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On reconstruction of polynomial automorphisms

by Pawe lGniadek (Kraków)

Abstract. We extend results on reconstructing a polynomial automorphism from its
restriction to the coordinate hyperplanes to some wider class of algebraic surfaces. We
show that the algorithm proposed by M. Kwieciński in [K2] and based on Gröbner bases
works also for this class of surfaces.

1. Introduction. In [J1] Jelonek states the following definition.

Definition 1.1. An algebraic subset X of kn is said to be an identity
set for polynomial automorphisms of kn (an identity set , for short) iff the
following implication holds: If f, g : kn → kn are polynomial automorphisms
of kn which coincide on X, then f = g.

The class of identity sets has been well researched. For instance, it is
known that in the case of k = C, a generic algebraic hypersurface of degree
d ≥ n ≥ 2 in kn is an identity set ([J2]). The above definition implies that
a polynomial automorphism is completely determined by its restriction to
an identity set. Thus, the problem arises of finding an explicit formula for
reconstructing the automorphism. The first paper in this field was the one
by McKay and Wang [McK-W], where formulae were given to reconstruct
the inverse of an automorphism in k2 from the restriction to the coordinate
hyperplanes. However, analogous formulae in the case of n > 2 are not
known. Instead, there are algorithmic methods—developed by A. van den
Essen and M. Kwieciński—which work in higher dimensions. In [E-K], [K2]
some algorithms were proposed based on the theory of Gröbner bases for
reconstructing an automorphism from the restriction to the union of the
coordinate hyperplanes for n ≥ 2.

Our purpose is to extend those results to some greater class of algebraic
subsets of kn. We will show that the algorithm used in [K2] for the set
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V (X1 · . . . ·Xn) can be applied to a more general class of algebraic sets—here
called the reconstructing sets.

More precisely, define a partial ordering v on Nn as follows:

α v β iff ∀i = 1, . . . , n, αi ≤ βi.

Now, if a polynomial P =
∑
α cαX

α ∈ k[X1, . . . , Xn] satisfies the following
conditions:

(1) there exists a greatest element α = (α1, . . . , αn) in suppP = {α ∈
Nn : cα 6= 0} with respect to the ordering v,

(2) αi > 0 for i = 1, . . . , n,

and V is an algebraic set of kn such that I(V ) = 〈P 〉 then the algorithm of
Kwieciński also works for V , i.e. V is a reconstructing set.

In addition, we will show that if V is a reconstructing set, then so is any
algebraic subset of kn containing V , as well as the image of V under any
linear automorphism.

2. Preliminaries. In this paper k denotes an infinite field.
We employ usual notations: X = (X1, . . . , Xn), Y = (Y1, . . . , Ym) and

k[X], k[Y ], k[X,Y ] are the rings of polynomials over k in n, m, n + m
variables respectively. For any α = (α1, . . . , αn) ∈ Nn we write Xα =
Xα1 . . . Xαn .

All ideals considered are ideals in polynomial rings over k. For any
P1, . . . , Pr in k[X] we denote by 〈P1, . . . , Pr〉 the ideal in k[X] generated
by P1, . . . , Pr. If V is an algebraic subset in kn then I(V ) denotes the ideal
in k[X] consisting of the polynomials vanishing on V . If S is a subset of
k[X], we write V (S) for the set of common zeros in kn of the polynomials
in S.

Let us start with recalling the basic facts about Gröbner bases which we
will need further (an outline of the theory may be found e.g. in [B], [L-J],
[P-P] or [W]).

Definition 2.1. A total ordering “<” on the set Nn is called admissible
if the following conditions are satisfied:

(1) ∀α ∈ Nn \ {0}, 0 < α,
(2) ∀α, β, γ ∈ Nn, α < β ⇒ α+ γ < β + γ.

An admissible ordering on the set Nn induces an ordering on the set of
monomials in k[X1, . . . , Xn] via the natural correspondence

Nn 3 α = (α1, . . . , αn) 7→ Xα = Xα1 . . . Xαn ∈ k[X].

We will sometimes write Xα < Xβ when α < β.
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For any fixed nonzero polynomial P =
∑
α∈Nn cαX

α ∈ k[X] we define
the support of P to be

suppP = {α ∈ Nn : cα 6= 0}.
Let us fix an admissible ordering on Nn. Then for P 6= 0 we define

expP = max suppP, ltP = cexpP , inP = ltPXexpP ,

and for a subset A ⊂ k[X] we write

expA = {expP : P ∈ A}, inA = {inP : P ∈ A}.

