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Carathéodory balls in convex complex ellipsoids

by W lodzimierz Zwonek (Kraków)

Abstract. We consider the structure of Carathéodory balls in convex complex
ellipsoids belonging to few domains for which explicit formulas for complex geodesics
are known. We prove that in most cases the only Carathéodory balls which are simulta-
neously ellipsoids “similar” to the considered ellipsoid (even in some wider sense) are the
ones with center at 0. Nevertheless, we get a surprising result that there are ellipsoids
having Carathéodory balls with center not at 0 which are also ellipsoids.

1. Introduction. For any domain D ⊂ Cn and w, z ∈ D we define

cD(w, z) = sup{%(ϕ(w), ϕ(z)) : ϕ : D → E is a holomorphic mapping},

where E is the unit disk in C and % is the Poincaré distance (also called the
hyperbolic distance) on E. cD is called the Carathéodory pseudodistance of
D. We also define

c∗D := tanh cD.

If D is a bounded domain, then cD is a distance on D.
A holomorphic mapping ϕ : E → D is called a c-geodesic in D if

cD(ϕ(λ1), ϕ(λ2)) = %(λ1, λ2) for any λ1, λ2 ∈ E.
It is well known (see [L]) that if D is a convex, bounded domain, then

for any pair of points (w, z) ∈ D × D with w 6= z there is a c-geodesic
ϕ : E → D such that ϕ(0) = w and ϕ(c∗D(w, z)) = z.

If D is a bounded domain, then for w ∈ D and 0 < r < 1 we define the
Carathéodory ball as

Bc∗
D

(w, r) := {z ∈ D : c∗D(w, z) < r}.

Below we shall consider the domains

E(p) := {|z1|2p1 + . . .+ |zn|2pn < 1},
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where p = (p1, . . . , pn), pj > 0. They are called complex ellipsoids. If n ≥ 2,
then a complex ellipsoid is convex iff pj ≥ 1/2 for j = 1, . . . , n. Below we
only consider convex ellipsoids.

For r̃, ˜̃r > 0 and w ∈ Cn we also define the Np-ellipsoids

Ep(w, r̃, ˜̃r ) := {z ∈ Cn : Np(z − w, r̃ ) < ˜̃r },
where Np(z, r̃ ) := |z1/r̃|2p1 + . . .+ |zn/r̃|2pn .

Note that

E(p) = Ep(0, 1, 1).

In case p1 = . . . = pn we have Ep(w, r̃, ˜̃r ) = Ep(w, r̃(˜̃r )1/(2p1), 1), therefore in
this case without loss of generality considering Np-ellipsoids we may restrict
ourselves to the ones with ˜̃r = 1. Moreover, these ellipsoids are balls in
the sense of the norm ‖z‖2p1 = (|z1|2p1 + . . . + |zn|2p1)1/(2p1) (certainly if
p1 ≥ 1/2).

In the general case the condition Np(z, r̃ ) = 1 means that the Minkowski
function of E(p) equals r̃ at z. Therefore, Ep(w, r̃, 1) is the “Minkowski ball”
with center at w and radius r̃.

The aim of our paper is the following theorem.

Theorem 1. Let p = (p1, . . . , pn), where n ≥ 2 and pj ≥ 1/2 for j =
1, . . . , n. Let w ∈ E(p) and 0 < r < 1. Assume that

(1) Bc∗E(p)
(w, r) = Ep(w̃, r̃, ˜̃r )

for some w̃ ∈ E(p), r̃, ˜̃r > 0. Then

• if (pj 6= 1, j = 1, . . . , n) or p1 = . . . = pn = 1 then w = 0.

In the general case the above implication does not hold. We have

• if n = 2, p2 = 1 and p1 = 1/2 then any ball Bc∗E(p)
((0, w2), r) is an

Np-ellipsoid with ˜̃r = 1,

although

• if n = 2, p2 = 1, p1 > 1/2, ˜̃r = 1 and (1) holds then w = 0.

Moreover , if 1 6= p1 ≥ 1/2, p2 = 1 and n = 2 then any ball Bc∗E(p)
((0, w2), r)

is an Np-ellipsoid with some ˜̃r > 0.

