = 1

(here we may repeat essentially the same arguments as in the proof of The-
orem 1.3 in [1], but for the sake of completeness we provide a full proof).
Choosing a subsequence if necessary we may assume that(

1
nk

nk−1∑
j=0

P jf

)∣∣∣∣
K

−−→
k→∞

f∗|K

in the L1-norm, where f∗ is P -invariant. By (ii) we easily get δ < ‖f∗|K‖.
As a result, for every f ∈ Dµ there is a natural n so that∫

F

Pnf dµ > δ.

Suppose that there exists f ∈ Dµ with δ(f) < 1. If m is large enough then∫
F

Pmf dµ > δ(f)− (1− δ(f))δ
2

.

Consider

f1 =
1F cPmf∫
F c Pmf dµ

.

There is n such that∫
F

Pnf1 dµ =
1∫

F c Pmf dµ

∫
F

Pn(1F cPmf) dµ > δ.

Thus,
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Pn+mf dµ =
∫
F

Pn(1FPmf + 1F cPmf) dµ

=
∫
F

Pn(1FPmf) dµ+
∫
F

Pn(1F cPmf) dµ

>
∫
F

Pmf dµ+ δ
∫
F c

Pmf dµ

≥ δ(f)− (1− δ(f))δ
2

+ (1− δ(f))δ

= δ(f) +
(1− δ(f))δ

2
> δ(f),

contradicting the definition of δ(f).

C o m m e n t. We remark that all the above results remain valid for P
being strongly Feller (i.e. P ∗h is continuous for all bounded measurable h).
In fact, it is well known (see Theorem 5.9 on p. 37 of [10]) that strong Feller
implies (SFS) for P 2.

3. In this section we study asymptotic properties of the iterates of LMT
operators. It has been just noticed that they are strong Feller in the strict
sense. Since

k(x, y) = − ∂

∂x
H(Q(λ(x))−Q(y)) = 0

if

x ≤ λ−1
∗ (y) = inf{0 ≤ z : λ(z) = y},

and λ−1
∗ (y) tends to ∞ with y, it follows that P ∗ preserves C0(R+). There-

fore the results of Section 2 are applicable.

Theorem 2. Let P be a LMT stochastic operator associated with H,Q, λ.
Assume that there exist a > 0 and δ > 0 so that

lim
n→∞

a∫
0

f + Pf + . . .+ Pn−1f

n
dx > δ for all f ∈ D.

Then

(a) a∗ = sup{x ≥ 0 : λ(x) ≤ x} < a,
(b) Fix(P ) is finite-dimensional and limn→∞ ‖Pnf − Sf‖ = 0 for all

f ∈ L1(R+), where S is a stochastic projection onto Fix(P ),
(c) dim Fix(P ) ≤ da/T (P, a)e, where T (P, r) = sup{t > 0 : if 0 ≤ y,

ỹ ≤ r and |y − ỹ| ≤ t then ‖k(·, y) − k(·, ỹ)‖ < 2} and dze stands for
the smallest natural number greater than or equal to z. In particular , P is
asymptotically stable if T (P, a) ≥ a.
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P r o o f. By Corollary 1 the operator P is asymptotically periodic. If
λ(x) ≤ x then the space L1([x,∞)) is P -invariant. By easy calculations,

P ∗1[c,d)(y)

=

H(Q(λ(c))−Q(y))−H(Q(λ(d))−Q(y)) if 0 ≤ y < λ(c),
1−H(Q(λ(d))−Q(y)) if λ(c) ≤ y < λ(d),
0 if λ(d) ≤ y.

If λ(c) ≤ c then substituting d =∞ we get

P ∗1[c,∞)(y) ≥ 1[c,∞)(y) for all y.

Hence the set {x : λ(x) ≤ x} must be bounded and a∗ is finite. Now it is
clear that

λ(a∗) = a∗ and a∗ < a.

Let g1, . . . , gr be a basis of positive, normalized and pairwise orthogonal
functions in the space Ω of all recurrent elements and g1, . . . , gl be a cycle
(i.e. Pgj = gj+1 for 1 ≤ j ≤ l, where j + 1 is understood modulo l). Define
Dj = supp gj and cj = ess infDj . Then we have

(β) P ∗1Dj (y) =
{

1 if y ∈ Dj−1,
0 for all y ∈ Ds if s 6= j − 1.

We may assume that max{c1, . . . , cl} = cl. Thus,

P ∗1[cl,∞) ≥ P ∗1Dl
≥ 1Dl−1 .

By continuity,

P ∗1[cl,∞)(cl−1) = P ∗1Dl
(cl−1) = 1.

Since

P ∗1[cl,∞)(y) =
{
H(Q(λ(cl))−Q(y)), 0 ≤ y ≤ λ(cl),
1 otherwise,

we conclude that

H(Q(λ(cl))−Q(y)) = 1 for all cl−1 ≤ y ≤ λ(cl).

Therefore

P ∗1[cl,∞) ≥ 1[cl−1,∞) ≥ 1[cl,∞).

This implies that L1([cl,∞)) is P -invariant. Since g1, . . . , gl form a cycle it is
possible only if c1 = c2 = . . . = cl. Hence l = 1, since by (β) the continuous
functions P ∗1Dj would take values 0 and 1 arbitrary close to cl. Repeating
the previous discussion for other cycles, one shows that each of them reduces
to a singleton, and the convergence

lim
n→∞

‖Pnf − Sf‖ = 0
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follows. Clearly S is a finite-dimensional stochastic projection onto Ω =
Fix(P ). Let F1, . . . , Fr be the supports of ergodic densities. We have

‖k(·, y)− k(·, ỹ)‖ = 2

if y, ỹ are taken from distinct sets Fj ∩ [0, a]. This yields the estimate

dim(S) ≤ d1/T (P, a)e.

Combining [1], Theorem 2.1, with our Theorem 2 we immediately get

Corollary 2. Let P be a LMT stochastic operator and suppose there
exist positive ε, %, a and 0 < α ≤ 1 such that

ε+
∞∫
0

xαh(x)dx < % < Q(λ(t))α −Q(t)α for all t ≥ a.

Then there exists a finite-dimensional stochastic projection S such that

lim
n→∞

‖Pnf − Sf‖ = 0 for all f ∈ L1(R+).

Moreover , dim(S) ≤ da/T (P, a)e.

P r o o f. By [1] (see the proof of Theorem 2.1) for every f ∈ D there
exists a natural n0(f) such that

1
n

n−1∑
j=0

a∫
0

P jfdx ≥ ε

2M
for all n ≥ n0(f),

where M = sup{|Q(λ(x))α − Q(x)α − %| : 0 ≤ x ≤ a}. Now we can apply
Theorem 2.
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Reçu par la Rédaction le 20.11.1994
Révisé le 26.4.1995