Definition 2.2. A finite system of polynomials B = {G1, . . . , Gr} ⊂
k[X] is a Gröbner basis of the ideal I ⊂ k[X] with respect to the fixed
admissible ordering iff the following conditions hold:

(1) B ⊂ I,
(2) 〈in I〉 = 〈inB〉.
It is known that for any admissible ordering on Nn and for any nonzero

ideal of k[X] there exists a Gröbner basis. However, it is not unique. Thus,
in applications we often use reduced Gröbner bases.

Definition 2.3. Fix an admissible ordering on Nn. Let P,Q be poly-
nomials in k[X], and A an arbitrary subset of k[X].

(1) We say that the polynomial P is reduced modulo Q if ltP = 1 and
no term appearing in P with nonzero coefficient is divisible by inQ.

(2) The polynomial P is reduced modulo A if P is reduced modulo every
polynomial Q in A.

(3) We say that a Gröbner basis B = {G1, . . . , Gr} is reduced if every
polynomial Gi is reduced modulo Gj for every j 6= i.

The reduced Gröbner basis is uniquely determined for any nonzero ideal
in k[X] (assuming that we have fixed an admissible ordering). We emphasize
that there exists an algorithm for calculating the reduced Gröbner basis of
an ideal from a finite set of its generators. The algorithm consists of a finite
number of rational operations on coefficients of the generators.

R e m a r k 2.4. From the definition of the reduced Gröbner basis it fol-
lows immedietely that, if B is a Gröbner basis of I, then P is reduced modulo
I iff P is reduced modulo every element of B.

We also need a special type of admissible ordering.

Definition 2.5. We say that an admissible ordering on Nn+m n-separ-
ates the variables X, Y if Xα > Y β for all α ∈ Nn \ {0}, β ∈ Nn.

A simple example of a separating ordering is the lexicographic ordering
in Nn+m.
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We recall a theorem proved by M. Kwieciński (a particular version was
proved earlier by van den Essen [E]) which plays a fundamental role in our
proofs.

Theorem 2.6 [K1]. Let F = (F1, . . . , Fn) : kn → km be a polynomial
mapping , V a nonempty algebraic subset of kn and P1(X), . . . , Ps(X) a
system of generators of the ideal I(V ). Let B be the reduced Gröbner basis
of the ideal J = 〈Y1−F1(X), . . . , Yn−Fn(X), P1(X), . . . , Ps(X)〉 with respect
to some admissible ordering in Nn+m which n-separates the variables X,Y .
Then F |V : V →F (V ) is an isomorphism iff B = Binv ∪ Bim, where Binv =
{X1 −G1(Y ), . . . , Xn −Gn(Y )} for some Gi ∈ k[Y ] and Bim = ∅ or Bim =
{Q1(Y ), . . . , Qr(Y )} for some Qi ∈ k[Y ]. In that case Bim is the reduced
Gröbner basis of I(F (V )) and Gi are the coordinates of the inverse.

Note that the theorem gives an effective way of determining whether a
given polynomial mapping is invertible and then computing its inverse.

3. Reconstructing sets. Assume that V is an algebraic subset of kn,
P1(X), . . . , Ps(X) are generators of the ideal I(V ) and F = (F1, . . . , Fn) :
kn → kn is a polynomial automorphism. Suppose also F̃ = (F̃1, . . . , F̃n) :
kn → kn is a polynomial mapping (not necessarily an automorphism) which
coincides with F on V . Now, let I

F̃ |V be the ideal of the graph of F̃ restricted
to V , i.e.

IF̃ |V = 〈Y1 − F̃1(X), . . . , Yn − F̃n(X), P1(X), . . . , Ps(X)〉,

and fix an admissible ordering in N2n n-separating the variables X,Y . Since
F̃ (V ) is an algebraic set and F̃ |V : V → F̃ (V ) is an isomorphism, by Theo-
rem 2.6 the reduced Gröbner basis of the ideal I

F̃ |V is of the form

B = {X1 − G̃1(Y ), . . . , Xn − G̃n(Y ), Q1(Y ), . . . , Qr(Y )},

where {Q1(Y ), . . . , Qr(Y )} is the reduced Gröbner basis of I(F̃ (V )) and the
mapping G̃ = (G̃1, . . . , G̃n) restricted to F̃ (V ) is the inverse of F̃ |V . How-
ever, G̃ is not necessarily equal to the inverse of F . Therefore we introduce
the following

Definition 3.1. An algebraic subset V of kn is said to be a reconstruct-
ing set if for any admissible ordering on N2n which n-separates the variables
X, Y , for any polynomial automorphism F and for any polynomial mapping
F̃ such that F̃ |V = F |V , the mapping G̃ is the inverse of F .