The above theorem is a generalization of earlier results. In the case of
the unit ball (i.e. p1 = . . . = pn = 1) the theorem has been proven in [R].
For n = 2 and p1 = p2 = 1/2 the theorem has been proven in [Sc]; a
generalization of Schwarz’s result (n ≥ 2 arbitrary, p1 = . . . = pn = 1/2)
can be found in [Sr] and [Z]. The more general case 2p1 = . . . = 2pn =: q > 2,
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where q is not an even integer, has been obtained in [Sc-Sr]. Our theorem
gives in particular a direct generalization of the last result.

Recall that the Carathéodory balls in E(p) with center at 0 are sets of
the type Ep(0, r, 1), so the natural generalization of the theorems known so
far (see [Sc], [Sr], [Z], [Sc-Sr]) would be the following statement: The only
Carathéodory balls in E(p) which are simultaneously ellipsoids of the type
Ep(w̃, r̃, 1), are the ones with center at 0. As we see in Theorem 1 this
statement is true if p1 = . . . = pn but fails to hold in case p1 = 1/2, p2 = 1.
This justifies considering the ellipsoids Ep(w̃, r̃, ˜̃r ) not necessarily with ˜̃r = 1.

The convex complex ellipsoids are among few domains for which ex-
plicit formulas for complex geodesics are known. From Theorem 1 we obtain
a better understanding of the geometry of ellipsoids with respect to the
Carathéodory distance; we see that it is quite different from the “natural”
geometry of the ellipsoids.

Observe that Theorem 1 is no longer true if n = 1 (i.e. it is not true in
the unit disk E). Moreover, we have the following characterization of the
Carathéodory disks in E (see e.g. [Sc]):

%(z, a) = tanh−1 r iff |z − b| = R, for a, b, z ∈ E,

where

b = a
1− r2

1− r2|a|2
and R = r

1− |a|2

1− r2|a|2
.

We prove Theorem 1 combining the methods from [Sc], [Sr], [Z] and
[Sc-Sr] and also making use of the following characterization of c-geodesics
in convex complex ellipsoids.

Theorem 2 (see [JPZ] and [JP]). Let E(p) be a convex complex ellipsoid.
A bounded holomorphic mapping ϕ = (ϕ1, . . . , ϕn) : E → Cn is a c-geodesic
in E(p) if and only if either

(2) ϕj(λ) = aj

(
λ− αj
1− αjλ

)rj
(

1− αjλ
1− α0λ

)1/pj

,

or

(3) ϕj(λ) = 0,

where rj ∈ {0, 1} and aj ∈ C∗ for j = 1, . . . , n, α0 ∈ E, αj ∈ E for j such
that rj = 1, αj ∈ E for j such that rj = 0, and the following relations hold
(in the case (3) we put αj := 0, aj := 0, rj := 0):

α0 =
n∑
j=1

|aj |2pjαj ,(4)
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1 + |α0|2 =
n∑
j=1

|aj |2pj (1 + |αj |2).(5)

The case where for any j = 1, . . . , n the mapping ϕj is either of the form
(3) or of the form (2) with rj = 0 and αj = α0 is excluded. The branches
of powers are taken so that 11/pj = 1. Moreover , for any pair of different
points we have the uniqueness of complex geodesics passing through these
points, up to automorphisms of E.

2. Auxiliary results. Below we present a theorem, which is a simple
consequence of Theorem 2.

Theorem 3. Let z := (z1, . . . , zk, zk+1, . . . , zn) and w := (w1, . . . , wk,
zk+1, . . . , zn) be distinct points in a convex ellipsoid E(p), n ≥ 2. Put γ :=
1 −

∑n
j=k+1 |zj |2pj . Let ϕ be a c-geodesic in E(p1, . . . , pk) joining

(w1/γ
1/(2p1), . . . , wk/γ

1/(2pk)) to (z1/γ1/(2p1), . . . , zk/γ
1/(2pk)). Then

ϕ̃(λ) := (γ1/(2p1)ϕ1, . . . , γ
1/(2pk)ϕk, zk+1, . . . , zn)

is a c-geodesic joining w to z. Consequently ,

cE(p)(w, z)

= cE(p1,...,pk)

((
w1

γ1/(2p1)
, . . . ,

wk
γ1/(2pk)

)
,

(
z1

γ1/(2p1)
, . . . ,

zk
γ1/(2pk)

))
.

P r o o f. Without loss of generality we may assume that zk+1, . . . , zn 6= 0
and |zj | + |wj | > 0 for j = 1, . . . , k. Let the numbers a1, . . . , ak, α0, α1, . . .
. . . , αk, r1, . . . , rk correspond to ϕ as in Theorem 2. Then (see (4) and (5))

(6) α0 = |a1|2p1α1 + . . .+ |ak|2pkαk,

(7) 1 + |α0|2 = |a1|2p1(1 + |α1|2) + . . .+ |ak|2pk(1 + |αk|2).

The mapping ϕ̃ is described by the coefficients ã1, . . . , ãn, α̃0, α̃1, . . . , α̃n
and r̃1, . . . , r̃n (as in Theorem 2), where

ãj :=
{
γ1/(2pj)aj for j = 1, . . . , k,
zj for j = k + 1, . . . , n,

α̃j :=
{
αj for j = 1, . . . , k,
α0 if j = 0 or j = k + 1, . . . , n,

r̃j :=
{
rj for j = 1, . . . , k,
0 for j = k + 1, . . . , n,

To prove that ϕ̃ is a c-geodesic we verify the properties (4) and (5).
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Note that in view of (6),
n∑
j=1

|ãj |2pj α̃j = γ(|a1|2p1α1 + . . .+ |ak|2pkαk) +
n∑

j=k+1

|zj |2pjα0

= γα0 + α0

n∑
j=k+1

|zj |2pj = α0 = α̃0,

and in view of (7),
n∑
j=1

|ãj |2pj (1 + |α̃j |2) = γ(|a1|2p1(1 + |α1|2) + . . .+ |ak|2pk(1 + |αk|2))

+
n∑

j=k+1

|zj |2pj (1 + |α0|2)

= γ(1 + |α0|2) + (1 + |α0|2)
n∑

j=k+1

|zj |2pj = 1 + |α̃0|2.

This completes the proof of the theorem.

As an immediate consequence of Theorem 2 we also get the following
lemma.

Lemma 4. Let a ∈ E(p) and λa ∈ E(p), where λ ∈ C and E(p) is a convex
ellipsoid. Then

cE(p)(λa, a) = %(h(a), λh(a)),
where h is the Minkowski function of E(p).

Below we formulate and prove some generalization, in case n = 2, of a
result from [Sc-Sr].

Proposition 5. Let λ1, λ2 > 0, r1, r2 > 0, θ1, θ2 ∈ R. Let p = (p1, p2),
where p1, p2 > 0 and p1 and p2 are not both equal to 1. Assume that for
t ∈ R,

λ1|r1ei(t+θ1) − a1|2p1 + λ2|r2ei(t+θ2) − a2|2p2 ≡ const .
Then a1 = a2 = 0.

P r o o f. Suppose that (a1, a2) 6= 0. The only problem is with the case
a1, a2 6= 0. Without loss of generality we may assume that r1 = r2 = 1,
a1, a2 > 0 and θ1 = 0. Therefore we have, for t ∈ R,

λ1|eit − a1|2p1 + λ2|ei(t+θ) − a2|2p2 ≡ const,

where θ ∈ [0, 2π).

Putting bj := 1+a2
j

2aj
, λ′j := λj(2aj)pj , j = 1, 2, we have

(8) λ′1(b1 − cos(t))p1 + λ′2(b2 − cos(t+ θ))p2 ≡ const,
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where additionally

(9) bj ≥ 1 for j = 1, 2.