R e m a r k 3.2. For any reconstructing set we can compute the inverse
of the automorphism F , knowing only the mapping F̃ . In order to do this
we use the following algorithm (see [K2]).
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(1) Compute the reduced Gröbner basis B of the ideal I|
F̃ |V with respect

to any admissible ordering on N2n which n-separates the variables X,Y . The
basis has the form

B = {X1 − G̃1(Y ), . . . , Xn − G̃n(Y ), Q1(Y ), . . . , Qr(Y )},

where, by Definition 3.1, G̃ = (G̃1, . . . , G̃n) is the inverse of F .
(2) Compute the reduced Gröbner basis B′ of the ideal

I
G̃

= {X1 − G̃1(Y ), . . . , Xn − G̃n(Y )}

with respect to any admissible ordering n-separating the variables Y,X.
Since G̃ = F−1, by Theorem 2.6 we have

B′ = {Y1 − F1(X), . . . , Yn − Fn(X)}.

The algorithm calculates F using two Gröbner bases computations.
Let us notice that the mapping F̃ appearing in Definition 3.1 is super-

fluous. Since the reduced Gröbner basis of an ideal does not depend on the
choice of generators and since IF |V = I

F̃ |V , we can reformulate the definition
in the following way.

Definition 3.1. An algebraic subset V of kn is said to be a reconstruct-
ing set if for any ordering on N2n which n-separates the variables X, Y and
for any polynomial automorphism F , the mapping G̃ determined from the
reduced Gröbner basis of the ideal IF |V is the inverse of F .

R e m a r k 3.3. Every reconstructing set is an identity set.
To show this, take two polynomial automorphisms f1, f2 which coincide

on a reconstructing set V . Notice that according to the definition of a re-
constructing set, the automorphism g̃1 calculated from the Gröbner basis of
the ideal If1|V is the inverse of f1. The same argument applies to f2 and we
get its inverse g̃2. On the other hand, the ideals If1|V and If2|V are equal,
thus g̃1 = g̃2 and consequently f1 = f2.

Kwieciński proved in [K2] that the set V (X1 · . . . ·Xn) is a reconstructing
set. Now, we find other examples of reconstructing sets.

Lemma 3.4. Fix an admissible ordering in Nn and let P,G1, . . . , Gn ∈
k[X] be such that

(1) expGi > 0 for i = 1, . . . , n,
(2) there exists a greatest element in suppP with respect to the order-

ing v,
(3) (1, . . . , 1) v expP .

Then Gi is reduced modulo Q := P (G1, . . . , Gn) for i = 1, . . . , n.
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P r o o f. Let α be the greatest element of suppP . Of course, α = expP .
Then

P (X) = cαX
α +

∑
β<α

cβX
β

and
Q = P (G1, . . . , Gn) = cαG

α1
1 . . . Gαn

n +
∑
β<α

cβG
β .

Since expGi > 0,

exp(cβGβ) =
n∑
i=1

βi expGi <
n∑
i=1

αi expGi = exp(cαGα) for β @ α.

Therefore,

expQ = exp(cαGα1
1 . . . Gαn

n ) =
n∑
i=1

αi expGi.

Using the fact that αi ≥ 1 and expGi > 0, we get expQ > expGi, which
implies that Gi is reduced modulo Q.

Theorem 3.5. Let V be an algebraic subset of kn such that I(V ) = 〈P 〉,
where P ∈ k[X] satisfies the following conditions:

(1) there exists a greatest element in suppP with respect to the order-
ing v,

(2) (1, . . . , 1) v expP .

Then V is a reconstructing set.

P r o o f. Fix an admissible ordering on N2n which n-separates X, Y ,
and a polynomial automorphism F : kn → kn. We shall denote by G =
(G1, . . . , Gn) the inverse of F . From Theorem 2.6 we know that the reduced
Gröbner basis of the ideal IF |V has the form

B = {X1 − G̃1(Y ), . . . , Xn − G̃n(Y ), Q(Y )}, G̃i, Q ∈ k[Y ].

(Here we have used the fact that the Gröbner basis of a principal ideal has
only one element, so Bim in Theorem 2.6 consists of exactly one polynomial.)

Moreover, G̃|F (V ) = (G̃1, . . . , G̃n)|F (V ) is the inverse of F |V . Thus G
has to coincide on F (V ) with G̃, and so

(∗) Gi(Y )− G̃i(Y ) ∈ I(F (V )), i = 1, . . . , n.