First we prove that both summands in (8) must be real analytic in R. Sup-
pose that the first one is not. That is only possible when p1 6∈ N and b1 = 1
(see (9)). Then it is not real analytic at 0. But this means that the second
summand cannot be real analytic for t = 0, so θ = 0 and b2 = 1 (see (9)).
But this leads us to the following equality for t ∈ R:

λ′1(1− cos(t))p1 + λ′2(1− cos(t))p2 ≡ const,

which cannot hold—a contradiction.
Therefore

(pj ∈ N or bj > 1) for j = 1, 2.
Let us differentiate (8) with respect to t (in view of the above considera-

tions we have below no expression of type ∞ · 0):

(10) λ′1p1(b1 − cos(t))p1−1 sin(t) + λ′2p2(b2 − cos(t+ θ))p2−1 sin(t+ θ) ≡ 0.

Put t = 0. Then from (10) we get (b2−cos(θ))p2−1 sin(θ) = 0. Consequently,

(b2 = 1, θ = 0) or θ = 0 or θ = π.

If θ = 0 then from (10) we get

λ′1p1(b1 − cos(t))p1−1 + λ′2p2(b2 − cos(t))p2−1 ≡ 0

for t ∈ R—a contradiction.
If θ = π then from (10) we get

λ′1p1(b1 − cos(t))p1−1 = λ′2p2(b2 + cos(t))p2−1

for t ∈ R, so
λ′1p1(b1 − cos(t))p1−1

λ′2p2(b2 + cos(t))p2−1
≡ const,

which, as one can easily prove (e.g. differentiating with respect to t), holds
only if p1 = p2 = 1—a contradiction.

To prove Theorem 1 we shall need one more lemma.

Lemma 6. Let w, w̃ ∈ E(p), r̃, ˜̃r > 0, 1 > r > 0, n ≥ 2 and pj ≥ 1/2,
j = 1, . . . , n. Assume that

∂Bc∗E(p)
(w, r) ⊂ ∂Ep(w̃, r̃, ˜̃r ).

Then
Ep(w̃, r̃, ˜̃r ) = Bc∗E(p)

(w, r).

P r o o f. First we prove that

w ∈ Ep(w̃, r̃, ˜̃r ), w̃ ∈ Bc∗E(p)
(w, r).
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Suppose that w 6∈ Ep(w̃, r̃, ˜̃r ). Then Np(w− w̃, r̃ ) ≥ ˜̃r and consequently
there is t ∈ (0, 1] such that w̃ − t(w̃ − w) = tw + (1 − t)w̃ ∈ ∂Ep(w̃, r̃, ˜̃r ).
The continuity of the Carathéodory distance gives us also the existence of
some s < 0 such that w̃+ (s− 1)(w̃−w) = w+ s(w̃−w) ∈ ∂Bc∗E(p)

(w, r) ⊂
∂Ep(w̃, r̃, ˜̃r ). So there are two distinct points lying on w̃+R+(w− w̃), which
belong to ∂Ep(w̃, r̃, ˜̃r )—a contradiction.

Suppose that w̃ 6∈ Bc∗E(p)
(w, r). Then continuity of the Carathéodory

distance yields the existence of t ∈ [0, 1) such that w̃ − t(w̃ − w) = tw +
(1− t)w̃ ∈ ∂Bc∗E(p)

(w, r) ⊂ ∂Ep(w̃, r̃, ˜̃r ). As before we get the existence of a

second point from ∂Ep(w̃, r̃, ˜̃r ) lying on w̃ + R+(w − w̃)—a contradiction.
We now prove the inclusion

Bc∗E(p)
(w, r) ⊂ Ep(w̃, r̃, ˜̃r ).

Take z ∈ Bc∗E(p)
(w, r). Then there are 0 ≤ s < r and a complex geodesic

ϕ : E → E(p) such that ϕ(0) = w and ϕ(s) = z. Define

h : E 3 λ→ Np(ϕ(λ)− w̃, r̃ ) ∈ R.

Then h is a subharmonic function. Since ϕ(0) = w ∈ Ep(w̃, r̃, ˜̃r ), we get
h(0) < ˜̃r.

For λ with |λ| = r we have c∗E(p)(ϕ(λ), w) = r, so ϕ(λ) ∈ ∂Bc∗E(p)
(w, r) ⊂

∂Ep(w̃, r̃, ˜̃r ). Consequently, h(λ)= ˜̃r for |λ| = r. But the maximum principle
for subharmonic functions implies that

h(λ) < ˜̃r for |λ| < r

(remember that h(0) < ˜̃r). This completes the proof of the first inclusion.
To get the inverse inclusion, suppose that there is z ∈ Ep(w̃, r̃, ˜̃r ) \

Bc∗E(p)
(w, r). Since w̃ ∈ Bc∗E(p)

(w, r) and the function c∗E(p) is continuous
we get the existence of t ∈ [0, 1) such that

z′ := tw̃ + (1− t)z ∈ ∂Bc∗E(p)
(w, r) ⊂ ∂Ep(w̃, r̃, ˜̃r )

but from the definition of Np we get

Np(z′ − w̃, r̃ ) ≤ Np(z − w̃, r̃ ) < ˜̃r
—a contradiction.

3. Proof of Theorem 1. As already mentioned, the theorem is known
in case p1 = . . . = pn = 1 (see [R]), so in the sequel we exclude this case.

First we prove the theorem for n = 2. Assume now that p1 6= 1 or p2 6= 1.
Assume that (1) holds for some w = (w1, w2). As the case w = 0 is trivial,
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we assume that w 6= 0 and there are w̃, r, r̃, ˜̃r such that

(11) ∂Bc∗E(p)
(w, r) = ∂Ep(w̃, r̃, ˜̃r ).

We consider some one-dimensional subsets of ∂Bc∗E(p)
(w, r), which corre-

spond to the following subsets of C:

A1 := {ζ ∈ C : (ζ, w2) ∈ ∂Bc∗E(p)
(w, r)},

A2 := {ζ ∈ C : (w1, ζ) ∈ ∂Bc∗E(p)
(w, r)},

B := {ζ ∈ C : ζw ∈ ∂Bc∗E(p)
(w, r)}.

Observe that for ζ ∈ A1 we have, in view of Theorem 3,

tanh−1 r = cE(p)((ζ, w2), w) = %

(
ζ

(1− |w2|2p2)1/(2p1)
,

w1

(1− |w2|2p2)1/(2p1)

)
,

which implies that ζ/(1 − |w2|2p2)1/(2p1) lies on the hyperbolic circle with
center at w1/(1−|w2|2p2)1/(2p1) and radius tanh−1 r. But this means, in view
of the description of the Carathéodory disks in E, that (we can analogously
proceed with A2)

Aj =
{
ζ : ζ =

(1− r2)(1− |w3−j |2p3−j )1/pj

(1− |w3−j |2pj )1/pj − r2|wj |2
wj

+r(1− |w3−j |2p3−j )1/(2pj)
(1− |w3−j |2p3−j )1/pj − |wj |2

(1− |w3−j |2p3−j )1/pj − r2|wj |2
eiθ, 0 ≤ θ ≤ 2π

}
for j = 1, 2.

But from the equality (11) we know that for ζ ∈ Aj , j = 1, 2,

˜̃r =
∣∣∣∣ζ − w̃jr̃

∣∣∣∣2pj

+
∣∣∣∣w3−j − w̃3−j

r̃

∣∣∣∣2p3−j

.

From the form of Aj we get

(12) w̃j =
(1− r2)(1− |w3−j |2p3−j )1/pj

(1− |w3−j |2p3−j )1/pj − r2|wj |2
wj , j = 1, 2.

In particular, wj = 0 if and only if w̃j = 0.
Below we consider two cases.

C a s e (I): w1, w2 6= 0. We shall see that in this case we get a contradic-
tion. In view of Lemma 4, for ζ ∈ B,

tanh−1 r = cE(p)(ζw,w) = %(h(w)ζ, h(w)),

where h is the Minkowski function of E(p). Consequently, the points h(w)ζ,
where ζ ∈ B, lie on a hyperbolic circle in E, hyperbolically centered at h(w).
Therefore, this is a Euclidean circle. Moreover, B is the circle given by

B = {ζ = ζ0 +Reiθ : 0 ≤ θ ≤ 2π},
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where

ζ0 =
1− r2

1− r2h(w)2
and R =

r

h(w)
· 1− h(w)2

1− r2h(w)2
.