Since I(F (V )) = 〈Q(Y )〉 and B is the reduced basis, all G̃i(Y ) must be
reduced modulo Q(Y ). Observe that the ideal I(F (V )) is generated by
P (G1(Y ), . . . , Gn(Y )). Thus, there exists c ∈ k − {0} such that Q(Y ) =
c ·P (G1(X), . . . , Gn(X)) and Lemma 3.4 implies that Gi(Y ) is also reduced
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modulo Q(Y ) for i = 1, . . . , n. So Gi(Y ) − G̃i(Y ) is reduced modulo Q(Y )
and from (∗) we have Gi(Y ) = G̃i(Y ).

The following two propositions show some properties of the family of all
reconstructing sets.

Proposition 3.6. Let V and W be algebraic subsets of kn such that
V ⊂W . If V is a reconstructing set , then so is W .

P r o o f. Choose an admissible ordering on N2n which n-separates the
variables X, Y , and a polynomial automorphism F : kn → kn. Denote by
BV and BW the reduced Gröbner bases of IF |V and IF |W respectively. From
Theorem 2.6 and the definition of a reconstructing set we have

BV = {X1 −G1(Y ), . . . , Xn −Gn(Y ), Q1(Y ), . . . , Qs(Y )},
BW = {X1 − G̃1(Y ), . . . , Xn − G̃n(Y ), R1(Y ), . . . , Rt(Y )},

where G = (G1, . . . , Gn) is the inverse of F . Since (G̃1, . . . , G̃n)|F (W ) is the
inverse of F |W , we have

G̃i(Y )−Gi(Y ) ∈ I(F (W )) = 〈R1(Y ), . . . , Rt(Y )〉 for i = 1, . . . , n.

By definition of the reduced basis, G̃i(Y ) is reduced modulo Rj(Y )
(j = 1, . . . , t). Therefore, it is reduced modulo the ideal I(F (W )). Simi-
larly, Gi(Y ) is reduced modulo I(F (V )). But I(F (V )) ⊃ I(F (W )), so Gi
is reduced modulo I(F (W )). Thus, Gi(Y ) = G̃i(Y ) for i = 1, . . . , n, which
completes the proof.

Proposition 3.7. Let V be a reconstructing subset of kn and let ϕ :
kn → kn be a linear automorphism. Then ϕ(V ) is a reconstructing set.

P r o o f. Take an admissible ordering on N2n which n-separates the vari-
ables X, Y , and a polynomial automorphism F : kn → kn, and let B be the
reduced Gröbner basis of the ideal IF |ϕ(V ). As before we have

B = {X1 − G̃1(Y ), . . . , Xn − G̃n(Y ), Q1(Y ), . . . , Qs(Y )}.
Denoting by G = (G1, . . . , Gn) the inverse of F , we have to show that Gi(Y )
is reduced modulo I(F (ϕ(V ))) for i = 1, . . . , n.

In order to prove that, consider the set V and the automorphism F ◦ ϕ.
Since V is a reconstructing set, we have

B′ = {X1 − (ψ1 ◦G)(Y ), . . . , Xn − (ψn ◦G)(Y ), Q1(Y ), . . . , Qs(Y )},
where B′ denotes the reduced Gröbner basis of IF◦ϕ|V and ψ = ϕ−1.

Because Xi − Gi(Y ) is a linear combination of the polynomials Xj −
(ψj ◦ G)(Y ), we deduce that Xi − Gi(Y ) is also reduced modulo the ideal
〈Q1(Y ), . . . , Qs(Y )〉. Using the same argument as before we see that G̃i =
Gi.
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Example 3.8 (1). We construct an identity set which is not a recon-
structing set. We also show that the image of a reconstructing set under an
algebraic automorphism is not always a reconstructing set.

Let P (X,Y ) = (Y −X2)(X +X2 − Y ). To show that V = V (P ) is not
a reconstructing set, take F (X,Y ) = (X2 + X − Y, Y − X2). The inverse
of F is of the form G(Z, T ) = (Z + T , (Z + T )2 + T ). Denoting by W the
F -image of V , one can easily see that I(W ) = 〈Z ·T 〉. Let B be the reduced
Gröbner basis in an admissible ordering on N4 2-separating the variables
XY and ZT . Then

B = {X − G̃1(Z, T ), Y − G̃2(Z, T ), Z · T}

and G̃2(Z, T ) is reduced modulo Z · T . But G2(Z, T ) = Z2 + 2ZT + T 2 + T

is not reduced modulo Z · T , thus G̃2 6= G2. This implies that V is not a
reconstructing set. However, V is an identity set because it is the image of
V (Z · T ) under a polynomial automorphism.

One can also notice that V is an image of a reconstructing set V (Z · T ).
Thus, the image of a reconstructing set under an algebraic automorphism is
not necessarily a reconstructing set.
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(1992), 65–70.

(1) The example is due to M. Kwieciński.
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