Thus, for all ζ ∈ B,

ζwj = ζ0wj +Rje
i(t+θj), t ∈ R,

where Rj = R|wj | and θj = argwj , j = 1, 2. In view of the definition of B
and the equality (11) we have, for ζ ∈ B,˜̃r = Np(ζw − w̃, r̃ )

=
∣∣∣∣ζ0w1 +R1e

i(t+θ1) − w̃1

r̃

∣∣∣∣2p1 +
∣∣∣∣ζ0w2 +R2e

i(t+θ2) − w̃2

r̃

∣∣∣∣2p2 , t ∈ R.

By Proposition 5 we get w̃ = ζ0w. Therefore, in particular,

1− r2

(1− |w2|2p2)1/p1 − r2|w1|2
(1− |w2|2p2)1/p1w1 =

1− r2

1− r2h(w)2
w1.

From the last equality we get (remember that 0 < r < 1, w1 6= 0)

(1− |w2|2p2)1/(2p1)h(w) = |w1|.

Equivalently

h

(
(1− |w2|2p2)1/(2p1)

|w1|
w

)
= 1,

so that (remember that h is the Minkowski function of E(p))

1− |w2|2p2 +
(1− |w2|2p2)2p2/(2p1)

|w1|2p2
|w2|2p2 = 1

and finally (remember that w2 6= 0!) 1 = |w1|2p1 + |w2|2p2 , so w ∈ ∂E(p)—a
contradiction.

C a s e (II): w1 = 0, w2 6= 0. We know that (see (12)) Bc∗E(p)
((0, w2), r) =

Ep((0, w̃2), r̃, ˜̃r ), where

w̃2 =
w2(1− r2)
1− r2|w2|2

.

Consider the geodesics (see Theorem 2)

ϕα2(λ)

:=
(

((1− |w2|2p2)(1− α2
2|w2|2p2))1/(2p1)

(1− |w2|2p2α2λ)1/p1
λ,w2

(
1− α2λ

1− |w2|2p2α2λ

)1/p2)
for α2 ∈ [−1, 1]. We see that ϕα2(0) = (0, w2). Therefore the points ϕα2(r)
for all α2 ∈ [−1, 1] are in ∂Bc∗E(p)

((0, w2), r) = ∂Ep((0, w̃2), r̃, ˜̃r ). Then for
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α2 ∈ [−1, 1] we get˜̃r = Np(ϕα2(r)− (0, w̃2), r̃ )(13)

=
(1− |w2|2p2)(1− α2

2|w2|2p2)r2p1

(1− |w2|2p2α2r)2r̃ 2p1

+
|w2|2p2
r̃ 2p2

∣∣∣∣( 1− α2r

1− |w2|2p2α2r

)1/p2

− 1− r2

1− r2|w2|2

∣∣∣∣2p2 .
One checks that the first summand on the right hand side of (13) in-

creases in α2 for α2 < r and decreases for α2 > r. Since the expression in
the second summand with exponent 1/p2 decreases in α2 and the sum in
(13) is constant we see that the second summand must be zero for α2 = r.

Let us differentiate (13) with respect to α2 where it is possible (the only
exception points are α2 = r if p2 = 1/2). Then we get

(14)
(1− |w2|2p2)r2p1

r̃ 2p1

2|w2|2p2(r − α2)
(1− |w2|2p2α2r)3

±|w2|2p2
r̃ 2p2

2p2

∣∣∣∣( 1− α2r

1− |w2|2p2α2r

)1/p2

− 1− r2

1− r2|w2|2

∣∣∣∣2p2−1

× 1
p2

(
1− α2r

1− |w2|2p2α2r

)1/p2−1
r(|w2|2p2 − 1)

(1− |w2|2p2α2r)2
≡ 0

for all possible α2, the sign being + for α2 < r and − for α2 > r.
Since all the functions appearing in (14) are real analytic for 1/r >

α2 > r, the limit of (14) as α2 → 1/r must be zero, which however may
hold only for p2 = 1. This gives us the first part of the theorem for n = 2.

To get the second part of the theorem we proceed as follows. Keeping
in mind that n = 2, p2 = 1, p1 ≥ 1/2 we take a point w = (0, w2) and find
conditions equivalent to the points (z1, z2) ∈ E(p) lying in ∂Bc∗E(p)

(w, r). We
have (for the description of automorphisms of ellipsoids in C2 with p2 = 1,
which we use below, see e.g. [JP])

r = c∗BE(p)
((0, w2), (z1, z2))

= c∗BE(p)

(
(0, 0),

((
1− |w2|2

(1− w2z2)2

)1/(2p1)

z1,
z2 − w2

1− w2z2

))
,

which is equivalent to (for a convex ellipsoid the function c∗E(p)(0, ·) of any
point is equal to the value of the Minkowski function at the point)

(1− |w2|2)|z1|2p1
|1− w2z2|2r2p1

+
|z2 − w2|2

|1− w2z2|2r2
= 1.
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Consequently, after some calculations,

(1− r2|w2|2)|z1|2p1
r2p1(1− |w2|2)

+

∣∣z2 − w2
1−r2

1−r2|w2|2
∣∣2(1− r2|w2|2)2

r2(1− |w2|2)2
= 1.

So a necessary and sufficient condition for the points (z1, z2) ∈ ∂Bc∗E(p)
(w, r)

to be in ∂Ep(w̃, r̃, ˜̃r ) (w̃ is given before) for some r̃, ˜̃r > 0 is that

˜̃r r̃ 2p1 =
r2p1(1− |w2|2)

1− r2|w2|2
, ˜̃r r̃ 2 =

r2(1− |w2|2)2

(1− r2|w2|2)2
,

which gives us the second part of the theorem (after application of Lemma 6).
Now we start the proof of the general case (i.e. n ≥ 3, pj 6= 1 for

j = 1, . . . , n). Suppose that the theorem does not hold, so there is some
w 6= 0 satisfying (1). Without loss of generality we may assume that

(15) w1 6= 0.

Define

π : Cn 3 z → (z1, z2) ∈ C2,

Λ : C2 3 z

→
(

1
(1−

∑n
k=3 |wk|2pk)1/(2p1)

z1,
1

(1−
∑n
k=3 |wk|2pk)1/(2p2)

z2

)
∈ C2.

We know that

L := (Λ ◦ π)(Bc∗E(p)
(w, r) ∩ (C2 × {(w3, . . . , wn)}))

= (Λ ◦ π)(Ep(w̃, r̃, ˜̃r ) ∩ (C2 × {(w3, . . . , wn)})) =: R.

Note that

R = Λ

({
(z1, z2) ∈ C2 :

∣∣∣∣z1 − w̃1

r̃

∣∣∣∣2p1 +
∣∣∣∣z2 − w̃2

r̃

∣∣∣∣2p2
< ˜̃r − n∑

k=3

∣∣∣∣wk − w̃kr̃

∣∣∣∣2pk
})

is an N(p1,p2)-ellipsoid with center (w̃1, w̃2) (at this point it is essential that
the ellipsoids considered by us are allowed to have ˜̃r 6= 1).

On the other hand, in view of Theorem 3,

L = Λ({(z1, z2) : (z1, z2, w3, . . . , wn) ∈ E(p) and
c∗E(p)((z1, z2, w3, . . . , wn), w) < r})
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= Λ

({
(z1, z2) : |z1|2p1 + |z2|2p2 < 1−

n∑
k=3

|wk|2pk and

c∗E(p1,p2)

((
z1

(1−
∑n
k=3 |wk|2pk)1/(2p1)

,
z2

(1−
∑n
k=3 |wk|2pk)1/(2p2)

)
,(

w1

(1−
∑n
k=3 |wk|2pk)1/(2p1)

,
w2

(1−
∑n
k=3 |wk|2pk)1/(2p2)

))
< r

})
= Bc∗E(p1,p2)

((
w1

(1−
∑n
k=3 |wk|2pk)1/(2p1)

,
w2

(1−
∑n
k=3 |wk|2pk)1/(2p2)

)
, r

)
.

And now L = R is an N(p1,p2)-ellipsoid, which in view of the theorem in
case n = 2 contradicts (15).
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